from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import tempfile import shutil import numpy as np import deepchem as dc from deepchem.molnet import load_kaggle ###Load data### shard_size = 2000 num_trials = 2 print("About to load MERCK data.") KAGGLE_tasks, datasets, transformers = load_kaggle(shard_size=shard_size) train_dataset, valid_dataset, test_dataset = datasets print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset)) all_results = [] for trial in range(num_trials): ###Create model### n_layers = 3 nb_epoch = 100 model = dc.models.MultitaskRegressor(
from __future__ import division from __future__ import unicode_literals import os import numpy as np import tempfile import shutil import deepchem as dc from deepchem.molnet import load_kaggle ###Load data### shard_size = 2000 num_trials = 2 print("About to load KAGGLE data.") KAGGLE_tasks, datasets, transformers = load_kaggle(shard_size=shard_size) train_dataset, valid_dataset, test_dataset = datasets print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset)) metric = dc.metrics.Metric(dc.metrics.pearson_r2_score, task_averager=np.mean) ###Create model### n_layers = 3 nb_epoch = 100 n_features = train_dataset.get_data_shape()[0]