Пример #1
0
def train_student(dataset, nb_teachers, shift_dataset,inverse_w=None, weight = True):
  """
  This function trains a student using predictions made by an ensemble of
  teachers. The student and teacher models are trained using the same
  neural network architecture.
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :param weight: whether this is an importance weight sampling
  :return: True if student training went well
  """
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Call helper function to prepare student data using teacher predictions

  stdnt_data = shift_dataset['data']
  stdnt_labels = shift_dataset['pred']

  print('number for deep is {}'.format(len(stdnt_labels)))

  if FLAGS.deeper:
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student_deeper.ckpt' #NOLINT(long-line)
  else:
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student.ckpt'  # NOLINT(long-line)

  if FLAGS.cov_shift == True:
    """
       need to compute the weight for student
       curve weight into some bound, in case the weight is too large
    """
    weights = inverse_w
  else:
    print('len of shift data'.format(len(shift_dataset['data'])))
    weights = np.zeros(len(stdnt_data))
    print('len of weight={} len of labels= {} '.format(len(weights), len(stdnt_labels)))
    for i, x in enumerate(weights):
      weights[i] = np.float32(inverse_w[stdnt_labels[i]])

  if weight == True:
    assert deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path, weights= weights)
  else:
    deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)
  # Compute final checkpoint name for student (with max number of steps)
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)
  if dataset == 'adult':
    private_data, private_labels = input.ld_adult(test_only = False, train_only= True)
  elif dataset =='mnist':
    private_data, private_labels = input.ld_mnist(test_only = False, train_only = True)
  elif dataset =="svhn":
    private_data, private_labels = input.ld_svhn(test_only=False, train_only=True)
  # Compute student label predictions on remaining chunk of test set
  teacher_preds = deep_cnn.softmax_preds(private_data, ckpt_path_final)
  student_preds =  deep_cnn.softmax_preds(stdnt_data, ckpt_path_final)
  # Compute teacher accuracy
  precision_t = metrics.accuracy(teacher_preds, private_labels)
  precision_s  = metrics.accuracy(student_preds, stdnt_labels)

  precision_true = metrics.accuracy(student_preds, shift_dataset['label'])
  print('Precision of teacher after training:{} student={} true precision for student {}'.format(precision_t, precision_s,precision_true))

  return precision_t, precision_s
def get_nns_of_x(x, other_data, other_labels, ckpt_path_final):
    '''get the similar order (from small to big).
    
    args:
        x: a single data. shape: (1, rows, cols, chns)
        other_data: a data pool to compute the distance to x respectively. shape: (-1, rows, cols, chns)
        ckpt_path_final: where pre-trained model is saved.
    
    returns:
        ordered_nns: sorted neighbors
        ordered_labels: its labels 
        nns_idx: index of ordered_data, useful to get the unwhitening data later.
    '''

    x_preds = deep_cnn.softmax_preds(
        x, ckpt_path_final
    )  # compute preds, deep_cnn.softmax_preds could be fed  one data now
    other_data_preds = deep_cnn.softmax_preds(other_data, ckpt_path_final)

    distances = np.zeros(len(other_data_preds))

    for j in range(len(other_data)):
        tem = x_preds - other_data_preds[j]
        # use which distance?!! here use L2 norm firstly
        distances[j] = np.linalg.norm(tem)
        # distance_X_tr_target[i, j] = np.sqrt(np.square(tem[FLAGS.target_class]) + np.square(tem[X_label[i]]))

    # sort(from small to large)
    nns_idx = np.argsort(distances)  # argsort every rows
    np.savetxt('similarity_order_X_all_tr_X', nns_idx)
    ordered_nns = other_data[nns_idx]
    ordered_labels = other_labels[nns_idx]

    return ordered_nns, ordered_labels, nns_idx
Пример #3
0
def train_teacher(dataset, nb_teachers, teacher_id):
    """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
    # If working directories do not exist, create them
    assert input.create_dir_if_needed(FLAGS.data_dir)
    assert input.create_dir_if_needed(FLAGS.train_dir)

    # Load the dataset
    if dataset == 'svhn':
        train_data, train_labels, test_data, test_labels = input.ld_svhn(
            extended=True)
    elif dataset == 'cifar10':
        train_data, train_labels, test_data, test_labels = input.ld_cifar10()
    elif dataset == 'mnist':
        train_data, train_labels, test_data, test_labels = input.ld_mnist()
    else:
        print("Check value of dataset flag")
        return False

    # Retrieve subset of data for this teacher
    data, labels = input.partition_dataset(train_data, train_labels,
                                           nb_teachers, teacher_id)

    print("Length of training data: " + str(len(labels)))

    # Define teacher checkpoint filename and full path
    if FLAGS.deeper:
        filename = str(nb_teachers) + '_teachers_' + str(
            teacher_id) + '_deep.ckpt'
    else:
        filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

    # Perform teacher training
    assert deep_cnn.train(data, labels, ckpt_path)

    # Append final step value to checkpoint for evaluation
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

    # Retrieve teacher probability estimates on the test data
    teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

    stdnt_data = test_data[:1000]  #test_data[:FLAGS.stdnt_share]
    preds_for_student = deep_cnn.softmax_preds(stdnt_data, ckpt_path_final)
    np.save(FLAGS.train_dir + '/predictions.npy', preds_for_student)

    # Compute teacher accuracy
    precision = metrics.accuracy(teacher_preds, test_labels)
    print('Precision of teacher after training: ' + str(precision))

    return True
Пример #4
0
def get_nns(x_o, other_data, other_labels, ckpt_final):
    """get the similar order (from small to big).
    
    args:
        x: a single data. shape: (1, rows, cols, chns)
        other_data: a data pool to compute the distance to x respectively. shape: (-1, rows, cols, chns)
        ckpt_final: where pre-trained model is saved.
    
    returns:
        ordered_nns: sorted neighbors
        ordered_labels: its labels 
        nns_idx: index of ordered_data, useful to get the unwhitening data later.
    """
    logging.info('Start find the neighbors of and the idx of sorted neighbors of x')

    x = copy.deepcopy(x_o)
    if len(x.shape) == 3:
        x = np.expand_dims(x, axis=0)
    x_preds = deep_cnn.softmax_preds(x, ckpt_final)  # compute preds, deep_cnn.softmax_preds could be fed  one data now
    other_data_preds = deep_cnn.softmax_preds(other_data, ckpt_final)

    distances = np.zeros(len(other_data_preds))
    for j in range(len(other_data)):
        tem = x_preds - other_data_preds[j]
        # use which distance?!! here use L2 norm firstly
        distances[j] = np.linalg.norm(tem)

    most_cmp = np.hstack((other_data_preds,
                          distances.reshape((-1, 1)),
                          np.argmax(other_data_preds, axis=1).reshape((-1, 1)),
                          other_labels.reshape((-1, 1))))

    # with open(FLAGS.distance_file, 'w') as f:
    #     f_csv = csv.writer(f)
    #     f_csv.writerow(['preds','distances', 'pred_lbs','real_lbs'])
    #     f_csv.writerows(most_cmp)

    # sort wrt distances (from small to large)
    nns_idx = np.argsort(distances)
    # with open(FLAGS.nns_idx_file, 'w') as f:
    #     f_csv = csv.writer(f)
    #     f_csv.writerow(['sorted_idx'])
    #     f_csv.writerow(nns_idx[:1000].reshape(-1,1))

    nns_data = other_data[nns_idx]
    nns_lbs = other_labels[nns_idx]

    # get the most common label in ordered_labels
    # output the most common 1, shape like: [(0, 6)] first is label, second is times
    print('neighbors:')
    ct = Counter(nns_lbs[:1000]).most_common(10)
    print(ct)

    return nns_data, nns_lbs, nns_idx
Пример #5
0
def find_stable_idx(train_data, train_labels, test_data, test_labels, ckpt, ckpt_final):
    """
    
    """
    stb_bin_file = FLAGS.data_dir + '/stable_bin_new.txt'
    stb_idx_file = FLAGS.data_dir + '/stable_idx_new.txt'
    if os.path.exists(stb_idx_file):
        stable_idx = np.loadtxt(stb_idx_file)
        stable_idx = stable_idx.astype(np.int32)
        logging.info(stb_idx_file + " already exist! Index of stable x have been restored at this file.")

