Пример #1
0
    def test_feature_generation(self):
        """Test if featurization works using AtomicConvFeaturizer."""
        dir_path = os.path.dirname(os.path.realpath(__file__))
        ligand_file = os.path.join(dir_path, "data/3zso_ligand_hyd.pdb")
        protein_file = os.path.join(dir_path, "data/3zso_protein.pdb")
        # Pulled from PDB files. For larger datasets with more PDBs, would use
        # max num atoms instead of exact.

        frag1_num_atoms = 44  # for ligand atoms
        frag2_num_atoms = 2336  # for protein atoms
        complex_num_atoms = 2380  # in total
        max_num_neighbors = 4
        # Cutoff in angstroms
        neighbor_cutoff = 4

        labels = np.array([0, 0])

        featurizer = AtomicConvFeaturizer(labels=labels,
                                          batch_size=1,
                                          epochs=1,
                                          frag1_num_atoms=frag1_num_atoms,
                                          frag2_num_atoms=frag2_num_atoms,
                                          complex_num_atoms=complex_num_atoms,
                                          max_num_neighbors=max_num_neighbors,
                                          neighbor_cutoff=neighbor_cutoff)

        features, _ = featurizer.featurize_complexes(
            [ligand_file, ligand_file], [protein_file, protein_file])
Пример #2
0
def do_atomconv_featurize(lig_files, rec_files, labels):
    '''
    Parameters
    ----------
    lig_files: array_like
        n_examples list of ligand file names for training
    rec_files: array_like
        n_examples list of receptor file names for training
    labels: array_like
        n_examples list of labels

    Returns
    ----------
    features: array_like
        n_examples X feature_dims
    failures: array_like
        list of example indices that failed to featurize
    '''
    frag1_num_atoms = 150  # for ligand atoms
    frag2_num_atoms = 27000  # for protein atoms
    complex_num_atoms = frag1_num_atoms + frag2_num_atoms
    neighbor_cutoff = 4
    max_num_neighbors = 4

    featurizer = AtomicConvFeaturizer(
        labels=labels,
        frag1_num_atoms=frag1_num_atoms,
        frag2_num_atoms=frag2_num_atoms,
        complex_num_atoms=complex_num_atoms,
        neighbor_cutoff=neighbor_cutoff,
        max_num_neighbors=max_num_neighbors,
        batch_size=64)
    
    print("Featurizing Complexes")
    return featurizer.featurize_complexes(lig_files, rec_files)
Пример #3
0
  def test_feature_generation(self):
    """Test if featurization works using AtomicConvFeaturizer."""
    dir_path = os.path.dirname(os.path.realpath(__file__))
    ligand_file = os.path.join(dir_path, "data/3zso_ligand_hyd.pdb")
    protein_file = os.path.join(dir_path, "data/3zso_protein.pdb")
    # Pulled from PDB files. For larger datasets with more PDBs, would use
    # max num atoms instead of exact.

    frag1_num_atoms = 44  # for ligand atoms
    frag2_num_atoms = 2336  # for protein atoms
    complex_num_atoms = 2380  # in total
    max_num_neighbors = 4
    # Cutoff in angstroms
    neighbor_cutoff = 4

    labels = np.array([0, 0])

    featurizer = AtomicConvFeaturizer(
        labels=labels,
        batch_size=1,
        epochs=1,
        frag1_num_atoms=frag1_num_atoms,
        frag2_num_atoms=frag2_num_atoms,
        complex_num_atoms=complex_num_atoms,
        max_num_neighbors=max_num_neighbors,
        neighbor_cutoff=neighbor_cutoff)

    features, _ = featurizer.featurize_complexes([ligand_file, ligand_file],
                                                 [protein_file, protein_file])
Пример #4
0
def load_pdbbind(reload=True,
                 data_dir=None,
                 subset="core",
                 load_binding_pocket=False,
                 featurizer="grid",
                 split="random",
                 split_seed=None,
                 save_dir=None,
                 save_timestamp=False):
    """Load raw PDBBind dataset by featurization and split.

