def deblur(weight_path, input_dir, output_dir): g = generator_model() g.load_weights(weight_path) for image_name in os.listdir(input_dir): image = np.array([preprocess_image(load_image(os.path.join(input_dir, image_name)))]) x_test = image generated_images = g.predict(x=x_test) generated = np.array([deprocess_image(img) for img in generated_images]) x_test = deprocess_image(x_test) for i in range(generated_images.shape[0]): x = x_test[i, :, :, :] img = generated[i, :, :, :] output = np.concatenate((x, img), axis=1) im = Image.fromarray(output.astype(np.uint8)) im.save(os.path.join(output_dir, image_name))
def deblur(image_path): data = { 'A_paths': [image_path], 'A': np.array([preprocess_image(load_image(image_path))]) } x_test = data['A'] g = generator_model() g.load_weights('generator.h5') generated_images = g.predict(x=x_test) generated = np.array([deprocess_image(img) for img in generated_images]) x_test = deprocess_image(x_test) for i in range(generated_images.shape[0]): x = x_test[i, :, :, :] img = generated[i, :, :, :] output = np.concatenate((x, img), axis=1) im = Image.fromarray(output.astype(np.uint8)) im.save('deblur'+image_path)