def test_ais_with_dbn(self):
		dbn = DBN(RBM(10, 10))
		dbn.add_layer(RBM(10, 20))

		hidden_states = utils.binary_numbers(dbn[0].Y.shape[0])

		ais = Estimator(dbn)
		ais_logz = ais.estimate_log_partition_function(100, np.sqrt(np.arange(0, 1, 0.001)))
		brf_logz = utils.logsumexp(dbn[1]._ulogprob_vis(hidden_states))

		brf_probs = []
		dbn_probs = []
		dbn_bound = []

		for i in range(50):
			sample = np.matrix(np.random.rand(10, 1)) > 0.5
			
			prob, bound = ais.estimate_log_probability(sample, 200)

			brf_probs.append(utils.logsumexp(dbn[1]._ulogprob_vis(hidden_states) + dbn[0]._clogprob_vis_hid(sample, hidden_states), 1) - brf_logz)
			dbn_probs.append(prob)
			dbn_bound.append(bound)

		self.assertTrue(np.mean(dbn_bound) < np.mean(dbn_probs))
		self.assertTrue(np.abs(np.mean(dbn_probs) - np.mean(brf_probs)) < 0.1)
Пример #2
0
    def test_ais_with_semirbm_dbn(self):
        dbn = DBN(RBM(5, 5))
        dbn.add_layer(SemiRBM(5, 5))

        ais = Estimator(dbn)
        ais.estimate_log_partition_function(100,
                                            np.arange(0, 1, 1E-3),
                                            layer=0)
        ais.estimate_log_partition_function(10, np.arange(0, 1, 1E-3), layer=1)

        dbn[0]._brf_logz = utils.logsumexp(dbn[0]._ulogprob_vis(
            utils.binary_numbers(dbn[0].X.shape[0])))
        dbn[1]._brf_logz = utils.logsumexp(dbn[1]._ulogprob_vis(
            utils.binary_numbers(dbn[1].X.shape[0])))

        samples = np.concatenate(
            [dbn.sample(25, 100, 20),
             np.matrix(np.random.rand(5, 25) > 0.5)], 1)

        Y = utils.binary_numbers(dbn[0].Y.shape[0])
        X = utils.binary_numbers(dbn[0].X.shape[0])

        logRy = dbn[1]._ulogprob_vis(Y)
        logQy = utils.logsumexp(dbn[0]._ulogprob(X, Y, all_pairs=True), 0)
        log_sum = utils.logsumexp(
            dbn[0]._clogprob_hid_vis(samples, Y, all_pairs=True) - logQy +
            logRy, 1)

        logPx = log_sum + dbn[0]._ulogprob_vis(samples) - dbn[1]._brf_logz
        logPx_ = ais.estimate_log_probability(samples)[0]

        self.assertTrue(np.abs(logPx_.mean() - logPx.mean()) < 0.1)
	def test_ais_with_dbn_sanity_check(self):
		dbn = DBN(RBM(5, 20))
		dbn.add_layer(RBM(20, 5))
		dbn.add_layer(RBM(5, 20))

		dbn[0].W = np.matrix(np.random.randn(5, 20))
		dbn[0].b = np.matrix(np.random.rand(5, 1) - 0.5)
		dbn[0].c = np.matrix(np.random.rand(20, 1) - 0.5)

		dbn[1].W = dbn[0].W.T
		dbn[1].b = dbn[0].c
		dbn[1].c = dbn[0].b

		dbn[2].W = dbn[0].W
		dbn[2].b = dbn[0].b
		dbn[2].c = dbn[0].c

		samples = dbn.sample(100)

		ais = Estimator(dbn[0])

		rbm_logz = ais.estimate_log_partition_function(100, np.sqrt(np.arange(0, 1, 0.001)))
		rbm_probs = ais.estimate_log_probability(samples)

		ais = Estimator(dbn)

		dbn_logz = ais.estimate_log_partition_function(100, np.sqrt(np.arange(0, 1, 0.001)))
		dbn_probs = ais.estimate_log_probability(samples)

		self.assertTrue(abs(dbn_logz - rbm_logz) / rbm_logz < 0.02)
		self.assertTrue((np.exp(dbn_probs) - np.exp(rbm_probs)).mean() < 0.02)
Пример #4
0
    def test_ais_with_dbn(self):
        dbn = DBN(RBM(10, 10))
        dbn.add_layer(RBM(10, 20))

        hidden_states = utils.binary_numbers(dbn[0].Y.shape[0])

        ais = Estimator(dbn)
        ais_logz = ais.estimate_log_partition_function(
            100, np.sqrt(np.arange(0, 1, 0.001)))
        brf_logz = utils.logsumexp(dbn[1]._ulogprob_vis(hidden_states))

        brf_probs = []
        dbn_probs = []
        dbn_bound = []

        for i in range(50):
            sample = np.matrix(np.random.rand(10, 1)) > 0.5

            prob, bound = ais.estimate_log_probability(sample, 200)

            brf_probs.append(
                utils.logsumexp(
                    dbn[1]._ulogprob_vis(hidden_states) +
                    dbn[0]._clogprob_vis_hid(sample, hidden_states), 1) -
                brf_logz)
            dbn_probs.append(prob)
            dbn_bound.append(bound)

        self.assertTrue(np.mean(dbn_bound) < np.mean(dbn_probs))
        self.assertTrue(np.abs(np.mean(dbn_probs) - np.mean(brf_probs)) < 0.1)
Пример #5
0
    def test_ais_with_dbn_sanity_check(self):
        dbn = DBN(RBM(5, 20))
        dbn.add_layer(RBM(20, 5))
        dbn.add_layer(RBM(5, 20))

        dbn[0].W = np.matrix(np.random.randn(5, 20))
        dbn[0].b = np.matrix(np.random.rand(5, 1) - 0.5)
        dbn[0].c = np.matrix(np.random.rand(20, 1) - 0.5)

        dbn[1].W = dbn[0].W.T
        dbn[1].b = dbn[0].c
        dbn[1].c = dbn[0].b

        dbn[2].W = dbn[0].W
        dbn[2].b = dbn[0].b
        dbn[2].c = dbn[0].c

        samples = dbn.sample(100)

        ais = Estimator(dbn[0])

        rbm_logz = ais.estimate_log_partition_function(
            100, np.sqrt(np.arange(0, 1, 0.001)))
        rbm_probs = ais.estimate_log_probability(samples)

        ais = Estimator(dbn)

        dbn_logz = ais.estimate_log_partition_function(
            100, np.sqrt(np.arange(0, 1, 0.001)))
        dbn_probs = ais.estimate_log_probability(samples)

        self.assertTrue(abs(dbn_logz - rbm_logz) / rbm_logz < 0.02)
        self.assertTrue((np.exp(dbn_probs) - np.exp(rbm_probs)).mean() < 0.02)
def main(argv):
	# load preprocessed data samples
	print 'loading data...\t',
	data = load('../data/vanhateren.npz')
	print '[DONE]'
	print