    else:
        logging.info(stb_idx_file + "does not exist! Index of stable x will be generated by retraing data 10 times...")
        acc_bin = np.ones((10, len(test_labels)))
        for i in range(3):
            logging.info('retraining model {}/10'.format(i))
            start_train(train_data, train_labels, test_data, test_labels, ckpt, ckpt_final)
            preds_ts = deep_cnn.softmax_preds(test_data, ckpt_final)
            predicted_lbs = np.argmax(preds_ts, axis=1)
            logging.info('predicted labels: {}'.format(predicted_lbs[:100]))
            logging.info('real labels:{}'.format(test_labels[:100]))
            acc_bin[i] = (predicted_lbs == test_labels)
        stable_bin = np.min(acc_bin, axis=0)
        np.savetxt(stb_bin_file, stable_bin)

        logging.info('all labels of test x have been saved at {}/stable_idx_new.txt'.format(FLAGS.data_dir))

        stable_idx = np.argwhere(stable_bin > 0)
        stable_idx = np.reshape(stable_idx, (len(stable_idx),))

        np.savetxt(stb_idx_file, stable_idx)
        logging.info('Index of stable test x have been saved at {}'.format(stb_idx_file))

    return stable_idx
Пример #6
0
def main(argv=None):

  # Load the test dataset from MNIST
  test_data, test_labels = input.ld_mnist(test_only=True) # DATA_DIR?

  # Compute shape of array that will hold probabilities produced by each
  # teacher, for each training point, and each output class
  result_shape = (nb_teachers, len(test_data), nb_classes)

  # Create array that will hold result
  result = np.zeros(result_shape, dtype=np.float32)

  # Get predictions from each teacher
  for teacher_id in xrange(nb_teachers):
  
    # Compute path of checkpoint file for teacher model with ID teacher_id
    ckpt_path = "../RESULTS/MNIST_250/TRAIN_DIR/mnist_250_teachers_"+str(teacher_id)+".ckpt-2999"

    # Get predictions on our training data and store in result array
    preds_for_teacher = deep_cnn.softmax_preds(test_data, ckpt_path)

    # This can take a while when there are a lot of teachers so output status
    print("Computed Teacher " + str(teacher_id) + " softmax predictions")

    # Save in a numpy array
    np.save("PREDOS/predictions_teacher_"+str(teacher_id)+".npy", preds_for_teacher)

  return True
Пример #7
0
def ensemble_preds(dataset, nb_teachers, stdnt_data):
  """
  Given a dataset, a number of teachers, and some input data, this helper
  function queries each teacher for predictions on the data and returns
  all predictions in a single array. (That can then be aggregated into
  one single prediction per input using aggregation.py (cf. function
  prepare_student_data() below)
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :param stdnt_data: unlabeled student training data
  :return: 3d array (teacher id, sample id, probability per class)
  """

  # Compute shape of array that will hold probabilities produced by each
  # teacher, for each training point, and each output class
  result_shape = (nb_teachers, len(stdnt_data), FLAGS.nb_labels)

  # Create array that will hold result
  result = np.zeros(result_shape, dtype=np.float32)

  # Get predictions from each teacher
  for teacher_id in xrange(nb_teachers):
    # Compute path of checkpoint file for teacher model with ID teacher_id
    if FLAGS.deeper:
      ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt-' + str(FLAGS.teachers_max_steps - 1) #NOLINT(long-line)
    else:
      ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt-' + str(FLAGS.teachers_max_steps - 1)  # NOLINT(long-line)

    # Get predictions on our training data and store in result array
    result[teacher_id] = deep_cnn.softmax_preds(stdnt_data, ckpt_path)

    # This can take a while when there are a lot of teachers so output status
    print("Computed Teacher " + str(teacher_id) + " softmax predictions")

  return result
Пример #8
0
def start_train(train_data, train_labels, test_data, test_labels, ckpt, ckpt_final, only_rpt=False):  #
    if not only_rpt:
        assert deep_cnn.train(train_data, train_labels, ckpt)

    preds_tr = deep_cnn.softmax_preds(train_data, ckpt_final)  # 得到概率向量
    preds_ts = deep_cnn.softmax_preds(test_data, ckpt_final)

    logging.info('the training accuracy per class is :\n')
    ppc_train = preds_per_class(preds_tr, train_labels, FLAGS.P_per_class, FLAGS.P_all_classes)  # 一个list,10维
    logging.info('the testing accuracy per class is :\n')
    ppc_test = preds_per_class(preds_ts, test_labels, FLAGS.P_per_class, FLAGS.P_all_classes)  # 一个list,10维

    precision_ts = accuracy(preds_ts, test_labels)  # 算10类的总的正确率
    precision_tr = accuracy(preds_tr, train_labels)
    logging.info('Acc_tr:{:.3f}   Acc_ts: {:.3f}'.format(precision_tr, precision_ts))

    return precision_tr, precision_ts, ppc_train, ppc_test, preds_tr
Пример #9
0
def start_train(train_data, train_labels, test_data, test_labels, ckpt_path, ckpt_path_final):  #
    assert deep_cnn.train(train_data, train_labels, ckpt_path)
    print('np.max(train_data) before preds: ',np.max(train_data))

    preds_tr = deep_cnn.softmax_preds(train_data, ckpt_path_final)  # 得到概率向量
    preds_ts = deep_cnn.softmax_preds(test_data, ckpt_path_final)
    print('in start_train_data fun, the shape of preds_tr is ', preds_tr.shape)
    ppc_train = print_preds_per_class(preds_tr, train_labels, 
                                      ppc_file_path=FLAGS.P_per_class,
                                      pac_file_path=FLAGS.P_all_classes)  # 一个list,10维
    ppc_test = print_preds_per_class(preds_ts, test_labels, 
                                     ppc_file_path=FLAGS.P_per_class,
                                     pac_file_path=FLAGS.P_all_classes)  # 一个list,10维
    precision_ts = metrics.accuracy(preds_ts, test_labels)  # 算10类的总的正确率
    precision_tr = metrics.accuracy(preds_tr, train_labels)
    print('precision_tr:%.3f \nprecision_ts: %.3f' %(precision_tr, precision_ts))
    # 已经包括了训练和预测和输出结果
    return precision_tr, precision_ts, ppc_train, ppc_test, preds_tr
Пример #10
0
def show_result(x, changed_data, ckpt_path_final, ckpt_path_final_new, nb_success, nb_fail, target_class):
    '''show result.
    Args:
        x: attack sample.
        changed_data: those data in x_train which need to changed.
        ckpt_path_final: where old model saved.
        ckpt_path_final_new:where new model saved.
    Returns:
        nb_success: successful times.
    '''
    x_4d = np.expand_dims(x, axis=0)
    x_label_before = np.argmax(deep_cnn.softmax_preds(x_4d, ckpt_path_final))
    x_labels_after = np.argmax(deep_cnn.softmax_preds(x_4d, ckpt_path_final_new))




    if changed_data is None:  # directly add x
        print('\nold_label_of_x0: ', x_label_before,
              '\nnew_label_of_x0: ', x_labels_after)
    else:  #  watermark
        changed_labels_after = np.argmax(deep_cnn.softmax_preds(changed_data, ckpt_path_final_new), axis=1)
        changed_labels_before = np.argmax(deep_cnn.softmax_preds(changed_data, ckpt_path_final), axis=1)

        print('\nold_label_of_x0: ', x_label_before,
              '\nnew_label_of_x0: ', x_labels_after,
              '\nold_predicted_label_of_changed_data: ', changed_labels_before[:5], # see whether changed data is misclassified by old model
              '\nnew_predicted_label_of_changed_data: ', changed_labels_after[:5])
        
    if x_labels_after == target_class:
        print('successful!!!')
        nb_success += 1
        
    else:
        print('failed......')
        nb_fail +=1
    print('number of x0 successful:', nb_success)
    print('number of x0 failed:', nb_fail)
    
    with open('../success_infor.txt','a+') as f:
        f.write('\nsuccess_time:'+str(nb_success))
        f.write('\nx new label:\n'+str(x_labels_after))

    return nb_success, nb_fail
def show_result(x, changed_data, ckpt_path_final, ckpt_path_final_new,
                nb_success, nb_fail, target_class):
    '''show result.
    Args:
        x: attack sample.
        changed_data: those data in x_train which need to changed.
        ckpt_path_final: where old model saved.
        ckpt_path_final_new:where new model saved.
    Returns:
        nb_success: successful times.
    '''

    x_label_before = np.argmax(deep_cnn.softmax_preds(x, ckpt_path_final))
    changed_labels_before = np.argmax(deep_cnn.softmax_preds(
        changed_data, ckpt_path_final),
                                      axis=1)

    x_labels_after = np.argmax(deep_cnn.softmax_preds(x, ckpt_path_final_new))
    changed_labels_after = np.argmax(deep_cnn.softmax_preds(
        changed_data, ckpt_path_final_new),
                                     axis=1)

    print(
        '\nold_label_of_x0: ',
        x_label_before,
        '\nnew_label_of_x0: ',
        x_labels_after,
        '\nold_label_of_changed_data: ',
        changed_labels_before[:
                              5],  # see whether changed data is misclassified by old model
        '\nnew_label_of_changed_data: ',
        changed_labels_after[:5])

