def test_calc_avgpool(self): image_data = self._image_data() net = self._network('avgpool') input_bounds = naive_bounds.input_bounds(image_data.image, delta=.1) dual_obj, dual_var_lists = self._build_objective( net, input_bounds, image_data.label) # Explicitly build the expected TensorFlow graph for calculating objective. ( conv2d_0, relu_1, # pylint:disable=unused-variable avgpool_2, relu_3, # pylint:disable=unused-variable linear_obj) = self._verifiable_layer_builder(net).build_layers() (mu_0, ), (lam_1, ), (mu_2, ), _ = dual_var_lists # Expected input bounds for each layer. conv2d_0_lb, conv2d_0_ub = self._expected_input_bounds( image_data.image, .1) relu_1_lb, relu_1_ub = ibp.IntervalBounds( conv2d_0_lb, conv2d_0_ub).apply_conv2d(None, conv2d_0.module.w, conv2d_0.module.b, 'SAME', (1, 1)) avgpool_2_lb = tf.nn.relu(relu_1_lb) avgpool_2_ub = tf.nn.relu(relu_1_ub) relu_3_lb = tf.nn.avg_pool(avgpool_2_lb, ksize=[2, 2], padding='VALID', strides=(1, 1)) relu_3_ub = tf.nn.avg_pool(avgpool_2_ub, ksize=[2, 2], padding='VALID', strides=(1, 1)) # Expected objective value. objective = 0 act_coeffs_0 = -common.conv_transpose( mu_0, conv2d_0.module.w, conv2d_0.input_shape, 'SAME', (1, 1)) obj_0 = -tf.reduce_sum(mu_0 * conv2d_0.module.b, axis=(2, 3, 4)) objective += standard_layer_calcs.linear_dual_objective( None, act_coeffs_0, obj_0, conv2d_0_lb, conv2d_0_ub) objective += standard_layer_calcs.activation_layer_dual_objective( tf.nn.relu, mu_0, lam_1, relu_1_lb, relu_1_ub) act_coeffs_2 = -common.avgpool_transpose( mu_2, result_shape=relu_1.output_shape, kernel_shape=(2, 2), strides=(1, 1)) objective += standard_layer_calcs.linear_dual_objective( lam_1, act_coeffs_2, 0., avgpool_2_lb, avgpool_2_ub) objective_w, objective_b = common.targeted_objective( linear_obj.module.w, linear_obj.module.b, image_data.label) shaped_objective_w = tf.reshape( objective_w, [self._num_classes(), self._batch_size()] + avgpool_2.output_shape) objective += standard_layer_calcs.activation_layer_dual_objective( tf.nn.relu, mu_2, -shaped_objective_w, relu_3_lb, relu_3_ub) objective += objective_b self._assert_dual_objective_close(objective, dual_obj, image_data)
def backward_prop(self, y, w_fn=None): del w_fn return common.avgpool_transpose(y, result_shape=self.input_shape, kernel_shape=self.kernel_shape, strides=self.strides)