	# remove DC component (first component)
	data_train = data['train'][1:, :]
	data_test = data['test'][1:, :]



	# create 1st layer
	dbn = DBN(GaussianRBM(num_visibles=data_train.shape[0], num_hiddens=100))

	# hyperparameters
	dbn[0].learning_rate = 5E-3
	dbn[0].weight_decay = 1E-2
	dbn[0].momentum = 0.9
	dbn[0].sigma = 0.65
	dbn[0].cd_steps = 1
	dbn[0].persistent = True

	# train 1st layer
	print 'training...\t',
	dbn.train(data_train, num_epochs=100, batch_size=100)
	print '[DONE]'

	# evaluate 1st layer
	print 'evaluating...\t',
	logptf = dbn.estimate_log_partition_function(num_ais_samples=100, beta_weights=arange(0, 1, 1E-3))
	loglik = dbn.estimate_log_likelihood(data_test)
	print '[DONE]'
	print
	print 'estimated log-partf.:\t', logptf
	print 'estimated log-loss:\t', -loglik / data_test.shape[0] / log(2)
	print
	def test_ais_with_semirbm_dbn(self):
		dbn = DBN(RBM(5, 5))
		dbn.add_layer(SemiRBM(5, 5))
		
		ais = Estimator(dbn)
		ais.estimate_log_partition_function(100, np.arange(0, 1, 1E-3), layer=0)
		ais.estimate_log_partition_function(10, np.arange(0, 1, 1E-3), layer=1)

		dbn[0]._brf_logz = utils.logsumexp(dbn[0]._ulogprob_vis(utils.binary_numbers(dbn[0].X.shape[0])))
		dbn[1]._brf_logz = utils.logsumexp(dbn[1]._ulogprob_vis(utils.binary_numbers(dbn[1].X.shape[0])))

		samples = np.concatenate([dbn.sample(25, 100, 20), np.matrix(np.random.rand(5, 25) > 0.5)], 1)

		Y = utils.binary_numbers(dbn[0].Y.shape[0])
		X = utils.binary_numbers(dbn[0].X.shape[0])

		logRy = dbn[1]._ulogprob_vis(Y)
		logQy = utils.logsumexp(dbn[0]._ulogprob(X, Y, all_pairs=True), 0)
		log_sum = utils.logsumexp(dbn[0]._clogprob_hid_vis(samples, Y, all_pairs=True) - logQy + logRy, 1)

		logPx = log_sum + dbn[0]._ulogprob_vis(samples) - dbn[1]._brf_logz
		logPx_ = ais.estimate_log_probability(samples)[0]

		self.assertTrue(np.abs(logPx_.mean() - logPx.mean()) < 0.1)
def main(argv):
    num_visibles = 28 * 28
    num_hiddens = [1000, 1000]
    num_epochs = 50
    batch_size = 100

    # load data samples
    data = load('../data/mnist.npz')['train'] / 255.

    # train 1st layer
    dbn = DBN(RBM(num_visibles, num_hiddens[0]))
    dbn.train(data, num_epochs, batch_size)

    # train 2nd layer
    dbn.add_layer(RBM(num_hiddens[0], num_hiddens[1]))
    dbn.train(data, num_epochs, batch_size, [1E-1, 1E-2])

    return 0
def main(argv):
	num_visibles = 28 * 28
	num_hiddens = [1000, 1000]
	num_epochs = 50
	batch_size = 100



	# load data samples
	data = load('../data/mnist.npz')['train'] / 255.



	# train 1st layer
	dbn = DBN(RBM(num_visibles, num_hiddens[0]))
	dbn.train(data, num_epochs, batch_size)

	# train 2nd layer
	dbn.add_layer(RBM(num_hiddens[0], num_hiddens[1]))
	dbn.train(data, num_epochs, batch_size, [1E-1, 1E-2])

	return 0
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    data = load('../data/vanhateren.npz')
    print '[DONE]'
    print

    # remove DC component (first component)
    data_train = data['train'][1:, :]
    data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train.shape[0], num_hiddens=100))

    # hyperparameters
    dbn[0].learning_rate = 5E-3
    dbn[0].weight_decay = 1E-2
    dbn[0].momentum = 0.9
    dbn[0].sigma = 0.65
    dbn[0].cd_steps = 1
    dbn[0].persistent = True

    # train 1st layer
    print 'training...\t',
    dbn.train(data_train, num_epochs=100, batch_size=100)
    print '[DONE]'

    # evaluate 1st layer
    print 'evaluating...\t',
    logptf = dbn.estimate_log_partition_function(num_ais_samples=100,
                                                 beta_weights=arange(
                                                     0, 1, 1E-3))
    loglik = dbn.estimate_log_likelihood(data_test)
    print '[DONE]'
    print
    print 'estimated log-partf.:\t', logptf
    print 'estimated log-loss:\t', -loglik / data_test.shape[0] / log(2)
    print
Пример #11
0
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    category = "office"
    data_train_0,data_train_1,data_train_2, data_test = load_data_BS("..\data\watersurface\orignal_color.pkl")
    img = Image.open("..\data\watersurface\hand_segmented_01850.bmp")
    x_, y_ = (asarray(img)[:,:,0]).shape
    print "Doie : " , (asarray(img)[:,:,0]).shape
    groundtruth = (((asarray(img)[:,:,0])/255.0 > 0.5) * 1).flatten()
    
    #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    print '[DONE]'  
    

    print data_test.shape
    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train_0.shape[0], num_hiddens=8))
    dbn1 = DBN(GaussianRBM(num_visibles=data_train_1.shape[0], num_hiddens=8))
    dbn2 = DBN(GaussianRBM(num_visibles=data_train_2.shape[0], num_hiddens=8))
    
    dbn[0].learning_rate = 0.001
    dbn1[0].learning_rate = 0.001
    dbn2[0].learning_rate = 0.001

   

    # train 1st layer
    print 'training...\t',
    dbn.train(data_train_0, num_epochs=5, batch_size=1,shuffle=False)
    dbn1.train(data_train_1, num_epochs=5, batch_size=1,shuffle=False)
    dbn2.train(data_train_2, num_epochs=5, batch_size=1,shuffle=False)
    print '[DONE]'

    data_test_0 = ((data_test.T)[:,::3]).T
    data_test_1 = ((data_test.T)[:,1::3]).T
    data_test_2 = ((data_test.T)[:,2::3]).T
    
    # global runtime
    # sFilename = "data\\weightlogs"
    # f = h5.File(sFileName+".hdf5")
    # f.create_group(runtime)
    # group.create_dataset('parameters',data=par)

    #storeWeights(category,"data\\weightlogs", dbn[0].W, dbn[0].vsigma,dbn1[0].W, dbn1[0].vsigma,dbn2[0].W, dbn2[0].vsigma )

    Ndat = 25 #data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print 'evaluating 1...\t',
    dataout = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0[:,-1]).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn[0].forward(X) # self.activ(1)
            X = dbn[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,subtract(asarray(X),data_test_0[:,-1],asarray(dbn[0].vsigma),point+1)))
    
    print 'evaluating 2...\t',
    dataout1 = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1[:,-1]).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn1[0].forward(X) # self.activ(1)
            X = dbn1[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1,subtract(asarray(X),data_test_1[:,-1],asarray(dbn1[0].vsigma),point+1)))
    
    
    print 'evaluating 3...\t',
    dataout2 = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_2[:,point]).T
        X = asmatrix(data_test_2[:,-1]).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn2[0].forward(X) # self.activ(1)
            X = dbn2[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2,subtract(asarray(X),data_test_2[:,-1],asarray(dbn2[0].vsigma),point+1)))
    