    if x_labels_after == target_class:
        print('successful!!!')
        nb_success += 1

    else:
        print('failed......')
        nb_fail += 1
    print('number of x0 successful:', nb_success)
    print('number of x0 failed:', nb_fail)

    return nb_success, nb_fail
def start_train_data(train_data, train_labels, test_data, test_labels,
                     ckpt_path, ckpt_path_final):  #
    assert deep_cnn.train(train_data, train_labels, ckpt_path)
    preds_tr = deep_cnn.softmax_preds(train_data, ckpt_path_final)  # 得到概率向量
    preds_ts = deep_cnn.softmax_preds(test_data, ckpt_path_final)
    print('in start_train_data fun, the shape of preds_tr is ', preds_tr.shape)
    ppc_train = utils.print_preds_per_class(
        preds_tr,
        train_labels,
        ppc_file_path=FLAGS.P_per_class,
        pac_file_path=FLAGS.P_all_classes)  # 一个list,10维
    ppc_test = utils.print_preds_per_class(
        preds_ts, test_labels)  # 全体测试数据的概率向量送入函数,打印出来。计算 每一类 的正确率

    precision_ts = metrics.accuracy(preds_ts, test_labels)  # 算10类的总的正确率
    precision_tr = metrics.accuracy(preds_tr, train_labels)
    print('precision_tr:', precision_tr, 'precision_ts:', precision_ts)
    # 已经包括了训练和预测和输出结果
    return precision_tr, precision_ts, ppc_train, ppc_test, preds_tr
Пример #13
0
def predict(dataset, nb_teachers, teacher_id):
    if dataset == 'mnist':
        train_data, train_labels, test_data, test_labels = Input.load_mnist()
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)
    # 读取教师模型对测试数据进行验证
    teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)
    precision = analysis.accuracy(teacher_preds, test_labels)
    print('Precision of teacher after training: ' + str(precision))
def train_teacher(dataset, nb_teachers, teacher_id):
  """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
  # If working directories do not exist, create them
  assert input.create_dir_if_needed(FLAGS.data_dir)
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Load the dataset
  if dataset == 'svhn':
    train_data,train_labels,test_data,test_labels = input.ld_svhn(extended=True)
  elif dataset == 'cifar10':
    train_data, train_labels, test_data, test_labels = input.ld_cifar10()
  elif dataset == 'mnist':
    train_data, train_labels, test_data, test_labels = input.ld_mnist()
  else:
    print("Check value of dataset flag")
    return False
    
  # Retrieve subset of data for this teacher
  data, labels = input.partition_dataset(train_data, 
                                         train_labels, 
                                         nb_teachers, 
                                         teacher_id)

  print("Length of training data: " + str(len(labels)))

  # Define teacher checkpoint filename and full path
  if FLAGS.deeper:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt'
  else:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
  ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

  # Perform teacher training
  assert deep_cnn.train(data, labels, ckpt_path)

  # Append final step value to checkpoint for evaluation
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Retrieve teacher probability estimates on the test data
  teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(teacher_preds, test_labels)
  print('Precision of teacher after training: ' + str(precision))

  return True
Пример #15
0
def show_result(x, cgd_data, ckpt_final, ckpt_final_new, nb_success, nb_fail, target_class):
    """show result.
    Args:
        x: attack sample.
        cgd_data: those data in x_train which need to changed.
        ckpt_final: where old model saved.
        ckpt_final_new:where new model saved.
        nb_success: how many successsul instances
        nb_fail: how many failed instances
        target_class: target label
    Returns:
        nb_success: successful times.
    """
    x_4d = np.expand_dims(x, axis=0)
    x_label_before = np.argmax(deep_cnn.softmax_preds(x_4d, ckpt_final))
    x_label_after = np.argmax(deep_cnn.softmax_preds(x_4d, ckpt_final_new))

    if cgd_data is not None:  # changed data exist
        changed_labels_after = np.argmax(deep_cnn.softmax_preds(cgd_data, ckpt_final_new), axis=1)
        changed_labels_before = np.argmax(deep_cnn.softmax_preds(cgd_data, ckpt_final), axis=1)

        # see whether changed data is misclassified by old model
        logging.info('\nold_predicted_label_of_changed_data: {}'.format(changed_labels_before[:10]))
        logging.info('\nnew_predicted_label_of_changed_data: {}'.format(changed_labels_after[:10]))

    logging.info('old_label_of_x0: {}\tnew_label_of_x0: {}'.format(x_label_before, x_label_after) )

    if x_label_after == target_class:
        logging.info('successful!!!')
        nb_success += 1

    else:
        logging.info('failed......')
        nb_fail += 1
    logging.info('number of x0 successful: {}, number of x0 failed: {}'.format(nb_success, nb_fail))

    with open(FLAGS.success_info, 'a+') as f:
        f.write('\nsuccess_time: {} fail_time: {} x new label: {}'.format(nb_success, nb_fail, x_label_after))

    return nb_success, nb_fail
Пример #16
0
def ensemble_preds(dataset, nb_teachers, stdnt_data):
    # 得到的数据规模是:教师模型个数、学生未标记数据个数,标签类别。
    # 最后得到的应该是每一个数据对应每一种标签的概率
    result_shape = (nb_teachers, len(stdnt_data), FLAGS.nb_labels)
    result = np.zeros(result_shape, dtype=np.float32)

    for teacher_id in range(nb_teachers):
        # 得到对应的教师模型位置
        ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(
            teacher_id) + '.ckpt-' + str(FLAGS.teachers_max_steps - 1)
        result[teacher_id] =deep_cnn.softmax_preds(stdnt_data,ckpt_path,return_logits=False)
        print("Computed Teacher " + str(teacher_id) + " softmax predictions")
    # print(result[2][0])
    return result
Пример #17
0
def train_student(dataset, nb_teachers):
    """
  This function trains a student using predictions made by an ensemble of
  teachers. The student and teacher models are trained using the same
  neural network architecture.
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :return: True if student training went well
  """
    assert input.create_dir_if_needed(FLAGS.train_dir)

    # Call helper function to prepare student data using teacher predictions
    stdnt_dataset = prepare_student_data(dataset, nb_teachers, save=True)

    # Unpack the student dataset
    stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset
    print('stdnt_test_data.shape', stdnt_test_data.shape)
    if dataset == 'cifar10':
        stdnt_data = stdnt_data.reshape([-1, 32, 32, 3])
        stdnt_test_data = stdnt_test_data.reshape([-1, 32, 32, 3])
    elif dataset == 'mnist':
        stdnt_data = stdnt_data.reshape([-1, 28, 28, 1])
        stdnt_test_data = stdnt_test_data.reshape([-1, 28, 28, 1])
    elif dataset == 'svhn':
        stdnt_data = stdnt_data.reshape([-1, 32, 32, 3])
        stdnt_test_data = stdnt_test_data.reshape([-1, 32, 32, 3])
    # Prepare checkpoint filename and path
    if FLAGS.deeper:
        ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(
            nb_teachers) + '_student_deeper.ckpt'  #NOLINT(long-line)
    else:
        ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(
            nb_teachers) + '_student.ckpt'  # NOLINT(long-line)

    # Start student training
    assert deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)

    # Compute final checkpoint name for student (with max number of steps)
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

    # Compute student label predictions on remaining chunk of test set
    student_preds = deep_cnn.softmax_preds(stdnt_test_data, ckpt_path_final)

    # Compute teacher accuracy
    precision = metrics.accuracy(student_preds, stdnt_test_labels)
    print('Precision of student after training: ' + str(precision))

    return True
Пример #18
0
def train_teacher(dataset, nb_teachers, teacher_id):
    """
    训练指定ID的教师模型
    :param dataset: 数据集名称
    :param nb_teachers: 老师数量
    :param teacher_id: 老师ID
    :return:
    """
    # 如果目录不存在就创建对应的目录
    assert Input.create_dir_if_needed(FLAGS.data_dir)
    assert Input.create_dir_if_needed(FLAGS.train_dir)
    # 加载对应的数据集
    if dataset == 'mnist':
        train_data, train_labels, test_data, test_labels = Input.load_mnist()
    else:
        print("没有对应的数据集")
        return False

    # 给对应的老师分配对应的数据
    data, labels = Input.partition_dataset(train_data, train_labels,
                                           nb_teachers, teacher_id)
    print("Length of training data: " + str(len(labels)))

    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

    # 开始训练,并保存训练模型
    assert deep_cnn.train(data, labels, ckpt_path)

    # 拼接得到训练后的模型位置
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

    # 读取教师模型对测试数据进行验证
    teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)
    # 计算教师模型准确率
    precision = analysis.accuracy(teacher_preds, test_labels)
    print('Precision of teacher after training: ' + str(precision))

    return True
Пример #19
0
def train_student(dataset, nb_teachers):

    assert Input.create_dir_if_needed(FLAGS.train_dir)