  Parameters
  ----------
  reload: Bool, optional
    Reload saved featurized and splitted dataset or not.
  data_dir: Str, optional
    Specifies the directory storing the raw dataset.
  load_binding_pocket: Bool, optional
    Load binding pocket or full protein.
  subset: Str
    Specifies which subset of PDBBind, only "core" or "refined" for now.
  featurizer: Str
    Either "grid" or "atomic" for grid and atomic featurizations.
  split: Str
    Either "random" or "index".
  split_seed: Int, optional
    Specifies the random seed for splitter.
  save_dir: Str, optional
    Specifies the directory to store the featurized and splitted dataset when
    reload is False. If reload is True, it will load saved dataset inside save_dir.
  save_timestamp: Bool, optional
    Save featurized and splitted dataset with timestamp or not. Set it as True
    when running similar or same jobs simultaneously on multiple compute nodes.
  """

    pdbbind_tasks = ["-logKd/Ki"]

    deepchem_dir = deepchem.utils.data_utils.get_data_dir()

    if data_dir == None:
        data_dir = DEFAULT_DATA_DIR
    data_folder = os.path.join(data_dir, "pdbbind", "v2015")

    if save_dir == None:
        save_dir = os.path.join(DEFAULT_DATA_DIR, "from-pdbbind")
    if load_binding_pocket:
        save_folder = os.path.join(
            save_dir, "protein_pocket-%s-%s-%s" % (subset, featurizer, split))
    else:
        save_folder = os.path.join(
            save_dir, "full_protein-%s-%s-%s" % (subset, featurizer, split))

    if save_timestamp:
        save_folder = "%s-%s-%s" % (
            save_folder, time.strftime("%Y%m%d", time.localtime()),
            re.search("\.(.*)", str(time.time())).group(1))

    if reload:
        if not os.path.exists(save_folder):
            print("Dataset does not exist at {}. Reconstructing...".format(
                save_folder))
        else:
            print("\nLoading featurized and splitted dataset from:\n%s\n" %
                  save_folder)
        loaded, all_dataset, transformers = deepchem.utils.data_utils.load_dataset_from_disk(
            save_folder)
        if loaded:
            return pdbbind_tasks, all_dataset, transformers

    dataset_file = os.path.join(data_dir, "pdbbind_v2015.tar.gz")
    if not os.path.exists(dataset_file):
        logger.warning(
            "About to download PDBBind full dataset. Large file, 2GB")
        deepchem.utils.data_utils.download_url(
            "https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pdbbind_v2015.tar.gz",
            dest_dir=data_dir)
    if os.path.exists(data_folder):
        logger.info("PDBBind full dataset already exists.")
    else:
        print("Untarring full dataset...")
        deepchem.utils.data_utils.untargz_file(dataset_file,
                                               dest_dir=os.path.join(
                                                   data_dir, "pdbbind"))

    print("\nRaw dataset:\n%s" % data_folder)
    print("\nFeaturized and splitted dataset:\n%s" % save_folder)

    if subset == "core":
        index_labels_file = os.path.join(data_folder, "INDEX_core_data.2013")
    elif subset == "refined":
        index_labels_file = os.path.join(data_folder,
                                         "INDEX_refined_data.2015")
    else:
        raise ValueError("Other subsets not supported")

    # Extract locations of data
    with open(index_labels_file, "r") as g:
        pdbs = [line[:4] for line in g.readlines() if line[0] != "#"]
    if load_binding_pocket:
        protein_files = [
            os.path.join(data_folder, pdb, "%s_pocket.pdb" % pdb)
            for pdb in pdbs
        ]
    else:
        protein_files = [
            os.path.join(data_folder, pdb, "%s_protein.pdb" % pdb)
            for pdb in pdbs
        ]
    ligand_files = [
        os.path.join(data_folder, pdb, "%s_ligand.sdf" % pdb) for pdb in pdbs
    ]

    # Extract labels
    with open(index_labels_file, "r") as g:
        labels = np.array([
            # Lines have format
            # PDB code, resolution, release year, -logKd/Ki, Kd/Ki, reference, ligand name
            # The base-10 logarithm, -log kd/pk
            float(line.split()[3]) for line in g.readlines() if line[0] != "#"
        ])