    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')     
    # plt.show()

    plt.figure(1)
    for i in range(Ndat):
        plt.subplot(5,5,i+1)
        d = multiply(asarray(dataout[i+1,:]),asarray(dataout1[i+1,:]),asarray(dataout2[i+1,:]))
        d = mod(d+1,2)
       
        #open_img = ndimage.binary_opening(reshape(d,(x_,y_)))
        #close_img = ndimage.binary_closing(open_img)
        m_filter = ndimage.median_filter(reshape(d,(x_,y_)),8)
        # plt.figure(3)
        # plt.imshow(close_img)
        # plt.show()
        d = m_filter.flatten()
        print "Image Example Fmeaure: ",i," : ", f_measure(d,groundtruth) * 100
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        #img_s = Image.fromarray(asarray(reshape(d,(x_,y_))*255,dtype="uint8"))
        #img_s.save("C:\work\\backgdSubt\dataset\datasets\change detection\\baseline\\baseline\office\grbm" + "\\" + str(i) + ".bmp")
        plt.imshow(reshape(d,(x_,y_)), cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    plt.figure(2)
    

    for k in range(8):
        plt.subplot(4,2,k+1)
        d = zeros((x_*y_*3))
        d[0::3] = asarray(dbn[0].W[:,k].flatten())
        d[1::3] = asarray(dbn1[0].W[:,k].flatten())
        d[2::3] = asarray(dbn2[0].W[:,k].flatten())
        plt.imshow(reshape(d,(x_,y_,3)))#, cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    # plt.figure()
    # plt.imshow((reshape(dbn[0].vsigma[:19200],(x_,y_))))
    
    # plt.figure(2)
    # plt.imshow((reshape(dbn[0].vsigma[19200:19200*2],(x_,y_))))
    
    # plt.figure(3)
    # plt.imshow((reshape(dbn[0].vsigma[19200*2:19200*3],(x_,y_))))
    
    plt.figure(3)
    print type(dbn[0].vsigma)
    plt.imshow(reshape(asarray(dbn[0].vsigma),(x_,y_)))
    plt.show()    

    
    print dbn[0].vsigma
    p.show()    
def main(argv):
    # load preprocessed data samples
    print "loading data...\t",
    # data_train, data_test = genData() #load('../data/vanhateren.npz')
    data_train_0, data_train_1, data_train_2, data_test = load_data_BS("data/lightswitch/orignal_color.pkl")

    print "[DONE]"

    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train_0.shape[0], num_hiddens=8))
    dbn1 = DBN(GaussianRBM(num_visibles=data_train_1.shape[0], num_hiddens=8))
    dbn2 = DBN(GaussianRBM(num_visibles=data_train_2.shape[0], num_hiddens=8))

    # train 1st layer
    print "training...\t",
    dbn.train(data_train_0, num_epochs=10, batch_size=1, shuffle=False)
    dbn1.train(data_train_1, num_epochs=10, batch_size=1, shuffle=False)
    dbn2.train(data_train_2, num_epochs=10, batch_size=1, shuffle=False)
    print "[DONE]"

    data_test_0 = ((data_test.T)[:, ::3]).T
    data_test_1 = ((data_test.T)[:, 1::3]).T
    data_test_2 = ((data_test.T)[:, 2::3]).T

    Ndat = data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print "evaluating 1...\t",
    dataout = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        X = asmatrix(data_test_0[:, point]).T
        # dataout = vstack((dataout,X.flatten()))
        # print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn[0].forward(X)  # self.activ(1)
            X = dbn[0].backward(Y, X)
        # print "S hsape:", X.shape
        # dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout, subtract(asarray(X), data_test_0[:, point], asarray(dbn[0].vsigma))))

    print "evaluating 2...\t",
    dataout1 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        X = asmatrix(data_test_1[:, point]).T
        # dataout1 = vstack((dataout1,X.flatten()))
        # print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn1[0].forward(X)  # self.activ(1)
            X = dbn1[0].backward(Y, X)
        # print "S hsape:", X.shape
        # dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1, subtract(asarray(X), data_test_1[:, point], asarray(dbn1[0].vsigma))))

    print "evaluating 3...\t",
    dataout2 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        X = asmatrix(data_test_2[:, point]).T
        # dataout2 = vstack((dataout2,X.flatten()))
        # print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn2[0].forward(X)  # self.activ(1)
            X = dbn2[0].backward(Y, X)
        # print "S hsape:", X.shape
        # dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2, subtract(asarray(X), data_test_2[:, point], asarray(dbn2[0].vsigma))))

    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')
    # plt.show()

    plt.figure(1)
    for i in range(Ndat):
        plt.subplot(5, 5, i + 1)
        d = multiply(asarray(dataout[i + 1, :]), asarray(dataout1[i + 1, :]), asarray(dataout2[i + 1, :]))
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        plt.imshow(reshape(d, (x_, y_)), cmap=cm.Greys_r, interpolation="nearest")
        plt.axis("off")
    plt.figure(2)
    for k in range(8):
        plt.subplot(4, 2, k + 1)
        d = zeros((x_ * y_ * 3))
        d[0::3] = asarray(dbn[0].W[:, k].flatten())
        d[1::3] = asarray(dbn1[0].W[:, k].flatten())
        d[2::3] = asarray(dbn2[0].W[:, k].flatten())
        plt.imshow(reshape(d, (x_, y_, 3)))  # , cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis("off")
    # plt.figure()
    # plt.imshow((reshape(dbn[0].vsigma[:19200],(x_,y_))))

    # plt.figure(2)
    # plt.imshow((reshape(dbn[0].vsigma[19200:19200*2],(x_,y_))))

    # plt.figure(3)
    # plt.imshow((reshape(dbn[0].vsigma[19200*2:19200*3],(x_,y_))))

    plt.figure(3)
    print type(dbn[0].vsigma)
    plt.imshow(reshape(asarray(dbn[0].vsigma), (x_, y_)))
    plt.show()

    print dbn[0].vsigma
    p.show()
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    #data_train_0,data_train_1,data_train_2, data_test = load_data_BS("data/changedetection\\baseline\highway/orignal_color.pkl")

    #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    print '[DONE]'

    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=x_ * y_, num_hiddens=8))
    dbn1 = DBN(GaussianRBM(num_visibles=x_ * y_, num_hiddens=8))
    dbn2 = DBN(GaussianRBM(num_visibles=x_ * y_, num_hiddens=8))

    f = h5.File("experiments\weightlogs.hdf5", 'r')
    category = "office"

    dbn[0].W = (f[category])["weights"][:]
    dbn1[0].W = (f[category])["weights1"][:]
    dbn2[0].W = (f[category])["weights2"][:]
    dbn[0].vsigma = (f[category])["sigma"][:]
    dbn1[0].vsigma = (f[category])["sigma1"][:]
    dbn2[0].vsigma = (f[category])["sigma2"][:]