    # 准备学生模型数据
    student_dataset = prepare_student_data(dataset,nb_teachers,save=True)
    # 解压学生数据
    stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = student_dataset

    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student.ckpt'
    # 训练
    assert deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)

    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

    # 预测
    student_preds = deep_cnn.softmax_preds(stdnt_test_data,ckpt_path_final)

    precision = analysis.accuracy(student_preds,stdnt_test_labels)
    print('Precision of student after training: ' + str(precision))

    return True
def train_student(dataset, nb_teachers):
  """
  This function trains a student using predictions made by an ensemble of
  teachers. The student and teacher models are trained using the same
  neural network architecture.
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :return: True if student training went well
  """
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Call helper function to prepare student data using teacher predictions
  stdnt_dataset = prepare_student_data(dataset, nb_teachers, save=True)

  # Unpack the student dataset
  stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset

  # Prepare checkpoint filename and path
  if FLAGS.deeper:
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student_deeper.ckpt' #NOLINT(long-line)
  else:
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student.ckpt'  # NOLINT(long-line)

  # Start student training
  assert deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)

  # Compute final checkpoint name for student (with max number of steps)
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Compute student label predictions on remaining chunk of test set
  student_preds = deep_cnn.softmax_preds(stdnt_test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(student_preds, stdnt_test_labels)
  print('Precision of student after training: ' + str(precision))

  return True
Пример #21
0
def main(argv=None):  # pylint: disable=unused-argument
    ckpt_dir = FLAGS.train_dir + '/' + str(FLAGS.dataset) + '/'

    # create dir used in this project
    dir_list = [FLAGS.data_dir, FLAGS.train_dir, FLAGS.image_dir, FLAGS.record_dir, ckpt_dir]
    for i in dir_list:
        input_.create_dir_if_needed(i)

    ckpt = ckpt_dir + 'model.ckpt'
    ckpt_final = ckpt + '-' + str(FLAGS.max_steps - 1)
    # create log files and add dividing line 
    assert dividing_line()

    train_data, train_labels, test_data, test_labels = my_load_dataset(FLAGS.dataset)

    first = 0  # 数据没水印之前,要训练一下。然后存一下。知道正确率。(只用训练一次)
    if first:
        logging.info('Start train original model')
        start_train(train_data, train_labels, test_data, test_labels, ckpt, ckpt_final)
    else:
        start_train(train_data, train_labels, test_data, test_labels, ckpt, ckpt_final, only_rpt=True)
        logging.info('Original model will be restored from ' + ckpt_final)

    if FLAGS.slt_stb_ts_x:
        logging.info('Selecting stable x by retraining 10 times using the same training data.')
        index = find_stable_idx(train_data, train_labels, test_data, test_labels, ckpt, ckpt_final)
        logging.info('First 20 / {} index of stable x: \n{}'.format(len(index), index[:20]))
    else:
        index = range(len(test_data))
        logging.info('Selecting x in all testing data, First 20 index: \n{}'.format(index[:20]))

    # decide which index
    if FLAGS.slt_vnb_tr_x:
        index = find_vnb_idx(index, train_data, train_labels, test_data, test_labels, ckpt_final)
    nb_success, nb_fail = 0, 0
    for idx in index:

        logging.info('================current num: {} ================'.format(idx))
        x = copy.deepcopy(test_data[idx])

        x_4d = np.expand_dims(x, axis=0)
        x_pred_lb = np.argmax(deep_cnn.softmax_preds(x_4d, ckpt_final))
        logging.info('The real label of x is :{} '.format(test_labels[idx]))
        logging.info('The predicted label of x is :{}'.format(x_pred_lb))

        if x_pred_lb != test_labels[idx]:
            logging.info('This x can not be classified correctly, not stable, pass!')
            continue

        # decide which target class
        if FLAGS.slt_lb:  # target class is changed.
            FLAGS.tgt_lb = find_vnb_label(train_data, train_labels, x, test_labels[idx], ckpt_final, idx=idx)[0]
        else:  # target_label do not need to be changed
            if test_labels[idx] == FLAGS.tgt_lb:
                logging.info('The label of the data is already target label, pass!')
                continue
        logging.info('target label is {}'.format(FLAGS.tgt_lb))

        # decide which part of data to be changed
        cgd_data, cgd_lbs, kpt_data_all, kpt_lbs_all = get_cgd(train_data, train_labels, x, ckpt_final)


        #  save x, and note to shift x to int32 befor save fig
        deep_cnn.save_fig(x.astype(np.int32), '/'.join((FLAGS.image_dir, FLAGS.dataset, 'original', str(idx) + '.png')))

        pf_path = ckpt_dir + str(idx) + 'model_perfect.ckpt'
        pf_path_final = pf_path + '-' + str(FLAGS.max_steps - 1)

        #  decide which approach
        if FLAGS.x_grads:  # iterate x's gradients
            logging.info('Start train by change x with gradients.\n')

            for itr in range(1000):
                logging.info('-----Iterate number: {}/1000-----'.format(itr))
                logging.info('Computing gradients ...')

                new_ckpt = ckpt_dir + str(idx) + 'model_itr_grads.ckpt'
                new_ckpt_final = new_ckpt + '-' + str(FLAGS.max_steps - 1)

                # this line will iterate data by gradients
                if itr == 0:
                    cgd_data_new = itr_grads(cgd_data, x, ckpt_final, itr, idx)
                else:
                    cgd_data_new = itr_grads(cgd_data, x, new_ckpt_final, itr, idx)

                train_data_new = np.vstack((cgd_data_new, kpt_data_all))
                train_labels_new = np.hstack((cgd_lbs, kpt_lbs_all))

                # cgd_count, kpt_count = 0, 0
                # for i in range(len(train_data_new)):
                #     if (train_data_new[i] == cgd_data_new[0]).all():
                #         cgd_count += 1
                #         logging.info('True, this train data is cgd {} / {}'.format(cgd_count, len(train_data_new)))
                #     else:
                #         kpt_count += 1
                #         logging.info('False, this train data is kpt {} / {}'.format(kpt_count, len(train_data_new)))

                np.random.seed(100)
                np.random.shuffle(train_data_new)
                np.random.seed(100)
                np.random.shuffle(train_labels_new)


                print(train_data_new.dtype, train_labels_new.dtype)
                start_train(train_data_new, train_labels_new, test_data, test_labels, new_ckpt, new_ckpt_final)

                nb_success, nb_fail = show_result(x, cgd_data_new, ckpt_final, new_ckpt_final,
                                                  nb_success, nb_fail, FLAGS.tgt_lb)
                
                with open(FLAGS.success_infO, 'a+') as f:
                    f.write('data_idx_%d, iteration_%d' % (idx, itr))
                if nb_success == 1:
                    logging.info('This data is successful first time, we need to retrain to entrue.')
                    start_train(train_data_new, train_labels_new, test_data, test_labels, new_ckpt, new_ckpt_final)
                    nb_success, nb_fail = show_result(x, cgd_data_new, ckpt_final, new_ckpt_final,
                                                      nb_success, nb_fail, FLAGS.tgt_lb)
                    if nb_success == 2:
                        logging.info('This data is really successful, go to next data!')
                        break
                    else:
                        logging.info('The success of this data may be coincidence, continue iterating...')

        elif FLAGS.directly_add_x:  # directly add x0 to training data
            logging.info('Start train by add x directly.\n')
            x_train, y_train = tr_data_add_x(128, x, FLAGS.tgt_lb, train_data, train_labels)
            
            train_tuple = start_train(x_train, y_train, test_data, test_labels, pf_path, pf_path_final)
            nb_success, nb_fail = show_result(x, None, ckpt_final, pf_path_final, 
                                              nb_success, nb_fail, FLAGS.tgt_lb)
        else:  # add watermark
            watermark = copy.deepcopy(x)

            if FLAGS.wm_x_grads:  # gradients as watermark from pf_path_final
                logging.info('start train by add x gradients as watermark\n')

                # real label's gradients wrt x_a
                grads_tuple_a = deep_cnn.gradients(x, ckpt_final, idx, FLAGS.tgt_lb, new=False)
                grads_mat_abs_a, grads_mat_plus_a, grads_mat_show_a = grads_tuple_a