    # Featurize Data
    if featurizer == "grid":
        featurizer = RdkitGridFeaturizer(voxel_width=2.0,
                                         feature_types=[
                                             'ecfp', 'splif', 'hbond',
                                             'salt_bridge', 'pi_stack',
                                             'cation_pi', 'charge'
                                         ],
                                         flatten=True)
    elif featurizer == "atomic" or featurizer == "atomic_conv":
        # Pulled from PDB files. For larger datasets with more PDBs, would use
        # max num atoms instead of exact.
        frag1_num_atoms = 70  # for ligand atoms
        if load_binding_pocket:
            frag2_num_atoms = 1000
            complex_num_atoms = 1070
        else:
            frag2_num_atoms = 24000  # for protein atoms
            complex_num_atoms = 24070  # in total
        max_num_neighbors = 4
        # Cutoff in angstroms
        neighbor_cutoff = 4
        if featurizer == "atomic":
            featurizer = ComplexNeighborListFragmentAtomicCoordinates(
                frag1_num_atoms=frag1_num_atoms,
                frag2_num_atoms=frag2_num_atoms,
                complex_num_atoms=complex_num_atoms,
                max_num_neighbors=max_num_neighbors,
                neighbor_cutoff=neighbor_cutoff)
        if featurizer == "atomic_conv":
            featurizer = AtomicConvFeaturizer(
                labels=labels,
                frag1_num_atoms=frag1_num_atoms,
                frag2_num_atoms=frag2_num_atoms,
                complex_num_atoms=complex_num_atoms,
                neighbor_cutoff=neighbor_cutoff,
                max_num_neighbors=max_num_neighbors,
                batch_size=64)
    else:
        raise ValueError("Featurizer not supported")

    print("\nFeaturizing Complexes for \"%s\" ...\n" % data_folder)
    feat_t1 = time.time()
    features, failures = featurizer.featurize(ligand_files, protein_files)
    feat_t2 = time.time()
    print("\nFeaturization finished, took %0.3f s." % (feat_t2 - feat_t1))

    # Delete labels and ids for failing elements
    labels = np.delete(labels, failures)
    labels = labels.reshape((len(labels), 1))
    ids = np.delete(pdbs, failures)

    print("\nConstruct dataset excluding failing featurization elements...")
    dataset = deepchem.data.DiskDataset.from_numpy(features, y=labels, ids=ids)

    # No transformations of data
    transformers = []

    # Split dataset
    print("\nSplit dataset...\n")
    if split == None:
        return pdbbind_tasks, (dataset, None, None), transformers

    # TODO(rbharath): This should be modified to contain a cluster split so
    # structures of the same protein aren't in both train/test
    splitters = {
        'index': deepchem.splits.IndexSplitter(),
        'random': deepchem.splits.RandomSplitter(),
    }
    splitter = splitters[split]
    train, valid, test = splitter.train_valid_test_split(dataset,
                                                         seed=split_seed)

    all_dataset = (train, valid, test)
    print("\nSaving dataset to \"%s\" ..." % save_folder)
    deepchem.utils.data_utils.save_dataset_to_disk(save_folder, train, valid,
                                                   test, transformers)
    return pdbbind_tasks, all_dataset, transformers
Пример #5
0
def load_pdbbind(featurizer="grid",
                 split="random",
                 subset="core",
                 reload=True):
    """Load and featurize raw PDBBind dataset.
  