    # dbn[0].learning_rate = 0.001
    # dbn1[0].learning_rate = 0.001
    # dbn2[0].learning_rate = 0.001

    # train 1st layer
    # print 'training...\t',
    # dbn.train(data_train_0, num_epochs=1, batch_size=1,shuffle=False)
    # dbn1.train(data_train_1, num_epochs=1, batch_size=1,shuffle=False)
    # dbn2.train(data_train_2, num_epochs=1, batch_size=1,shuffle=False)
    # print '[DONE]'

    srcDir = "C:\work\\backgdSubt\dataset\datasets\change detection\\baseline\\baseline\highway\input"
    targetDir = "C:\work\\backgdSubt\dataset\datasets\change detection\\baseline\\baseline\highway\grbm"
    ii = 1
    for k in os.listdir(srcDir):
        imf = Image.open(srcDir + '/' + k)
        print array(imf).shape
        data_test = (array(imf)).flatten()
        #dataset = np.vstack((dataset,d))

        data_test_0 = ((data_test)[::3]).T
        data_test_1 = ((data_test)[1::3]).T
        data_test_2 = ((data_test)[2::3]).T

        Nsteps = 5
        # evaluate 1st layer
        print 'evaluating 1...\t',

        # #datasub = zeros(x_*y_)
        #for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn[0].forward(X)  # self.activ(1)
            X = dbn[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = subtract(asarray(X), data_test_0, asarray(dbn[0].vsigma), 10)

        #X = asmatrix(data_test_1[:,point]).T
        X1 = asmatrix(data_test_1).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y1 = dbn1[0].forward(X1)  # self.activ(1)
            X1 = dbn1[0].backward(Y1, X1)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = subtract(asarray(X1), data_test_1, asarray(dbn1[0].vsigma),
                            10)

        X2 = asmatrix(data_test_2).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y2 = dbn2[0].forward(X2)  # self.activ(1)
            X2 = dbn2[0].backward(Y2, X2)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        # plt.imshow(reshape(X,(x_,y_)))
        # plt.show()
        dataout2 = subtract(asarray(X2), data_test_2, asarray(dbn2[0].vsigma),
                            10)

        # plt.imshow((reshape(dataout,(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
        # plt.figure(2)
        # plt.imshow((reshape(dataout1,(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
        # plt.figure(3)
        # plt.imshow((reshape(dataout2,(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
        # plt.axis('off')
        # plt.show()

        # plt.figure(1)
        # for i in range(Ndat):
        #     plt.subplot(5,5,i+1)
        d = multiply(asarray(dataout[:]), asarray(dataout1[:]),
                     asarray(dataout2[:]))
        d = mod(d + 1, 2)
        # plt.imshow(reshape(d,(x_,y_)),cmap = cm.Greys_r, interpolation ="nearest")
        # print type(d[0])
        # #plt.savefig(targetDir + "\\" + str(ii) + ".png")
        #print
        img_s = Image.fromarray(
            asarray(reshape(d, (x_, y_)) * 255, dtype="uint8"))
        # plt.figure(2)
        # plt.imshow(img_s)#,cmap = cm.Greys_r, interpolation ="nearest")
        #plt.show()
        img_s.save(targetDir + "\\bin00" + str(ii) + ".bmp")
        ii = ii + 1
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    data_train_0,data_train_1,data_train_2, data_test = load_data_BS("data/changedetection\\baseline\highway\orignal_color.pkl")
    img = Image.open("data/changedetection\\baseline\highway/gt001367.png")
    print "Doie : " , (asarray(img)[:,:]).shape
    groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    
    #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    print '[DONE]'
    


    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train_0.shape[0], num_hiddens=8))
    dbn1 = DBN(GaussianRBM(num_visibles=data_train_1.shape[0], num_hiddens=8))
    dbn2 = DBN(GaussianRBM(num_visibles=data_train_2.shape[0], num_hiddens=8))
    
    dbn[0].learning_rate = 0.0001
    dbn1[0].learning_rate = 0.0001
    dbn2[0].learning_rate = 0.0001


    # train 1st layer
    print 'training...\t',
    dbn.train(data_train_0, num_epochs=25, batch_size=1,shuffle=False)
    dbn1.train(data_train_1, num_epochs=25, batch_size=1,shuffle=False)
    dbn2.train(data_train_2, num_epochs=25, batch_size=1,shuffle=False)
    print '[DONE]'

    data_test_0 = ((data_test.T)[:,::3]).T
    data_test_1 = ((data_test.T)[:,1::3]).T
    data_test_2 = ((data_test.T)[:,2::3]).T
    
    Ndat = 20 #data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print 'evaluating 1...\t',
    dataout = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0[:,-1]).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn[0].forward(X) # self.activ(1)
            X = dbn[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,subtract(asarray(X),data_test_0[:,-1],asarray(dbn[0].vsigma),point+1)))
    
    print 'evaluating 2...\t',
    dataout1 = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1[:,-1]).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn1[0].forward(X) # self.activ(1)
            X = dbn1[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1,subtract(asarray(X),data_test_1[:,-1],asarray(dbn1[0].vsigma),point+1)))
    
    
    print 'evaluating 3...\t',
    dataout2 = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_2[:,point]).T
        X = asmatrix(data_test_2[:,-1]).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn2[0].forward(X) # self.activ(1)
            X = dbn2[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2,subtract(asarray(X),data_test_2[:,-1],asarray(dbn2[0].vsigma),point+1)))
    
    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')     
    # plt.show()

    plt.figure(1)
    for i in range(Ndat):
        plt.subplot(5,5,i+1)
        d = multiply(asarray(dataout[i+1,:]),asarray(dataout1[i+1,:]),asarray(dataout2[i+1,:]))
        d = mod(d+1,2)
        f_measure(d,groundtruth)
        #print "Image Example Fmeaure: ",i," : ", f_measure(d,groundtruth) * 100
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        plt.imshow(reshape(d,(x_,y_)), cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    plt.figure(2)
    

    for k in range(8):
        plt.subplot(4,2,k+1)
        d = zeros((x_*y_*3))
        d[0::3] = asarray(dbn[0].W[:,k].flatten())
        d[1::3] = asarray(dbn1[0].W[:,k].flatten())
        d[2::3] = asarray(dbn2[0].W[:,k].flatten())
        plt.imshow(reshape(d,(x_,y_,3)))#, cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    # plt.figure()
    # plt.imshow((reshape(dbn[0].vsigma[:19200],(x_,y_))))
    
    # plt.figure(2)
    # plt.imshow((reshape(dbn[0].vsigma[19200:19200*2],(x_,y_))))
    
    # plt.figure(3)
    # plt.imshow((reshape(dbn[0].vsigma[19200*2:19200*3],(x_,y_))))
    
    plt.figure(3)
    print type(dbn[0].vsigma)
    plt.imshow(reshape(asarray(dbn[0].vsigma),(x_,y_)))
    plt.show()    

    
    print dbn[0].vsigma
    p.show()    
Пример #15
0
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    DIR1 = "data/changedetection\\nightvideos\\tramstation"
    data_train_0, data_train_1, data_train_2, data_test = load_data_BS(
        DIR1 + "/orignal_color.pkl")
    img = Image.open(DIR1 + "/gt001330.png")
    x_, y_ = (asarray(img)[:, :]).shape
    print "Doie : ", x_, y_
    groundtruth = (((asarray(img)[:, :]) / 255.0 > 0.5) * 1).flatten()