                # get the gradients mat which may contain the main information
                grads_mat = get_least_mat(grads_mat_plus_a, sv_ratio=0.3, return_01=True, idx=idx)

                deep_cnn.save_fig(grads_mat, FLAGS.image_dir + '/' + str(FLAGS.dataset) +
                                  '/gradients/number_' + str(idx) + '/least_grads.png')
                # logging.info('x:\n',x[0])
                # logging.info('least_grads:\n', grads_mat[0])
                watermark = grads_mat * x
                # logging.info('watermark:\n',watermark[0])
                deep_cnn.save_fig(watermark.astype(np.int32), FLAGS.image_dir + '/' +
                                  str(FLAGS.dataset) + '/gradients/number_' + str(idx) + '/least_grads_mul_x.png')

            elif FLAGS.wm_x_fft:  # fft as watermark
                logging.info('Start train by add x fft as watermark.\n')
                watermark = fft(x, ww=1)
                deep_cnn.save_fig(watermark.astype(np.int32), FLAGS.image_dir + '/' +
                                  str(FLAGS.dataset) + '/fft/' + str(idx) + '.png')  # shift to int32 befor save fig
            # save 10 original images
            for i in range(10):  # shift to int for save fig
                img = '/'.join((FLAGS.image_dir, FLAGS.dataset, 'changed_data', 'power_' +
                                str(FLAGS.water_power), 'number' + str(idx), str(i) + '_ori.png'))
                deep_cnn.save_fig(cgd_data[i].astype(np.int32), img)



            # get new training data
            cgd_data = wm_cgd_data(watermark, cgd_data)

            train_data_new = np.vstack((cgd_data, kpt_data_all))
            train_labels_new = np.hstack((cgd_lbs, kpt_lbs_all))

            np.random.seed(100)
            np.random.shuffle(train_data_new)
            np.random.seed(100)
            np.random.shuffle(train_labels_new)

            # cgd_count, kpt_count = 0, 0
            # for i in train_data_new:
            #     if (i == cgd_data[0]).all():
            #         cgd_count += 1
            #         logging.info('True, this train data is cgd {} / {}'.format(cgd_count, len(train_data_new)))
            #     else:
            #         kpt_count += 1
            #         logging.info('False, this train data is kpt {} / {}'.format(kpt_count, len(train_data_new)))

            # train_data_new, cgd_data = tr_data_wm(train_data, train_labels, watermark, ckpt_final)

            # save 10 watermark images
            for i in range(10):  # shift to int for save fig
                img = '/'.join((FLAGS.image_dir, FLAGS.dataset, 'changed_data', 'power_' +
                                str(FLAGS.water_power), 'number' + str(idx), str(i) + '.png'))
                deep_cnn.save_fig(cgd_data[i].astype(np.int32), img)

            if FLAGS.wm_x_grads:  # ckpt for watermark with x's gradients
                new_ckpt = ckpt_dir + str(idx) + 'model_wm_grads.ckpt'
                new_ckpt_final = new_ckpt + '-' + str(FLAGS.max_steps - 1)
            elif FLAGS.wm_x_fft:
                new_ckpt = ckpt_dir + str(idx) + 'model_wm_fft.ckpt'
                new_ckpt_final = new_ckpt + '-' + str(FLAGS.max_steps - 1)
            elif FLAGS.x_grads:
                new_ckpt = ckpt_dir + str(idx) + 'model_grads.ckpt'
                new_ckpt_final = new_ckpt + '-' + str(FLAGS.max_steps - 1)
            else:  # ckpt for watermark with x self
                new_ckpt = ckpt_dir + str(idx) + 'model_wm_x.ckpt'
                new_ckpt_final = new_ckpt + '-' + str(FLAGS.max_steps - 1)
            logging.info('np.max(train_data) before new train: {}'.format(np.max(train_data)))

            start_train(train_data_new, train_labels_new, test_data, test_labels, new_ckpt, new_ckpt_final)

            nb_success, nb_fail = show_result(x, cgd_data, ckpt_final, new_ckpt_final,
                                              nb_success, nb_fail, FLAGS.tgt_lb)

    return True
Пример #22
0
def train_student(dataset,
                  nb_teachers,
                  weight=True,
                  inverse_w=None,
                  shift_dataset=None):
    """
  This function trains a student using predictions made by an ensemble of
  teachers. The student and teacher models are trained using the same
  neural network architecture.
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :param weight: whether this is an importance weight sampling
  :return: True if student training went well
  """
    assert input.create_dir_if_needed(FLAGS.train_dir)

    # Call helper function to prepare student data using teacher predictions
    if shift_dataset is not None:
        stdnt_data, stdnt_labels = prepare_student_data(
            dataset, nb_teachers, save=True, shift_data=shift_dataset)
    else:
        if FLAGS.PATE2 == True:
            keep_idx, stdnt_data, stdnt_labels = prepare_student_data(
                dataset, nb_teachers, save=True)
        else:
            stdnt_data, stdnt_labels = prepare_student_data(dataset,
                                                            nb_teachers,
                                                            save=True)
    rng = np.random.RandomState(FLAGS.dataset_seed)
    rand_ix = rng.permutation(len(stdnt_labels))
    stdnt_data = stdnt_data[rand_ix]
    stdnt_labels = stdnt_labels[rand_ix]
    print('number for deep is {}'.format(len(stdnt_labels)))
    # Unpack the student dataset, here stdnt_labels are already the ensemble noisy version
    # Prepare checkpoint filename and path
    if FLAGS.deeper:
        ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(
            nb_teachers) + '_student_deeper.ckpt'  #NOLINT(long-line)
    else:
        ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(
            nb_teachers) + '_student.ckpt'  # NOLINT(long-line)

    # Start student training
    if FLAGS.cov_shift == True:
        """
       need to compute the weight for student
       curve weight into some bound, in case the weight is too large
    """
        weights = inverse_w

        #y_s = np.expand_dims(y_s, axis=1)

    else:
        print('len of shift data'.format(len(shift_dataset['data'])))
        weights = np.zeros(len(stdnt_data))
        print('len of weight={} len of labels= {} '.format(
            len(weights), len(stdnt_labels)))
        for i, x in enumerate(weights):
            weights[i] = np.float32(inverse_w[stdnt_labels[i]])

    if weight == True:
        if FLAGS.PATE2 == True:
            assert deep_cnn.train(stdnt_data,
                                  stdnt_labels,
                                  ckpt_path,
                                  weights=weights[keep_idx])
        else:
            assert deep_cnn.train(stdnt_data,
                                  stdnt_labels,
                                  ckpt_path,
                                  weights=weights)
    else:
        deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)
    # Compute final checkpoint name for student (with max number of steps)
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)
    if dataset == 'adult':
        private_data, private_labels = input.ld_adult(test_only=False,
                                                      train_only=True)
    elif dataset == 'mnist':
        private_data, private_labels = input.ld_mnist(test_only=False,
                                                      train_only=True)
    elif dataset == "svhn":
        private_data, private_labels = input.ld_svhn(test_only=False,
                                                     train_only=True)
    # Compute student label predictions on remaining chunk of test set
    teacher_preds = deep_cnn.softmax_preds(private_data, ckpt_path_final)
    student_preds = deep_cnn.softmax_preds(stdnt_data, ckpt_path_final)
    # Compute teacher accuracy
    precision_t = metrics.accuracy(teacher_preds, private_labels)
    precision_s = metrics.accuracy(student_preds, stdnt_labels)
    if FLAGS.cov_shift == True:
        student_file_name = FLAGS.data + 'PCA_student' + FLAGS.dataset + '.pkl'
        f = open(student_file_name, 'rb')
        test = pickle.load(f)
        if FLAGS.PATE2 == True:
            test_labels = test['label'][keep_idx]
        else:
            test_labels = test['label']
    precision_true = metrics.accuracy(student_preds, test_labels)
    print(
        'Precision of teacher after training:{} student={} true precision for student {}'
        .format(precision_t, precision_s, precision_true))

    return len(test_labels), precision_t, precision_s
Пример #23
0
def train_teacher(dataset, nb_teachers, teacher_id):
    """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
    # If working directories do not exist, create them
    assert input.create_dir_if_needed(FLAGS.data_dir)
    assert input.create_dir_if_needed(FLAGS.train_dir)
    print("teacher {}:".format(teacher_id))
    # Load the dataset
    if dataset == 'svhn':
        train_data, train_labels, test_data, test_labels = input.ld_svhn(
            extended=True)
    elif dataset == 'cifar10':
        train_data, train_labels, test_data, test_labels = input.ld_cifar10()
    elif dataset == 'mnist':
        train_data, train_labels, test_data, test_labels = input.ld_mnist()
    else:
        print("Check value of dataset flag")
        return False

    path = os.path.abspath('.')

    path1 = path + '\\plts_nodisturb\\'

    # 对标签进行干扰
    import copy
    train_labels1 = copy.copy(train_labels)
    train_labels2 = disturb(train_labels, 0.1)
    disturb(test_labels, 0.1)
    #path1 = path + '\\plts_withdisturb\\'

