Пример #1
0
 def test_variable(self):
   """Test invoking Variable."""
   value = np.random.rand(5, 4).astype(np.float32)
   layer = layers.Variable(value)
   layer.build([])
   result = layer.call([]).numpy()
   assert np.allclose(result, value)
   assert len(layer.trainable_variables) == 1
Пример #2
0
    def add_adapter(self, all_layers, task, layer_num):
        """Add an adapter connection for given task/layer combo"""
        i = layer_num
        prev_layers = []
        trainable_layers = []
        # Handle output layer
        if i < len(self.layer_sizes):
            layer_sizes = self.layer_sizes
            alpha_init_stddev = self.alpha_init_stddevs[i]
            weight_init_stddev = self.weight_init_stddevs[i]
            bias_init_const = self.bias_init_consts[i]
        elif i == len(self.layer_sizes):
            layer_sizes = self.layer_sizes + [self.n_outputs]
            alpha_init_stddev = self.alpha_init_stddevs[-1]
            weight_init_stddev = self.weight_init_stddevs[-1]
            bias_init_const = self.bias_init_consts[-1]
        else:
            raise ValueError("layer_num too large for add_adapter.")
        # Iterate over all previous tasks.
        for prev_task in range(task):
            prev_layers.append(all_layers[(i - 1, prev_task)])
        # prev_layers is a list with elements of size
        # (batch_size, layer_sizes[i-1])
        if len(prev_layers) == 1:
            prev_layer = prev_layers[0]
        else:
            prev_layer = Concatenate(axis=1)(prev_layers)
        alpha = layers.Variable(
            tf.random.truncated_normal((1, ), stddev=alpha_init_stddev))
        trainable_layers.append(alpha)

        prev_layer = Multiply()([prev_layer, alpha([prev_layer])])
        dense1 = Dense(
            layer_sizes[i - 1],
            kernel_initializer=tf.keras.initializers.TruncatedNormal(
                stddev=weight_init_stddev),
            bias_initializer=tf.constant_initializer(value=bias_init_const))
        prev_layer = dense1(prev_layer)
        trainable_layers.append(dense1)

        dense2 = Dense(
            layer_sizes[i],
            kernel_initializer=tf.keras.initializers.TruncatedNormal(
                stddev=weight_init_stddev),
            use_bias=False)
        prev_layer = dense2(prev_layer)
        trainable_layers.append(dense2)

        return prev_layer, trainable_layers
Пример #3
0
    def __init__(self, n_generators=1, n_discriminators=1, **kwargs):
        """Construct a GAN.

    In addition to the parameters listed below, this class accepts all the
    keyword arguments from KerasModel.

    Parameters
    ----------
    n_generators: int
      the number of generators to include
    n_discriminators: int
      the number of discriminators to include
    """
        self.n_generators = n_generators
        self.n_discriminators = n_discriminators

        # Create the inputs.

        self.noise_input = Input(shape=self.get_noise_input_shape())
        self.data_input_layers = []
        for shape in self.get_data_input_shapes():
            self.data_input_layers.append(Input(shape=shape))
        self.data_inputs = [i.ref() for i in self.data_input_layers]
        self.conditional_input_layers = []
        for shape in self.get_conditional_input_shapes():
            self.conditional_input_layers.append(Input(shape=shape))
        self.conditional_inputs = [
            i.ref() for i in self.conditional_input_layers
        ]

        # Create the generators.

        self.generators = []
        self.gen_variables = []
        generator_outputs = []
        for i in range(n_generators):
            generator = self.create_generator()
            self.generators.append(generator)
            generator_outputs.append(
                generator(
                    _list_or_tensor([self.noise_input] +
                                    self.conditional_input_layers)))
            self.gen_variables += generator.trainable_variables

        # Create the discriminators.

        self.discriminators = []
        self.discrim_variables = []
        discrim_train_outputs = []
        discrim_gen_outputs = []
        for i in range(n_discriminators):
            discriminator = self.create_discriminator()
            self.discriminators.append(discriminator)
            discrim_train_outputs.append(
                self._call_discriminator(discriminator, self.data_input_layers,
                                         True))
            for gen_output in generator_outputs:
                if isinstance(gen_output, tf.Tensor):
                    gen_output = [gen_output]
                discrim_gen_outputs.append(
                    self._call_discriminator(discriminator, gen_output, False))
            self.discrim_variables += discriminator.trainable_variables

        # Compute the loss functions.

        gen_losses = [
            self.create_generator_loss(d) for d in discrim_gen_outputs
        ]
        discrim_losses = []
        for i in range(n_discriminators):
            for j in range(n_generators):
                discrim_losses.append(
                    self.create_discriminator_loss(
                        discrim_train_outputs[i],
                        discrim_gen_outputs[i * n_generators + j]))
        if n_generators == 1 and n_discriminators == 1:
            total_gen_loss = gen_losses[0]
            total_discrim_loss = discrim_losses[0]
        else:
            # Create learnable weights for the generators and discriminators.

            gen_alpha = layers.Variable(np.ones((1, n_generators)),
                                        dtype=tf.float32)
            # We pass an input to the Variable layer to work around a bug in TF 1.14.
            gen_weights = Softmax()(gen_alpha([self.noise_input]))
            discrim_alpha = layers.Variable(np.ones((1, n_discriminators)),
                                            dtype=tf.float32)
            discrim_weights = Softmax()(discrim_alpha([self.noise_input]))

            # Compute the weighted errors

            weight_products = Reshape(
                (n_generators * n_discriminators, ))(Multiply()([
                    Reshape((n_discriminators, 1))(discrim_weights),
                    Reshape((1, n_generators))(gen_weights)
                ]))
            stacked_gen_loss = layers.Stack(axis=0)(gen_losses)
            stacked_discrim_loss = layers.Stack(axis=0)(discrim_losses)
            total_gen_loss = Lambda(lambda x: tf.reduce_sum(x[0] * x[1]))(
                [stacked_gen_loss, weight_products])
            total_discrim_loss = Lambda(lambda x: tf.reduce_sum(x[0] * x[1]))(
                [stacked_discrim_loss, weight_products])
            self.gen_variables += gen_alpha.trainable_variables
            self.discrim_variables += gen_alpha.trainable_variables
            self.discrim_variables += discrim_alpha.trainable_variables

            # Add an entropy term to the loss.

            entropy = Lambda(lambda x: -(tf.reduce_sum(tf.math.log(x[
                0])) / n_generators + tf.reduce_sum(tf.math.log(x[
                    1])) / n_discriminators))([gen_weights, discrim_weights])
            total_discrim_loss = Lambda(lambda x: x[0] + x[1])(
                [total_discrim_loss, entropy])

        # Create the Keras model.

        inputs = [self.noise_input
                  ] + self.data_input_layers + self.conditional_input_layers
        outputs = [total_gen_loss, total_discrim_loss]
        self.gen_loss_fn = lambda outputs, labels, weights: outputs[0]
        self.discrim_loss_fn = lambda outputs, labels, weights: outputs[1]
        model = tf.keras.Model(inputs=inputs, outputs=outputs)
        super(GAN, self).__init__(model, self.gen_loss_fn, **kwargs)