    #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    print '[DONE]'

    print data_test.shape
    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train_0.shape[0], num_hiddens=8))
    dbn1 = DBN(GaussianRBM(num_visibles=data_train_1.shape[0], num_hiddens=8))
    dbn2 = DBN(GaussianRBM(num_visibles=data_train_2.shape[0], num_hiddens=8))

    dbn[0].learning_rate = 0.001
    dbn1[0].learning_rate = 0.001
    dbn2[0].learning_rate = 0.001

    # train 1st layer
    print 'training...\t',
    dbn.train(data_train_0, num_epochs=5, batch_size=1, shuffle=False)
    dbn1.train(data_train_1, num_epochs=5, batch_size=1, shuffle=False)
    dbn2.train(data_train_2, num_epochs=5, batch_size=1, shuffle=False)
    print '[DONE]'

    data_test_0 = ((data_test.T)[:, ::3]).T
    data_test_1 = ((data_test.T)[:, 1::3]).T
    data_test_2 = ((data_test.T)[:, 2::3]).T

    # global runtime
    # sFilename = "data\\weightlogs"
    # f = h5.File(sFileName+".hdf5")
    # f.create_group(runtime)
    # group.create_dataset('parameters',data=par)

    #storeWeights(category,"data\\weightlogs", dbn[0].W, dbn[0].vsigma,dbn1[0].W, dbn1[0].vsigma,dbn2[0].W, dbn2[0].vsigma )
    coff = 8
    Ndat = 20  #data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print 'evaluating 1...\t',
    dataout = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0[:, -1]).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn[0].forward(X)  # self.activ(1)
            X = dbn[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,
                          subtract(asarray(X), data_test_0[:, -1],
                                   asarray(dbn[0].vsigma), point + 1)))

    print 'evaluating 2...\t',
    dataout1 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1[:, -1]).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn1[0].forward(X)  # self.activ(1)
            X = dbn1[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1,
                           subtract(asarray(X), data_test_1[:, -1],
                                    asarray(dbn1[0].vsigma), point + 1)))

    print 'evaluating 3...\t',
    dataout2 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_2[:,point]).T
        X = asmatrix(data_test_2[:, -1]).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn2[0].forward(X)  # self.activ(1)
            X = dbn2[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2,
                           subtract(asarray(X), data_test_2[:, -1],
                                    asarray(dbn2[0].vsigma), point + 1)))

    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')
    # plt.show()
    fmeasureV = zeros(Ndat)
    plt.figure(1)
    for i in range(Ndat):
        plt.subplot(5, 5, i + 1)
        d = multiply(asarray(dataout[i + 1, :]), asarray(dataout1[i + 1, :]),
                     asarray(dataout2[i + 1, :]))
        d = mod(d + 1, 2)
        open_img = ndimage.median_filter(reshape(d, (x_, y_)), coff)
        d = open_img.flatten()
        fmeasureV[i] = f_measure(d, groundtruth)
        print "Image Example Fmeaure: ", i, " : ", fmeasureV[i] * 100
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        # img_s = Image.fromarray(asarray(reshape(d,(x_,y_))*255,dtype="uint8"))
        # img_s.save("C:\work\\backgdSubt\dataset\datasets\change detection\\baseline\\baseline\office\grbm" + "\\" + str(i) + ".bmp")
        plt.imshow(reshape(d, (x_, y_)),
                   cmap=cm.Greys_r,
                   interpolation="nearest")
        plt.axis('off')
    #plt.figure(2)
    plt.show()

    DIR2 = "C:\work\\backgdSubt\dataset\datasets\change detection\\nightvideos\\tramstation"
    srcDir = DIR2 + "\input"
    targetDir = DIR2 + "\grbm"
    scalevaraince = input("Enter value: ")  #argmax(fmeasureV) + 12
    ii = 1
    for k in os.listdir(srcDir):
        if (ii < 500):
            ii = ii + 1
            continue
        if (ii > 1749):
            break
        imf = Image.open(srcDir + '/' + k)
        print array(imf).shape
        data_test = (array(imf)).flatten()
        #dataset = np.vstack((dataset,d))

        data_test_0 = ((data_test)[::3]).T
        data_test_1 = ((data_test)[1::3]).T
        data_test_2 = ((data_test)[2::3]).T

        Nsteps = 5
        # evaluate 1st layer
        print 'evaluating ', k, "\t"

        # #datasub = zeros(x_*y_)
        #for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn[0].forward(X)  # self.activ(1)
            X = dbn[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = subtract(asarray(X), data_test_0, asarray(dbn[0].vsigma),
                           scalevaraince + 1)

        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn1[0].forward(X)  # self.activ(1)
            X = dbn1[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = subtract(asarray(X), data_test_1, asarray(dbn1[0].vsigma),
                            scalevaraince + 1)

        X = asmatrix(data_test_2).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn2[0].forward(X)  # self.activ(1)
            X = dbn2[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        # plt.imshow(reshape(X,(x_,y_)))
        # plt.show()
        dataout2 = subtract(asarray(X), data_test_2, asarray(dbn2[0].vsigma),
                            scalevaraince + 1)

        # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
        # plt.axis('off')
        # plt.show()

        # plt.figure(1)
        # for i in range(Ndat):
        #     plt.subplot(5,5,i+1)
        d = multiply(asarray(dataout), asarray(dataout1), asarray(dataout2))
        d = mod(d + 1, 2)
        open_img = ndimage.median_filter(
            asarray(reshape(d, (x_, y_)) * 255, dtype="uint8"), coff)
        #d = open_img.flatten()
        #print type(d[0])
        # #plt.savefig(targetDir + "\\" + str(ii) + ".png")
        #print
        img_s = Image.fromarray(open_img)
        # plt.figure(2)
        # plt.imshow(img_s)#,cmap = cm.Greys_r, interpolation ="nearest")
        # plt.show()
        if (ii < 1000):
            img_s.save(targetDir + "\\bin000" + str(ii) + ".bmp")
        else:
            img_s.save(targetDir + "\\bin00" + str(ii) + ".bmp")
        ii = ii + 1
Пример #16
0
def main(argv):
	# load preprocessed data samples
	print 'loading data...\t',
	data = load('./data/vanhateren.npz')
	print '[DONE]'
	print

	# remove DC component (first component)
	data_train = data['train'][1:, :]
	data_test = data['test'][1:, :]



	# create 1st layer
	dbn = DBN(GaussianRBM(num_visibles=data_train.shape[0], num_hiddens=100))

	# hyperparameters
	dbn[0].learning_rate = 5E-3
	dbn[0].weight_decay = 1E-2
	dbn[0].momentum = 0.9
	dbn[0].sigma = 0.65
	dbn[0].cd_steps = 1
	dbn[0].persistent = True