    # Retrieve subset of data for this teacher
    #干扰前
    data, labels = input.partition_dataset(train_data, train_labels,
                                           nb_teachers, teacher_id)

    from pca import K_S
    import operator
    print(operator.eq(train_labels1, train_labels2))
    print("干扰前: ", K_S.tst_norm(train_labels1))
    print("干扰后: ", K_S.tst_norm(train_labels2))
    print(K_S.tst_samp(train_labels1, train_labels2))

    print("Length of training data: " + str(len(labels)))

    # Define teacher checkpoint filename and full path
    if FLAGS.deeper:
        filename = str(nb_teachers) + '_teachers_' + str(
            teacher_id) + '_deep.ckpt'
    else:
        filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

    # Perform teacher training
    losses = deep_cnn.train(data, labels, ckpt_path)

    # Append final step value to checkpoint for evaluation
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

    # Retrieve teacher probability estimates on the test data
    teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

    # Compute teacher accuracy
    precision = metrics.accuracy(teacher_preds, test_labels)
    print('Precision of teacher after training: ' + str(precision))
    print("each n step loss: ", losses)

    #x = list(range(1, len(losses)+1))
    #plt.plot(x, losses, 'bo-', markersize=20)
    #plt.savefig(path1 + 'loss' + str(teacher_id) + '.jpg')
    #plt.show()
    #print("x: ",x)
    #print("loss: ", losses)

    return True
Пример #24
0
def train_student(dataset,
                  nb_teachers,
                  knock,
                  weight=True,
                  inverse_w=None,
                  shift_dataset=None):
    """
  This function trains a student using predictions made by an ensemble of
  teachers. The student and teacher models are trained using the same
  neural network architecture.
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :return: True if student training went well
  """
    assert input.create_dir_if_needed(FLAGS.train_dir)
    print('len of shift data'.format(len(shift_dataset['data'])))
    # Call helper function to prepare student data using teacher predictions
    stdnt_data, stdnt_labels = prepare_student_data(dataset,
                                                    nb_teachers,
                                                    save=True,
                                                    shift_data=shift_dataset)

    # Unpack the student dataset, here stdnt_labels are already the ensemble noisy version
    # Prepare checkpoint filename and path
    if FLAGS.deeper:
        ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(
            nb_teachers) + '_student_deeper.ckpt'  #NOLINT(long-line)
    else:
        ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(
            nb_teachers) + '_student.ckpt'  # NOLINT(long-line)

    # Start student training
    weights = np.zeros(len(stdnt_data))
    print('len of weight={} len of labels= {} '.format(len(weights),
                                                       len(stdnt_labels)))
    for i, x in enumerate(weights):
        weights[i] = np.float32(inverse_w[stdnt_labels[i]])
    if weight == True:
        assert deep_cnn.train(stdnt_data,
                              stdnt_labels,
                              ckpt_path,
                              weights=weights)
    else:
        deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)
    # Compute final checkpoint name for student (with max number of steps)
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)
    private_data, private_labels = input.ld_mnist(test_only=False,
                                                  train_only=True)
    # Compute student label predictions on remaining chunk of test set
    teacher_preds = deep_cnn.softmax_preds(private_data, ckpt_path_final)
    student_preds = deep_cnn.softmax_preds(stdnt_data, ckpt_path_final)
    # Compute teacher accuracy
    precision_t = metrics.accuracy(teacher_preds, private_labels)
    precision_s = metrics.accuracy(student_preds, stdnt_labels)
    if knock == True:
        print(
            'weight is {} shift_ratio={} Precision of teacher after training:{} student={}'
            .format(weight, shift_dataset['shift_ratio'], precision_t,
                    precision_s))
    else:
        print(
            'weight is {} shift_ratio={} Precision of teacher after training:{} student={}'
            .format(weight, shift_dataset['alpha'], precision_t, precision_s))

    return True
Пример #25
0
def itr_grads(cgd_data, x, ckpt_final, itr, idx):
    logging.info('{}'.format(time.asctime(time.localtime(time.time())), ))
    # real label's gradients wrt x_a
    x_grads = deep_cnn.gradients(x, ckpt_final, idx, FLAGS.tgt_lb, new=False)[0]

    logging.info('the lenth of changed data: {}'.format(len(cgd_data)))
    do_each_grad = 0  # iterate changed data one by one
    if do_each_grad == 1:
        each_nb = 0
        for each in cgd_data:
            x_grads_cp = copy.deepcopy(x_grads)  # every time x_grads_cp is a still x_grads
            logging.info('\n---start change data of number: {} / {}---'.format(each_nb, len(cgd_data)))
            each_grads = deep_cnn.gradients(each, ckpt_final, idx, FLAGS.tgt_lb, new=False)[0]
            each_grads_cp = copy.deepcopy(each_grads)
            # in x_grads,set a pixel to 0 if its sign is different whith pexel in each_grads
            # this could ensure elected pixels that affect y least for x_i but most for x_A

            logging.info('{}'.format(x_grads_cp[0][0]))
            x_grads_cp[(x_grads_cp * each_grads_cp) < 0] = 0
            logging.info('---up is x_grads[0][0], next is each_grads[0][0]---')
            logging.info('{}'.format(each_grads_cp[0][0]))
            logging.info('--next is combined matrix---')

            # show how may 0 in x_grads
            x_grads_flatten = np.reshape(x_grads_cp, (-1,))
            ct = Counter(x_grads_flatten)
            logging.info('there are {} pixels not changed in image {}'.format(ct[0], each_nb))

            each_4d = np.expand_dims(each, axis=0)
            each_pred_lb_b = np.argmax(deep_cnn.softmax_preds(each_4d, ckpt_final))
            logging.info('the predicted label of each before changing is :{} '.format(each_pred_lb_b))

            if itr == 0:
                img_dir_ori = FLAGS.image_dir + '/' + str(FLAGS.dataset) + '/changed_data/x_grads/number_' + str(
                    idx) + '/' + str(itr) + '/' + str(each_nb) + '_ori.png'
                deep_cnn.save_fig(each.astype(np.int32), img_dir_ori)

            # compute delta_x
            preds_x = deep_cnn.softmax_preds(x, ckpt_final)
            preds_each = deep_cnn.softmax_preds(each, ckpt_final)
            delta_x = np.linalg.norm(preds_each - preds_x) / each_grads

            # iterate each changed data
            each += (delta_x * FLAGS.epsilon)

            each_pred_lb_a = np.argmax(deep_cnn.softmax_preds(each, ckpt_final))
            logging.info('the predicted label of each after changing is :{} '.format(each_pred_lb_a))

            each = np.clip(each, 0, 255)
            img_dir = '/'.join(FLAGS.image_dir, FLAGS.dataset, 'changed_data/x_grads/number_' +str(idx), 'img_' +
                               str(each_nb), 'iteration_' + str(itr) + '.png')
            deep_cnn.save_fig(each.astype(np.int32), img_dir)

            each_nb += 1
    else:  # iterate changed data batch by batch, pretty fast

        batch_nbs = int(np.floor(len(cgd_data) / FLAGS.batch_size))
        cgd_data_new = np.zeros((1, cgd_data.shape[1], cgd_data.shape[2], cgd_data.shape[3]))
        for batch_nb in range(batch_nbs):
            x_grads_cp = copy.deepcopy(
                x_grads)  # every time x_grads_cp is a still x_grads, mustnot change this line's position!

            logging.info('\n---start change data of batch: {} / {}---'.format(batch_nb, batch_nbs))
            if batch_nb == (batch_nbs - 1):
                batch = cgd_data[batch_nb * FLAGS.batch_size:]
            else:
                batch = cgd_data[batch_nb * FLAGS.batch_size:(batch_nb + 1) * FLAGS.batch_size]

            batch_grads = deep_cnn.gradients(batch, ckpt_final, idx, FLAGS.tgt_lb, new=False)[
                0]  # a batch of gradients

            # compute delta_x
            preds_x = deep_cnn.softmax_preds(x, ckpt_final)
            preds_batch = deep_cnn.softmax_preds(batch, ckpt_final)
            delta_x = np.linalg.norm(preds_batch - preds_x) / batch_grads

            x_grads_cp_batch = np.repeat(np.expand_dims(x_grads_cp, axis=0), len(batch), axis=0)

            for i in range(len(batch)):
                # deep_cnn.save_hotfig(x_grads_cp_batch[i], '../x_grads_cp_batch_old/'+str(i)+'.png')
                # deep_cnn.save_hotfig(batch_grads_cp[i], '../batch_grads_cp_old/'+str(i)+'.png')

                #x_grads_cp_batch[i][(x_grads_cp_batch[i] * batch_grads_cp[i]) < 0] = 0
                pass

                # deep_cnn.save_hotfig(batch_grads_cp[i], '../batch_grads_cp/'+str(i)+'.png')
                # deep_cnn.save_hotfig(x_grads_cp_batch[i], '../x_grads_cp_batch/'+str(i)+'.png')