  Parameters
  ----------
  data_dir: String, optional
    Specifies the data directory to store the featurized dataset.
  split: Str
    Either "random" or "index"
  feat: Str
    Either "grid" or "atomic" for grid and atomic featurizations.
  subset: Str
    Only "core" or "refined" for now.
  """
    pdbbind_tasks = ["-logKd/Ki"]
    data_dir = deepchem.utils.get_data_dir()
    if reload:
        save_dir = os.path.join(data_dir,
                                "pdbbind/" + featurizer + "/" + str(split))
        loaded, all_dataset, transformers = deepchem.utils.save.load_dataset_from_disk(
            save_dir)
        if loaded:
            return pdbbind_tasks, all_dataset, transformers
    dataset_file = os.path.join(data_dir, "pdbbind_v2015.tar.gz")
    data_folder = os.path.join(data_dir, "v2015")
    if not os.path.exists(dataset_file):
        logger.warning(
            "About to download PDBBind full dataset. Large file, 2GB")
        deepchem.utils.download_url(
            'http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/' +
            "pdbbind_v2015.tar.gz")
    if os.path.exists(data_folder):
        logger.info("Data directory for %s already exists" % subset)
    else:
        print("Untarring full dataset")
        deepchem.utils.untargz_file(dataset_file, dest_dir=data_dir)
    if subset == "core":
        index_file = os.path.join(data_folder, "INDEX_core_name.2013")
        labels_file = os.path.join(data_folder, "INDEX_core_data.2013")
    elif subset == "refined":
        index_file = os.path.join(data_folder, "INDEX_refined_name.2013")
        labels_file = os.path.join(data_folder, "INDEX_refined_data.2013")
    else:
        raise ValueError("Other subsets not supported")
    # Extract locations of data
    pdbs = []
    with open(index_file, "r") as g:
        lines = g.readlines()
        for line in lines:
            line = line.split(" ")
            pdb = line[0]
            if len(pdb) == 4:
                pdbs.append(pdb)
    protein_files = [
        os.path.join(data_folder, pdb, "%s_protein.pdb" % pdb) for pdb in pdbs
    ]
    ligand_files = [
        os.path.join(data_folder, pdb, "%s_ligand.sdf" % pdb) for pdb in pdbs
    ]
    # Extract labels
    labels = []
    with open(labels_file, "r") as f:
        lines = f.readlines()
        for line in lines:
            # Skip comment lines
            if line[0] == "#":
                continue
            # Lines have format
            # PDB code, resolution, release year, -logKd/Ki, Kd/Ki, reference, ligand name
            line = line.split()
            # The base-10 logarithm, -log kd/pk
            log_label = line[3]
            labels.append(log_label)
    labels = np.array(labels)
    # Featurize Data
    if featurizer == "grid":
        featurizer = rgf.RdkitGridFeaturizer(voxel_width=2.0,
                                             feature_types=[
                                                 'ecfp', 'splif', 'hbond',
                                                 'salt_bridge', 'pi_stack',
                                                 'cation_pi', 'charge'
                                             ],
                                             flatten=True)
    elif featurizer == "atomic":
        # Pulled from PDB files. For larger datasets with more PDBs, would use
        # max num atoms instead of exact.
        frag1_num_atoms = 70  # for ligand atoms
        frag2_num_atoms = 24000  # for protein atoms
        complex_num_atoms = 24070  # in total
        max_num_neighbors = 4
        # Cutoff in angstroms
        neighbor_cutoff = 4
        featurizer = ComplexNeighborListFragmentAtomicCoordinates(
            frag1_num_atoms, frag2_num_atoms, complex_num_atoms,
            max_num_neighbors, neighbor_cutoff)

    elif featurizer == "atomic_conv":
        frag1_num_atoms = 70  # for ligand atoms
        frag2_num_atoms = 24000  # for protein atoms
        complex_num_atoms = 24070  # in total
        max_num_neighbors = 4
        # Cutoff in angstroms
        neighbor_cutoff = 4
        featurizer = AtomicConvFeaturizer(labels=labels,
                                          frag1_num_atoms=frag1_num_atoms,
                                          frag2_num_atoms=frag2_num_atoms,
                                          complex_num_atoms=complex_num_atoms,
                                          neighbor_cutoff=neighbor_cutoff,
                                          max_num_neighbors=max_num_neighbors,
                                          batch_size=64)

    else:
        raise ValueError("Featurizer not supported")
    print("Featurizing Complexes")
    features, failures = featurizer.featurize_complexes(
        ligand_files, protein_files)
    # Delete labels for failing elements
    labels = np.delete(labels, failures)
    dataset = deepchem.data.DiskDataset.from_numpy(features, labels)
    print('Featurization complete.')
    # No transformations of data
    transformers = []
    if split == None:
        return pdbbind_tasks, (dataset, None, None), transformers

    # TODO(rbharath): This should be modified to contain a cluster split so
    # structures of the same protein aren't in both train/test
    splitters = {
        'index': deepchem.splits.IndexSplitter(),
        'random': deepchem.splits.RandomSplitter(),
    }
    splitter = splitters[split]
    train, valid, test = splitter.train_valid_test_split(dataset)
    all_dataset = (train, valid, test)
    if reload:
        deepchem.utils.save.save_dataset_to_disk(save_dir, train, valid, test,
                                                 transformers)
    return pdbbind_tasks, all_dataset, transformers