	# train 1st layer
	print 'training...\t',
	dbn.train(data_train, num_epochs=100, batch_size=100)
	print '[DONE]'

	# evaluate 1st layer
	print 'evaluating...\t',
	logptf = dbn.estimate_log_partition_function(num_ais_samples=100, beta_weights=arange(0, 1, 1E-3))
	loglik = dbn.estimate_log_likelihood(data_test)
	print '[DONE]'
	print
	print 'estimated log-partf.:\t', logptf
	print 'estimated log-loss:\t', -loglik / data_test.shape[0] / log(2)
	print



	# create 2nd layer
	dbn.add_layer(SemiRBM(num_visibles=100, num_hiddens=100))

	# initialize parameters
	dbn[1].L = dbn[0].W.T * dbn[0].W
	dbn[1].b = dbn[0].W.T * dbn[0].b + dbn[0].c + 0.5 * asmatrix(diag(dbn[1].L)).T
	dbn[1].L = dbn[1].L - asmatrix(diag(diag(dbn[1].L)))

	# hyperparameters
	dbn[1].learning_rate = 5E-3
	dbn[1].learning_rate_lateral = 5E-4
	dbn[1].weight_decay = 5E-3
	dbn[1].weight_decay_lateral = 5E-3
	dbn[1].momentum = 0.9
	dbn[1].momentum_lateral = 0.9
	dbn[1].num_lateral_updates = 20
	dbn[1].damping = 0.2
	dbn[1].cd_steps = 1
	dbn[1].persistent = True

	# train 2nd layer
	print 'training...\t',
	dbn.train(data_train, num_epochs=100, batch_size=100)
	print '[DONE]'

	# evaluate 2nd layer
	print 'evaluating...\t',
	logptf = dbn.estimate_log_partition_function(num_ais_samples=100, beta_weights=arange(0, 1, 1E-3))
	loglik = dbn.estimate_log_likelihood(data_test, num_samples=100)
	print '[DONE]'
	print
	print 'estimated log-partf.:\t', logptf
	print 'estimated log-loss:\t', -loglik / data_test.shape[0] / log(2)
	print



	# fine-tune with wake-sleep
	dbn[0].learning_rate /= 4.
	dbn[1].learning_rate /= 4.

	print 'fine-tuning...\t',
	dbn.train_wake_sleep(data_train, num_epochs=10, batch_size=10)
	print '[DONE]'

	# reevaluate
	print 'evaluating...\t',
	logptf = dbn.estimate_log_partition_function(num_ais_samples=100, beta_weights=arange(0, 1, 1E-3))
	loglik = dbn.estimate_log_likelihood(data_test, num_samples=100)
	print '[DONE]'
	print
	print 'estimated log-partf.:\t', logptf
	print 'estimated log-loss:\t', -loglik / data_test.shape[0] / log(2)

	return 0
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    DIR1 = "../data/changedetection/camerajitter/traffic"
    data_train_0,data_train_1,data_train_2, data_test = load_data_BS(DIR1 + "/orignal_color.pkl")
    img = Image.open(DIR1 + "/gt001537.png")
    
    x_, y_ = (asarray(img)[:,:]).shape #determine procesing image size
    print "Doie : " , x_,y_
    
    groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    
    #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    print '[DONE]'
    

    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train_0.shape[0], num_hiddens=20))
    dbn1 = DBN(GaussianRBM(num_visibles=data_train_1.shape[0], num_hiddens=20))
    dbn2 = DBN(GaussianRBM(num_visibles=data_train_2.shape[0], num_hiddens=20))
    
    dbn[0].learning_rate = 0.001
    dbn1[0].learning_rate = 0.001
    dbn2[0].learning_rate = 0.001

   

    # train 1st layer
    print 'training...\t',
    dbn.train(data_train_0, num_epochs=1, batch_size=1,shuffle=False)
    dbn1.train(data_train_1, num_epochs=1, batch_size=1,shuffle=False)
    dbn2.train(data_train_2, num_epochs=1, batch_size=1,shuffle=False)
    print '[DONE]'

    
    data_test_0 = ((data_test.T)[:,::3]).T
    data_test_1 = ((data_test.T)[:,1::3]).T
    data_test_2 = ((data_test.T)[:,2::3]).T
    
    # global runtime
    # sFilename = "data\\weightlogs"
    # f = h5.File(sFileName+".hdf5")
    # f.create_group(runtime)
    # group.create_dataset('parameters',data=par)

    #storeWeights(category,"data\\weightlogs", dbn[0].W, dbn[0].vsigma,dbn1[0].W, dbn1[0].vsigma,dbn2[0].W, dbn2[0].vsigma )

    Ndat = 20 #data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print 'evaluating 1...\t',
    dataout = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0[:,-1]).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn[0].forward(X) # self.activ(1)
            X = dbn[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,subtract(asarray(X),data_test_0[:,-1],asarray(dbn[0].vsigma),point+1)))
    
    print 'evaluating 2...\t',
    dataout1 = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1[:,-1]).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn1[0].forward(X) # self.activ(1)
            X = dbn1[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1,subtract(asarray(X),data_test_1[:,-1],asarray(dbn1[0].vsigma),point+1)))
    
    
    print 'evaluating 3...\t',
    dataout2 = zeros(x_*y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_2[:,point]).T
        X = asmatrix(data_test_2[:,-1]).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn2[0].forward(X) # self.activ(1)
            X = dbn2[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2,subtract(asarray(X),data_test_2[:,-1],asarray(dbn2[0].vsigma),point+1)))
    
    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')     
    # plt.show()
    fmeasureV = zeros(Ndat)
    plt.figure(2)
    for i in range(Ndat):
        plt.subplot(5,5,i+1)
        d = multiply(asarray(dataout[i+1,:]),asarray(dataout1[i+1,:]),asarray(dataout2[i+1,:]))
        d = mod(d+1,2)
        fmeasureV[i] = f_measure(d,groundtruth)
        print "Image Example Fmeaure: ",i," : ", fmeasureV[i] * 100
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        # img_s = Image.fromarray(asarray(reshape(d,(x_,y_))*255,dtype="uint8"))
        # img_s.save("C:\work\\backgdSubt\dataset\datasets\change detection\\baseline\\baseline\office\grbm" + "\\" + str(i) + ".bmp")
        plt.imshow(reshape(d,(x_,y_)), cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    #plt.figure(2)
    plt.show()

    DIR2 = "../data/changedetection/camerajitter/traffic"
    srcDir = DIR2 + "/input"
    targetDir = DIR2 + "/grbm"
    scalevaraince = input("Enter value: ") #argmax(fmeasureV) + 12
    ii = 1 
    for k in os.listdir(srcDir):
        imf = Image.open(srcDir + '/' + k)
        print array(imf).shape
        data_test = (array(imf)).flatten()
        #dataset = np.vstack((dataset,d))
        
        data_test_0 = ((data_test)[::3]).T
        data_test_1 = ((data_test)[1::3]).T
        data_test_2 = ((data_test)[2::3]).T
        
        
        Nsteps = 5
        # evaluate 1st layer
        print 'evaluating 1...\t',
        
        # #datasub = zeros(x_*y_)
        #for point in xrange(Ndat):
            #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn[0].forward(X) # self.activ(1)
            X = dbn[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = subtract(asarray(X),data_test_0,asarray(dbn[0].vsigma),scalevaraince + 1 )
    