                # logging.info(x_grads_cp_batch[i])


            batch_pred_lb_b = np.argmax(deep_cnn.softmax_preds(batch, ckpt_final), axis=1)
            logging.info('the predicted label of batch before changing is : {}'.format(batch_pred_lb_b[:20]))

            # save the original 5 figures
            if batch_nb == 0 and itr == 0:
                for i in range(10):
                    img_dir = FLAGS.image_dir + '/' + str(FLAGS.dataset) + '/changed_data/x_grads/number_' + str(
                        idx) + '/' + 'img_' + str(i) + '/iteration_' + str(itr) + '_ori.png'
                    deep_cnn.save_fig(batch[i].astype(np.int32), img_dir)

            # iterate each changed data
            batch += (delta_x * FLAGS.epsilon)

            batch_pred_lb_a = np.argmax(deep_cnn.softmax_preds(batch, ckpt_final), axis=1)
            logging.info('the predicted label of batch after changing is : {}'.format(batch_pred_lb_a[:20]))

            batch = np.clip(batch, 0, 255)

            # save the changed 5 figures after one iteration
            if batch_nb == 0:
                for i in range(10):
                    img_dir = FLAGS.image_dir + '/' + str(FLAGS.dataset) + '/changed_data/x_grads/number_' + str(
                        idx) + '/' + 'img_' + str(i) + '/iteration_' + str(itr) + '.png'
                    deep_cnn.save_fig(batch[i].astype(np.int32), img_dir)

            batch_nb += 1

            cgd_data_new = np.vstack((cgd_data_new, batch))
        cgd_data_new = cgd_data_new[1:].astype(np.float32)
    return cgd_data_new
Пример #26
0
def main(argv=None):  # pylint: disable=unused-argument
    
    ckpt_dir = FLAGS.train_dir + '/' + str(FLAGS.dataset)+ '/' 
    # create dir used in this project
    dir_list = [FLAGS.data_dir,FLAGS.train_dir, FLAGS.image_dir,
                FLAGS.record_dir,ckpt_dir]
    for i in dir_list:
        assert input_.create_dir_if_needed(i)
        
    # create log files and add dividing line 
    assert dividing_line()

    train_data, train_labels, test_data, test_labels = my_load_dataset(FLAGS.dataset)
    
    ckpt_path =  ckpt_dir + 'model.ckpt'
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)


    # 数据没水印之前,要训练一下。然后存一下。知道正确率。(只用训练一次)
    #print('Start train original model')
    #train_tuple = start_train(train_data, train_labels, test_data, test_labels, ckpt_path, ckpt_path_final)
    #precision_tr, precision_ts, ppc_train, ppc_test, preds_tr = train_tuple  

    print('Original model will be restored from ' + ckpt_path_final)

    nb_success, nb_fail = 0, 0
    
    # decide which index
    if FLAGS.selected_x:
        index = [9905, 9894, 9906]
    else:
        index = range(len(test_data))
        
    for idx in index:
        time.asctime( time.localtime(time.time()))
        print('================current num: %d ================'% idx)
        x = copy.deepcopy(test_data[idx])
        
        x_4d = np.expand_dims(x, axis=0)
        x_pred_lb = np.argmax(deep_cnn.softmax_preds(x_4d, ckpt_path_final))
        print('the real label of x is :%d ' %test_labels[idx])
        print('the predicted label of x is :%d ' %x_pred_lb)
        if x_pred_lb != test_labels[idx]:
            print('x can not be classified before, pass!')
            continue
        
        # decide which target class
        if FLAGS.selected_lb: # target class is changed.
            FLAGS.tgt_lb= save_neighbors(
                    train_data, train_labels, x, test_labels[idx], 
                    ckpt_path_final, idx, saved_nb=1000)[0] 
        else:  # target_class do not need to be changed
            if test_labels[idx] == FLAGS.tgt_lb:
                print('the label of the data is already target label')
                continue
        print('target label is %d' % FLAGS.tgt_lb)

        # decide which part of data to be changed
        train_data_new, cgd_data, cgd_lbs = get_cgd(train_data, train_labels, x, ckpt_path_final)

        #  save x, and note to shift x to int32 befor save fig
        deep_cnn.save_fig(x.astype(np.int32), FLAGS.image_dir +'/'+ 
                          str(FLAGS.dataset) + '/original/'+str(idx)+'.png')  
        
        perfect_path = ckpt_dir + str(idx) + 'model_perfect.ckpt'
        perfect_path_final = perfect_path + '-' + str(FLAGS.max_steps - 1)
    

        #  decide which approach
        if FLAGS.x_grads:  # iterate x's gradients
            print('start train by change x with gradients.\n')
            for itr in range(1000):
                print('-----iterate number: %d/1000-----' % itr)
                print('computing gradients ...')
                
                new_ckpt_path = ckpt_dir + str(idx) + 'model_itr_grads.ckpt'
                new_ckpt_path_final = new_ckpt_path + '-' + str(FLAGS.max_steps - 1)
                
                # this line will iterate data by gradients
                if itr==0:
                    itr_grads(cgd_data, x, ckpt_path_final, itr, idx)
                else:
                    itr_grads(cgd_data, x, new_ckpt_path_final, itr, idx)
                
                start_train(train_data_new, train_labels, test_data, 
                            test_labels, new_ckpt_path, new_ckpt_path_final)  
                
                nb_success, nb_fail = show_result(x, cgd_data, ckpt_path_final, 
                                                  new_ckpt_path_final, nb_success, 
                                                  nb_fail, FLAGS.tgt_lb)
                if nb_success == 1:
                    break
            

        elif FLAGS.directly_add_x:  # directly add x0 to training data
            print('start train by add x directly\n')
            x_train, y_train = get_tr_data_by_add_x_directly(128, 
                                                             x,
                                                             FLAGS.tgt_lb,
                                                             train_data,
                                                             train_labels)
            train_tuple = start_train(x_train, y_train, test_data, test_labels, perfect_path, perfect_path_final)
            nb_success, nb_fail = show_result(x, None, ckpt_path_final, 
                                              perfect_path_final, nb_success, 
                                              nb_fail, FLAGS.tgt_lb)
        else:  # add watermark
            watermark = copy.deepcopy(x)
            
            if FLAGS.watermark_x_grads:  # gradients as watermark from perfect_path_final
                print('start train by add x gradients as watermark\n')
                
                # real label's gradients wrt x_a
                grads_tuple_a= deep_cnn.gradients(x, ckpt_path_final, idx,FLAGS.tgt_lb, new=False)  
                grads_mat_abs_a, grads_mat_plus_a, grads_mat_show_a  = grads_tuple_a
                
                # get the gradients mat which may contain the main information
                grads_mat = get_least_mat(grads_mat_plus_a, saved_ratio=0.3, return_01=True, idx=idx)  
                
                deep_cnn.save_fig(grads_mat, FLAGS.image_dir+ '/'+str(FLAGS.dataset)+
                                  '/gradients/number_'+str(idx)+'/least_grads.png')
                #print('x:\n',x[0])
                #print('least_grads:\n', grads_mat[0])
                watermark = grads_mat * x
                #print('watermark:\n',watermark[0])
                deep_cnn.save_fig(watermark.astype(np.int32),FLAGS.image_dir+ '/'+
                                  str(FLAGS.dataset)+'/gradients/number_'+str(idx)+'/least_grads_mul_x.png')
                
            elif FLAGS.x_grads:
                print('start train by change x with gradients.\n')
                
                # real label's gradients wrt x_a
                grads_tuple_a= deep_cnn.gradients(x, ckpt_path_final, idx,FLAGS.tgt_lb, new=False)  
                grads_mat_abs_a, grads_mat_plus_a, grads_mat_show_a  = grads_tuple_a
                
                # get the gradients mat which may contain the main information
                grads_mat = get_least_mat(grads_mat_plus_a, saved_ratio=0.1, return_01=True, idx=idx)  
                
                deep_cnn.save_fig(grads_mat, FLAGS.image_dir+ '/'+str(FLAGS.dataset)+
                                  '/gradients/number_'+str(idx)+'/least_grads.png')
                #print('x:\n',x[0])
                #print('least_grads:\n', grads_mat[0])
                watermark = grads_mat * x
                #print('watermark:\n',watermark[0])
                deep_cnn.save_fig(watermark.astype(np.int32),FLAGS.image_dir+ '/'+
                                  str(FLAGS.dataset)+'/gradients/number_'+str(idx)+'/least_grads_mul_x.png')
                
            elif FLAGS.watarmark_x_fft:  # fft as watermark
                print('start train by add x fft as watermark\n')
                watermark = fft(x, ww=1)
                deep_cnn.save_fig(watermark.astype(np.int32), FLAGS.image_dir +'/'+
                                  str(FLAGS.dataset) + '/fft/'+str(idx)+'.png')  # shift to int32 befor save fig

