Пример #1
0
 def test_trainer_struct(self):
     output_dir = 'output'
     args = [
         '--train-pairs',
         get_data_path('train.txt'), '--test-pairs',
         get_data_path('test.txt'), '--valid-pairs',
         get_data_path('valid.txt'), '--output-directory', output_dir,
         '--epochs', '1', '--batch-size', '1', '--num-workers', '1',
         '--learning-rate', '1e-4', '--clip-ends', 'False',
         '--visualization-fraction', '1', '--gpus', '1'
     ]
     parser = argparse.ArgumentParser(add_help=False)
     parser = LightningAligner.add_model_specific_args(parser)
     parser.add_argument('--num-workers', type=int)
     parser.add_argument('--gpus', type=int)
     args = parser.parse_args(args)
     model = LightningAligner(args)
     trainer = Trainer(
         max_epochs=args.epochs,
         gpus=args.gpus,
         check_val_every_n_epoch=1,
         # profiler=profiler,
         fast_dev_run=True,
         # auto_scale_batch_size='power'
     )
     trainer.fit(model)
Пример #2
0
    def test_decoding2(self):
        X = 'HECDRKTCDESFSTKGNLRVHKLGH'
        Y = 'LKCSGCGKNFKSQYAYKRHEQTH'

        needle = NeedlemanWunschDecoder(self.operator)
        dm = torch.Tensor(np.loadtxt(get_data_path('dm.txt')))
        decoded = needle.traceback(dm)
        pred_x, pred_y, pred_states = list(zip(*decoded))
        states2alignment(np.array(pred_states), X, Y)
Пример #3
0
    def setUp(self):
        hmm = get_data_path('ABC_tran.hmm')
        n_alignments = 100
        align_df = hmm_alignments(n=40,
                                  seed=0,
                                  n_alignments=n_alignments,
                                  hmmfile=hmm)
        cols = [
            'chain1_name', 'chain2_name', 'tmscore1', 'tmscore2', 'rmsd',
            'chain1', 'chain2', 'alignment'
        ]
        align_df.columns = cols
        parts = n_alignments // 10
        train_df = align_df.iloc[:parts * 8]
        test_df = align_df.iloc[parts * 8:parts * 9]
        valid_df = align_df.iloc[parts * 9:]

        # save the files to disk.
        train_df.to_csv('train.txt', sep='\t', index=None, header=None)
        test_df.to_csv('test.txt', sep='\t', index=None, header=None)
        valid_df.to_csv('valid.txt', sep='\t', index=None, header=None)
Пример #4
0
 def setUp(self):
     self.data_path = get_data_path('test_tm_align.tab')
     self.tokenizer = UniprotTokenizer(pad_ends=False)
Пример #5
0
 def setUp(self):
     self.data_path = get_data_path('example.txt')
     self.pairs = pd.read_table(self.data_path, header=None)