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn1[0].forward(X) # self.activ(1)
            X = dbn1[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = subtract(asarray(X),data_test_1,asarray(dbn1[0].vsigma),scalevaraince + 1)
    
        
        X = asmatrix(data_test_2).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn2[0].forward(X) # self.activ(1)
            X = dbn2[0].backward(Y,X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        # plt.imshow(reshape(X,(x_,y_)))
        # plt.show()   
        dataout2 = subtract(asarray(X),data_test_2,asarray(dbn2[0].vsigma),scalevaraince + 1)
        
        # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
        # plt.axis('off')     
        # plt.show()

# plt.figure(1)
# for i in range(Ndat):
#     plt.subplot(5,5,i+1)
        d = multiply(asarray(dataout),asarray(dataout1),asarray(dataout2))
        d = mod(d+1,2)
        #print type(d[0])
        # #plt.savefig(targetDir + "\\" + str(ii) + ".png")
        #print 
        img_s = Image.fromarray(asarray(reshape(d,(x_,y_))*255,dtype="uint8"))
        # plt.figure(2)
        # plt.imshow(img_s)#,cmap = cm.Greys_r, interpolation ="nearest")
        # plt.show()   
        if (ii <1000):
            img_s.save(targetDir + "\\bin000" + str(ii) + ".bmp")
        else:
            img_s.save(targetDir + "\\bin00" + str(ii) + ".bmp")
        ii = ii +1 
Пример #18
0
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    data_train_0, data_train_1, data_train_2, data_test = load_data_BS(
        "./data/gf_dborignal_color.pkl")
    img = Image.open("./data/gf_db/mensa_seq0_1.1/seq0_0000_0.jpg")
    print "Doie : ", (asarray(img)[:, :]).shape
    groundtruth = (((asarray(img)[:, :]) / 255.0 > 0.5) * 1).flatten()

    #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    print '[DONE]'

    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train_0.shape[0], num_hiddens=8))
    dbn1 = DBN(GaussianRBM(num_visibles=data_train_1.shape[0], num_hiddens=8))
    dbn2 = DBN(GaussianRBM(num_visibles=data_train_2.shape[0], num_hiddens=8))

    # train 1st layer
    print 'training...\t',
    dbn.train(data_train_0, num_epochs=100, batch_size=1, shuffle=False)
    dbn1.train(data_train_1, num_epochs=100, batch_size=1, shuffle=False)
    dbn2.train(data_train_2, num_epochs=100, batch_size=1, shuffle=False)
    print '[DONE]'

    data_test_0 = ((data_test.T)[:, ::3]).T
    data_test_1 = ((data_test.T)[:, 1::3]).T
    data_test_2 = ((data_test.T)[:, 2::3]).T

    Ndat = 25  #data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print 'evaluating 1...\t',
    dataout = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0[:, -1]).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn[0].forward(X)  # self.activ(1)
            X = dbn[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,
                          subtract(asarray(X), data_test_0[:, -1],
                                   asarray(dbn[0].vsigma), point + 1)))

    print 'evaluating 2...\t',
    dataout1 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1[:, -1]).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn1[0].forward(X)  # self.activ(1)
            X = dbn1[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1,
                           subtract(asarray(X), data_test_1[:, -1],
                                    asarray(dbn1[0].vsigma), point + 1)))

    print 'evaluating 3...\t',
    dataout2 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_2[:,point]).T
        X = asmatrix(data_test_2[:, -1]).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn2[0].forward(X)  # self.activ(1)
            X = dbn2[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2,
                           subtract(asarray(X), data_test_2[:, -1],
                                    asarray(dbn2[0].vsigma), point + 1)))

    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')
    # plt.show()

    plt.figure(1)
    for i in range(Ndat):
        plt.subplot(5, 5, i + 1)
        d = multiply(asarray(dataout[i + 1, :]), asarray(dataout1[i + 1, :]),
                     asarray(dataout2[i + 1, :]))
        d = mod(d + 1, 2)
        print "Image Example Fmeaure: ", i, " : ", f_measure(d,
                                                             groundtruth) * 100
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        plt.imshow(reshape(d, (x_, y_)),
                   cmap=cm.Greys_r,
                   interpolation="nearest")
        plt.axis('off')
    plt.figure(2)

    for k in range(8):
        plt.subplot(4, 2, k + 1)
        d = zeros((x_ * y_ * 3))
        d[0::3] = asarray(dbn[0].W[:, k].flatten())
        d[1::3] = asarray(dbn1[0].W[:, k].flatten())
        d[2::3] = asarray(dbn2[0].W[:, k].flatten())
        plt.imshow(reshape(
            d, (x_, y_, 3)))  #, cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')
    # plt.figure()
    # plt.imshow((reshape(dbn[0].vsigma[:19200],(x_,y_))))

    # plt.figure(2)
    # plt.imshow((reshape(dbn[0].vsigma[19200:19200*2],(x_,y_))))

    # plt.figure(3)
    # plt.imshow((reshape(dbn[0].vsigma[19200*2:19200*3],(x_,y_))))

    plt.figure(3)
    print type(dbn[0].vsigma)
    plt.imshow(reshape(asarray(dbn[0].vsigma), (x_, y_)))
    plt.show()

    print dbn[0].vsigma
    p.show()
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    data_train, data_test = load_data_BS("data/wavingtree/imagedata_blr_01.pkl")
    print '[DONE]'
    


    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=data_train.shape[0], num_hiddens=8))

    # hyperparameters
    dbn[0].learning_rate = 0.001
    #dbn[0].weight_decay = 1E-2
    dbn[0].momentum = 0.9
    dbn[0].sigma = 0.07
    dbn[0].cd_steps = 15
    # dbn[0].persistent = Trueahsanrafique


    # train 1st layer
    print 'training...\t',
    dbn.train(data_train, num_epochs=20, batch_size=1,shuffle=False)
    print '[DONE]'

    Ndat = data_test.shape[1]
    Nsteps = 1
    # evaluate 1st layer
    print 'evaluating...\t',
    dataout = zeros(120*160)
    #datasub = zeros(120*160)
    for point in xrange(Ndat):
        X = asmatrix(data_test[:,point]).T
        dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps): 
            Y = dbn[0].forward(X) # self.activ(1)
            X = dbn[0].backward(Y,X)
        #print "S hsape:", X.shape
        dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,subtract(asarray(X),data_test[:,point],asarray(dbn[0].vsigma))))
    
    
    # plt.imshow((reshape(data_test[:,point],(120,160))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')     
    # plt.figure(2)
    for i in range(10*3):
        plt.subplot(10,3,i+1)
        plt.imshow((reshape(dataout[i+1,:],(120,160))), cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    plt.figure(2)
    for k in range(8):
        plt.subplot(4,2,k+1)
        plt.imshow((reshape(dbn[0].W[:,k],(120,160))), cmap = cm.Greys_r, interpolation ="nearest")
        plt.axis('off')     
    plt.figure(3)
    plt.imshow((reshape(dbn[0].vsigma,(120,160))), cmap = cm.Greys_r, interpolation ="nearest")
    plt.show()    