            # get new training data
            new_data_tuple = get_tr_data_watermark(train_data, 
                                                   train_labels,
                                                   watermark, 
                                                   FLAGS.tgt_lb, 
                                                   ckpt_path_final, 
                                                   sml=True, 
                                                   cgd_ratio=FLAGS.cgd_ratio, 
                                                   power=FLAGS.water_power)
            train_data_new, changed_data = new_data_tuple
            # train with new data
            
        #save 10 watermark images
        for i in range(10):  # shift to int for save fig
            deep_cnn.save_fig(cgd_data[i].astype(np.int),
                              (FLAGS.image_dir + '/'+
                               str(FLAGS.dataset)+'/'+
                              'changed_data/'+
                              'power_'+str(FLAGS.water_power)+'/'+
                              'number'+str(idx)+'/'+
                              str(i)+'.png'))

        if FLAGS.watermark_x_grads:   # ckpt_path for watermark with x's gradients
            new_ckpt_path = ckpt_dir + str(idx) + 'model_wm_grads.ckpt'
            new_ckpt_path_final = new_ckpt_path + '-' + str(FLAGS.max_steps - 1)
        elif FLAGS.watarmark_x_fft: 
            new_ckpt_path = ckpt_dir + str(idx) + 'model_wm_fft.ckpt'
            new_ckpt_path_final = new_ckpt_path + '-' + str(FLAGS.max_steps - 1)    
        elif FLAGS.x_grads:
            new_ckpt_path = ckpt_dir + str(idx) + 'model_grads.ckpt'
            new_ckpt_path_final = new_ckpt_path + '-' + str(FLAGS.max_steps - 1)
        else:  # ckpt_path for watermark with x self
            new_ckpt_path = ckpt_dir + str(idx) + 'model_wm_x.ckpt'
            new_ckpt_path_final = new_ckpt_path + '-' + str(FLAGS.max_steps - 1)
        print('np.max(train_data) before new train: ',np.max(train_data))

        train_tuple = start_train(train_data_new, train_labels, test_data, test_labels, 
                                  new_ckpt_path, new_ckpt_path_final)  
        
        nb_success, nb_fail = show_result(x, cgd_data, ckpt_path_final, 
                                          new_ckpt_path_final, nb_success, 
                                          nb_fail, FLAGS.tgt_lb)
        
    #precision_tr, precision_ts, ppc_train, ppc_test, preds_tr = train_tuple 
        
    return True
Пример #27
0
def itr_grads(cgd_data, x, ckpt_path_final, itr, idx):

    # real label's gradients wrt x_a
    x_grads = deep_cnn.gradients(x, ckpt_path_final, idx, FLAGS.tgt_lb, new=False)[0]  

    
    print('the lenth of changed data: %d' % len(cgd_data))
    do_each_grad = 0
    if do_each_grad == 1:
        each_nb = 0
        for each in cgd_data:   
            x_grads_cp = copy.deepcopy(x_grads)  #  every time x_grads_cp is a still x_grads
            print('\n---start change data of number: %d / %d---' % (each_nb, len(cgd_data)))
            each_grads = deep_cnn.gradients(each, ckpt_path_final, idx, FLAGS.tgt_lb, new=False)[0]  
            each_grads_cp = copy.deepcopy(each_grads)
            # in x_grads,set a pixel to 0 if its sign is different whith pexel in each_grads
            # this could ensure elected pixels that affect y least for x_i but most for x_A
            
            print(x_grads_cp[0][0])
            x_grads_cp[(x_grads_cp * each_grads_cp) <0] = 0 
            print('---up is x_grads[0][0], next is each_grads[0][0]---')
            print(each_grads_cp[0][0])
            print('--next is combined matrix---')
    
            # show how may 0 in x_grads
            x_grads_flatten = np.reshape(x_grads_cp, (-1, ))
            ct = Counter(x_grads_flatten)
            print('there are %d pixels not changed in image %d' % (ct[0], each_nb))
    
            each_4d = np.expand_dims(each, axis=0)
            each_pred_lb_b = np.argmax(deep_cnn.softmax_preds(each_4d, ckpt_path_final))
            print('the predicted label of each before changing is :%d ' %each_pred_lb_b)
            
            if itr == 0:
                img_dir_ori = FLAGS.image_dir +'/'+str(FLAGS.dataset)+'/changed_data/x_grads/number_'+str(idx)+'/'+str(itr)+'/'+str(each_nb)+'_ori.png'
                deep_cnn.save_fig(each.astype(np.int32), img_dir_ori)
            
            
            # iterate each changed data
            each += (x_grads_cp * FLAGS.epsilon)
            
            each_4d = np.expand_dims(each, axis=0)
            each_pred_lb_a = np.argmax(deep_cnn.softmax_preds(each_4d, ckpt_path_final))
            print('the predicted label of each after changing is :%d ' %each_pred_lb_a)
    
            each = np.clip(each, 0, 255)  
            img_dir = FLAGS.image_dir +'/'+str(FLAGS.dataset)+'/changed_data/x_grads/number_'+str(idx)++'/'+'img_'+str(each_nb)+'/iteration_'+str(itr)+'.png'
            deep_cnn.save_fig(each.astype(np.int32), img_dir)
            
            each_nb += 1
    else:
        
        batch_nbs = int(np.floor(len(cgd_data) / FLAGS.batch_size))
        for batch_nb in range(batch_nbs):
            x_grads_cp = copy.deepcopy(x_grads)  #  every time x_grads_cp is a still x_grads, mustnot change this line's position!

            print('\n---start change data of batch: %d / %d---' % (batch_nb, batch_nbs))
            if batch_nb == (batch_nbs - 1):
                batch = cgd_data[batch_nb * FLAGS.batch_size:]
            else:
                batch = cgd_data[batch_nb * FLAGS.batch_size :(batch_nb + 1) * FLAGS.batch_size]
            
            batch_grads = deep_cnn.gradients(batch, ckpt_path_final, idx, FLAGS.tgt_lb, new=False)[0]  # a batch of gradients
            
            batch_grads_cp = copy.deepcopy(batch_grads)
            x_grads_cp_batch = np.repeat(np.expand_dims(x_grads_cp, axis=0), len(batch), axis=0)
            
            for i in range(len(batch)):
                #deep_cnn.save_hotfig(x_grads_cp_batch[i], '../x_grads_cp_batch_old/'+str(i)+'.png')  # save and normal
                #deep_cnn.save_hotfig(batch_grads_cp[i], '../batch_grads_cp_old/'+str(i)+'.png')  #all 0 !! except first img

                x_grads_cp_batch[i][(x_grads_cp_batch[i] * batch_grads_cp[i]) <0] = 0
                
                #deep_cnn.save_hotfig(batch_grads_cp[i], '../batch_grads_cp/'+str(i)+'.png')  #all 0 !! except first img
                #deep_cnn.save_hotfig(x_grads_cp_batch[i], '../x_grads_cp_batch/'+str(i)+'.png')

                #print(x_grads_cp_batch[i])
                
            # show how may 0 in x_grads
            batch_grads_flatten = np.reshape(x_grads_cp_batch, (-1, ))
            #print('batch_grads_flatten:',batch_grads_flatten[:100])
            ct = Counter(batch_grads_flatten)
            print('there are %d %% pixels not changed in batch %d' % ( np.around(ct[0]/len(batch_grads_flatten) * 100), batch_nb))
            
            batch_pred_lb_b = np.argmax(deep_cnn.softmax_preds(batch, ckpt_path_final), axis=1)
            print('the predicted label of batch before changing is : ', batch_pred_lb_b[:20])
            
            # save the original 5 figures
            if batch_nb == 0 and itr == 0:
                for i in range(5):
                    img_dir = FLAGS.image_dir +'/'+str(FLAGS.dataset)+'/changed_data/x_grads/number_'+str(idx)+'/'+'img_'+str(i)+'/iteration_'+str(itr)+'_ori.png'
                    deep_cnn.save_fig(batch[i].astype(np.int32), img_dir)
                    
            # iterate each changed data
            batch += (x_grads_cp_batch * FLAGS.epsilon)

            batch_pred_lb_a = np.argmax(deep_cnn.softmax_preds(batch, ckpt_path_final), axis=1)
            print('the predicted label of batch after changing is : ', batch_pred_lb_a[:20])
            
            batch = np.clip(batch, 0, 255)
            
            # save the changed 5 figures after one iteration
            if batch_nb == 0:
                for i in range(5):
                    img_dir = FLAGS.image_dir +'/'+str(FLAGS.dataset)+'/changed_data/x_grads/number_'+str(idx)+'/'+'img_'+str(i)+'/iteration_'+str(itr)+'.png'
                    deep_cnn.save_fig(batch[i].astype(np.int32), img_dir)
            
            batch_nb += 1
    return True