def test_gap_mask2(self): s = ('222222222222222222.11112222222222222222222222222' '222222222222222222222222222222222222222222222222' '22222222...::::::..:2:22::2:::::::..11.111...::.' '::::::::::.::::......:::::::::::222:.::::::::.11' '.:::::::::.:22.::::::::::::2:::::::::::::::1::..' '.::::::::::::::::::::::22:2:2::::::::::1::::::::' '::::22222::::::::::1::::::.') # N, M = 197, 283 gap_mask(s)
def test_gap_mask(self): s = ":11::22:" res = gap_mask(s) exp = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1]]) npt.assert_equal(res, exp) s = ":11:.:22:" res = gap_mask(s) exp = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1]]) npt.assert_equal(res, exp)
def __getitem__(self, i): """ Gets alignment pair. Parameters ---------- i : int Index of item Returns ------- gene : torch.Tensor Encoded representation of protein of interest pos : torch.Tensor Encoded representation of protein that aligns with `gene`. states : torch.Tensor Alignment string alignment_matrix : torch.Tensor Ground truth alignment matrix path_matrix : torch.Tensor Pairwise path distances, where the smallest distance to the path is computed for every element in the matrix. """ gene = self.pairs.iloc[i]['chain1'] pos = self.pairs.iloc[i]['chain2'] st = self.pairs.iloc[i]['alignment'] states = list(map(tmstate_f, st)) if self.clip_ends: gene, pos, states, st = clip_boundaries(gene, pos, states, st) if self.pad_ends: states = [m] + states + [m] states = torch.Tensor(states).long() gene = self.tokenizer(str.encode(gene)) pos = self.tokenizer(str.encode(pos)) gene = torch.Tensor(gene).long() pos = torch.Tensor(pos).long() alignment_matrix = torch.from_numpy(states2matrix(states)) path_matrix = torch.empty(*alignment_matrix.shape) g_mask = torch.ones(*alignment_matrix.shape) if self.construct_paths: pi = states2edges(states) path_matrix = torch.from_numpy(path_distance_matrix(pi)) path_matrix = reshape(path_matrix, len(gene), len(pos)) if self.mask_gaps: g_mask = torch.from_numpy(gap_mask(st)).bool() alignment_matrix = reshape(alignment_matrix, len(gene), len(pos)) g_mask = reshape(g_mask, len(gene), len(pos)) if not self.return_names: return gene, pos, states, alignment_matrix, path_matrix, g_mask else: gene_name = self.pairs.iloc[i]['chain1_name'] pos_name = self.pairs.iloc[i]['chain2_name'] return (gene, pos, states, alignment_matrix, path_matrix, g_mask, gene_name, pos_name)