    # p.figure(1)
    # p.plot(data_train[0,:],data_train[1,:], 'b.')
    # p.axis([0.0, 1.0, 0.0, 1.0])

    # p.figure(2)
    # p.plot(data_test[0,:],data_test[1,:], 'b.')
    # p.axis([0.0, 1.0, 0.0, 1.0])
    
    # p.figure(3)
    # p.plot(datout[0,:],datout[1,:], 'b.')
    # p.axis([0.0, 1.0, 0.0, 1.0])

    # p.figure(4)
    # p.plot(datout[0,:],datout[1,:], 'b.')
    
    #p.axis([0.0, 1.0, 0.0, 1.0])

    #p.figure(4)
    #p.hist(datout)
    print dbn[0].vsigma
    p.show()    
def main(argv):
    # load preprocessed data samples
    print 'loading data...\t',
    #data_train, data_test = genData() #load('../data/vanhateren.npz')
    # data_train_0,data_train_1,data_train_2, data_test = load_data_BS("data/changedetection\intermitentmotion\streetlight/orignal_color.pkl")
    img = Image.open("data/changedetection\ptz\continuous/gt000962.png")
    print "Doie : ", (asarray(img)[:, :]).shape
    groundtruth = (((asarray(img)[:, :]) / 255.0 > 0.5) * 1).flatten()

    # #groundtruth = (((asarray(img)[:,:])/255.0 > 0.5) * 1).flatten()
    # print '[DONE]'
    batches = 3

    # remove DC component (first component)
    # data_train = data['train'][1:, :]
    # data_test = data['test'][1:, :]

    # create 1st layer
    dbn = DBN(GaussianRBM(num_visibles=x_ * y_, num_hiddens=15))
    dbn1 = DBN(GaussianRBM(num_visibles=x_ * y_, num_hiddens=15))
    dbn2 = DBN(GaussianRBM(num_visibles=x_ * y_, num_hiddens=15))

    dbn[0].learning_rate = 0.0001
    dbn1[0].learning_rate = 0.0001
    dbn2[0].learning_rate = 0.0001

    # train 1st layer
    print 'training...\t',
    for k in range(2):
        print "epoc :", k
        for i in range(batches):
            global batch_no
            batch_no = i
            os.path.walk(
                'C:\work\\backgdSubt\dataset\changedetection\ptz\continuous\\orignal',
                load_batch, 0)
            global train_set_x0
            global train_set_x1
            global train_set_x2

            dbn.train(train_set_x0.T,
                      num_epochs=1,
                      batch_size=1,
                      shuffle=False)
            dbn1.train(train_set_x1.T,
                       num_epochs=1,
                       batch_size=1,
                       shuffle=False)
            dbn2.train(train_set_x2.T,
                       num_epochs=1,
                       batch_size=1,
                       shuffle=False)

    print '[DONE]'

    os.path.walk(
        'C:\work\\backgdSubt\dataset\changedetection\ptz\continuous\\test',
        load_test_batch, 0)

    data_test_0 = ((data_test.T)[:, ::3]).T
    data_test_1 = ((data_test.T)[:, 1::3]).T
    data_test_2 = ((data_test.T)[:, 2::3]).T

    Ndat = 25  #data_test_0.shape[1]
    Nsteps = 5
    # evaluate 1st layer
    print 'evaluating 1...\t',
    dataout = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_0[:,point]).T
        X = asmatrix(data_test_0[:, -1]).T
        #dataout = vstack((dataout,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn[0].forward(X)  # self.activ(1)
            X = dbn[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout = vstack((dataout,X.flatten()))
        dataout = vstack((dataout,
                          subtract(asarray(X), data_test_0[:, -1],
                                   asarray(dbn[0].vsigma), point + 1)))

    print 'evaluating 2...\t',
    dataout1 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_1[:,point]).T
        X = asmatrix(data_test_1[:, -1]).T
        #dataout1 = vstack((dataout1,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn1[0].forward(X)  # self.activ(1)
            X = dbn1[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout1 = vstack((dataout1,X.flatten()))
        dataout1 = vstack((dataout1,
                           subtract(asarray(X), data_test_1[:, -1],
                                    asarray(dbn1[0].vsigma), point + 1)))

    print 'evaluating 3...\t',
    dataout2 = zeros(x_ * y_)
    # #datasub = zeros(x_*y_)
    for point in xrange(Ndat):
        #X = asmatrix(data_test_2[:,point]).T
        X = asmatrix(data_test_2[:, -1]).T
        #dataout2 = vstack((dataout2,X.flatten()))
        #print "testing:", X.shape
        for recstep in xrange(Nsteps):
            Y = dbn2[0].forward(X)  # self.activ(1)
            X = dbn2[0].backward(Y, X)
        #print "S hsape:", X.shape
        #dataout2 = vstack((dataout2,X.flatten()))
        dataout2 = vstack((dataout2,
                           subtract(asarray(X), data_test_2[:, -1],
                                    asarray(dbn2[0].vsigma), point + 1)))

    # plt.imshow((reshape(data_test[::3,5],(x_,y_))), cmap = cm.Greys_r, interpolation ="nearest")
    # plt.axis('off')
    # plt.show()

    plt.figure(1)
    for i in range(Ndat):
        plt.subplot(5, 5, i + 1)
        d = multiply(asarray(dataout[i + 1, :]), asarray(dataout1[i + 1, :]),
                     asarray(dataout2[i + 1, :]))
        d = mod(d + 1, 2)
        #print "Image Example Fmeaure: ",i," : ", f_measure(d,groundtruth) * 100
        # d[0::3] = asarray(dataout[i+1,:])
        # d[1::3] = asarray(dataout1[i+1,:])
        # d[2::3] = asarray(dataout2[i+1,:])
        # d[:,:,0] = (reshape(asarray(dataout[i+1,:]),(x_,y_)))
        # d[:,:,1] = (reshape(asarray(dataout1[i+1,:]),(x_,y_)))
        # d[:,:,2] = (reshape(asarray(dataout2[i+1,:]),(x_,y_)))
        plt.imshow(reshape(d, (x_, y_)),
                   cmap=cm.Greys_r,
                   interpolation="nearest")
        plt.axis('off')
    plt.figure(2)

    for k in range(15):
        plt.subplot(5, 3, k + 1)
        d = zeros((x_ * y_ * 3))
        d[0::3] = asarray(dbn[0].W[:, k].flatten())
        d[1::3] = asarray(dbn1[0].W[:, k].flatten())
        d[2::3] = asarray(dbn2[0].W[:, k].flatten())
        plt.imshow(reshape(d[0::3], (x_, y_)),
                   cmap=cm.Greys_r,
                   interpolation="nearest")
        plt.axis('off')
    # plt.figure()
    # plt.imshow((reshape(dbn[0].vsigma[:19200],(x_,y_))))

    # plt.figure(2)
    # plt.imshow((reshape(dbn[0].vsigma[19200:19200*2],(x_,y_))))

    # plt.figure(3)
    # plt.imshow((reshape(dbn[0].vsigma[19200*2:19200*3],(x_,y_))))

    plt.figure(3)
    print type(dbn[0].vsigma)
    plt.imshow(reshape(asarray(dbn[0].vsigma), (x_, y_)))
    plt.show()

    print dbn[0].vsigma
    p.show()