Пример #1
0
 def test_gap_mask2(self):
     s = ('222222222222222222.11112222222222222222222222222'
          '222222222222222222222222222222222222222222222222'
          '22222222...::::::..:2:22::2:::::::..11.111...::.'
          '::::::::::.::::......:::::::::::222:.::::::::.11'
          '.:::::::::.:22.::::::::::::2:::::::::::::::1::..'
          '.::::::::::::::::::::::22:2:2::::::::::1::::::::'
          '::::22222::::::::::1::::::.')
     # N, M = 197, 283
     gap_mask(s)
Пример #2
0
    def test_gap_mask(self):
        s = ":11::22:"
        res = gap_mask(s)
        exp = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],
                        [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1]])
        npt.assert_equal(res, exp)

        s = ":11:.:22:"
        res = gap_mask(s)
        exp = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, 1]])
        npt.assert_equal(res, exp)
Пример #3
0
    def __getitem__(self, i):
        """ Gets alignment pair.

        Parameters
        ----------
        i : int
           Index of item

        Returns
        -------
        gene : torch.Tensor
           Encoded representation of protein of interest
        pos : torch.Tensor
           Encoded representation of protein that aligns with `gene`.
        states : torch.Tensor
           Alignment string
        alignment_matrix : torch.Tensor
           Ground truth alignment matrix
        path_matrix : torch.Tensor
           Pairwise path distances, where the smallest distance
           to the path is computed for every element in the matrix.
        """
        gene = self.pairs.iloc[i]['chain1']
        pos = self.pairs.iloc[i]['chain2']
        st = self.pairs.iloc[i]['alignment']

        states = list(map(tmstate_f, st))
        if self.clip_ends:
            gene, pos, states, st = clip_boundaries(gene, pos, states, st)

        if self.pad_ends:
            states = [m] + states + [m]

        states = torch.Tensor(states).long()
        gene = self.tokenizer(str.encode(gene))
        pos = self.tokenizer(str.encode(pos))
        gene = torch.Tensor(gene).long()
        pos = torch.Tensor(pos).long()
        alignment_matrix = torch.from_numpy(states2matrix(states))
        path_matrix = torch.empty(*alignment_matrix.shape)
        g_mask = torch.ones(*alignment_matrix.shape)
        if self.construct_paths:
            pi = states2edges(states)
            path_matrix = torch.from_numpy(path_distance_matrix(pi))
            path_matrix = reshape(path_matrix, len(gene), len(pos))
        if self.mask_gaps:
            g_mask = torch.from_numpy(gap_mask(st)).bool()

        alignment_matrix = reshape(alignment_matrix, len(gene), len(pos))
        g_mask = reshape(g_mask, len(gene), len(pos))
        if not self.return_names:
            return gene, pos, states, alignment_matrix, path_matrix, g_mask
        else:
            gene_name = self.pairs.iloc[i]['chain1_name']
            pos_name = self.pairs.iloc[i]['chain2_name']
            return (gene, pos, states, alignment_matrix, path_matrix, g_mask,
                    gene_name, pos_name)