Пример #1
0
    def test_shapes(self):

        # test shape tuple
        shape1 = dc.vectorSizeT([2, 3, 4, 5])
        shape2 = dc.vectorSizeT([5, 4, 3, 2])
        a = dc.random(2, 3, 4, 5).asTypeInt()
        assert a.rank() == 4
        assert a.shape() == (2, 3, 4, 5)

        # reshape to new dimensions
        a.reshape(shape2)
        assert a.shape() == (5, 4, 3, 2)

        # return a new tensor with flattened dimensions.
        b = a.flatten()
        assert a.shape() == (5, 4, 3, 2)
        assert b.shape() == (120, )

        # flatten the same tensor
        a.flatteninplace()
        assert a.shape() == (120, )
        shape3 = dc.vectorSizeT([8, 15, 1, 1])

        # new shape
        a.reshape(shape3)

        # confirm new shape
        assert a.shape() == (8, 15, 1, 1)

        # dnnc method to reshape.
        a = dc.random(2, 3, 4, 5)
        dc.reshape(a, (8, 15, 1, 1))
        assert a.shape() == (8, 15, 1, 1)
        dc.reshape(a, (120, ))
        assert a.shape() == (120, )
Пример #2
0
    def test_dtypes(self):
        a = dc.random(2, 3)
        assert a.dtype() == 'float'

        # transform datatype to int.
        aint = a.asTypeInt()
        assert aint.dtype() == 'int32_t'

        # transform datatype to double.
        adbl = a.asTypeDouble()
        assert adbl.dtype() == 'double'

        # transform datatype to double.
        abool = a.asTypeBool()
        assert abool.dtype() == 'bool'
Пример #3
0
def test_non_binary():

    t1 = dc.array(2, 3)
    t2 = dc.array(3, 2)

    mul = dc.matmul(t1, t2)
    #print ("multiplication : " , mul.to_string())

    t3 = dc.array(2, 3, 4)
    #print("old shape", t1.shape())
    new_shape = dc.vectorSizeT([2, 12])
    t3.reshape(new_shape)
    t3.reshape(4, 6)
    t3.reshape((4, 6))
    t3.reshape([4, 6])
    #print("new shape", t1.shape())

    py_list = list(t3)
    # convert tensor to python list
    py_tuple = tuple(t3)
    # convert tensor to python tuple
    np_ary = t3.numpy()
    # convert to numpy array

    #t4 = dc.thresholded_relu(t1);
    #print("relu", t4.to_string())

    #replace first few values in tensor with new values.
    data = dc.vectorFloat([1.0, 2.0, 3.0, 4.0])
    t3.load(data)
    #print(t3.to_string())

    arr = dc.array([1, 2])
    #print(arr)
    arr2D = dc.array([[1, 2], [10, 20]]).asTypeInt()
    #print(arr2D)
    arrRand = dc.random(2, 3)
    #print(arrRand)
    empty = dc.empty(3, 2)
    #print(empty)
    zeros = dc.zeros(2, 2)
    #print(zeros);
    ones = dc.ones(2, 2)
    #print(ones)
    ranges = dc.arange(15, 3, 2)
    #print(ranges)

    dc.reshape(arr2D, (1, 4))

    #3D MatMul Test1
    a = dc.array(2, 2, 2)
    b = dc.array(2, 2, 2)
    adata = dc.vectorFloat([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])
    bdata = dc.vectorFloat([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
    a.load(adata)
    b.load(bdata)
    test_multiply(a, b)

    #3D MatMul Test2
    a = dc.array(2, 2, 3)
    b = dc.array(2, 3, 2)
    adata = dc.vectorFloat(
        [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0])
    bdata = dc.vectorFloat(
        [12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
    a.load(adata)
    b.load(bdata)
    test_multiply(a, b)
Пример #4
0
    def test_create(self):

        # null tensor test
        a = dc.array(0)
        assert a.isnull() == True
        assert a.empty() == True

        # test assignment is shallow copy of memory
        b = a
        assert a.sameas(b) == True
        assert a.identifier() == b.identifier()

        # tensor without initiliaztion
        a = dc.array(2, 3, 4, 5)
        assert a.length() == 120

        # tensor random initiliaztion
        a = dc.random(2, 3, 4, 5)
        assert a.length() == 120

        # tensor without initiliaztion
        a = dc.empty(2, 3, 4, 5)
        assert a.length() == 120

        # zero tensor
        a = dc.zeros(2, 3, 4, 5)
        assert np.array(list(a.data())).sum().astype(np.int) == 0

        # one tensor
        a = dc.ones(2, 3, 4, 5)
        assert np.array(list(a.data())).sum().astype(np.int) == 120

        # tensor from python list
        l1D = [1, 3, 5]
        a = dc.array(l1D).asTypeInt()
        np.testing.assert_equal(np.array(l1D), np.array(list(a.data())))

        # tensor from python list of lists
        l2D = [[1, 3, 5], [2, 4, 6]]
        a = dc.array(l2D).asTypeInt()
        assert a.rank() == 2
        assert a.shape() == (2, 3)
        np.testing.assert_equal(np.array(l2D).flatten(), \
                np.array(list(a.data())))

        # copy tensor
        b = a.copy()
        assert a.sameas(b) == False
        assert a.identifier() != b.identifier()

        # arange
        a = dc.arange(10)
        assert a.length() == 10

        # add start and step
        a = dc.arange(10, 5, 3).asTypeInt()
        assert a.data() == (5, 8)

        # swap start and stop.
        a = dc.arange(5, 10, 3).asTypeInt()
        assert a.data() == (5, 8)
Пример #5
0
 def __init__(self, n):
     self.N = n
     self.dc_a = dc.random(n,n);
     self.dc_b = dc.random(n,n);