def _run(self, *args, **kwargs) -> EpochResultDict:
        self._model.train()
        assert self._model.training, self._model.training
        self.meters["lr"].add(get_lrs_from_optimizer(self._optimizer)[0])
        self.meters["reg_weight"].add(self._iic_weight)

        with tqdm(range(self._num_batches)).set_desc_from_epocher(self) as indicator:  # noqa
            for i, data in zip(indicator, self._pretrain_encoder_loader):
                (img, _), (img_tf, _), filename, partition_list, group_list = self._preprocess_data(data, self._device)
                _, *features = self._model(torch.cat([img, img_tf], dim=0), return_features=True)
                en = self._feature_extractor(features)[0]
                global_enc, global_tf_enc = torch.chunk(F.normalize(self._projection_head(en), dim=1), chunks=2, dim=0)
                # projection_classifier gives a list of probabilities
                global_probs, global_tf_probs = list(
                    zip(*[torch.chunk(x, chunks=2, dim=0) for x in self._projection_classifier(en)]))
                # fixme: here lack of some code for IIC
                labels = self._label_generation(partition_list, group_list)
                contrastive_loss = self._contrastive_criterion(torch.stack([global_enc, global_tf_enc], dim=1),
                                                               labels=labels)
                iic_loss_list = [self._iic_criterion(x, y)[0] for x, y in zip(global_probs, global_tf_probs)]
                iic_loss = average_iter(iic_loss_list)
                if self._disable_contrastive:
                    total_loss = iic_loss
                else:
                    total_loss = self._iic_weight * iic_loss + contrastive_loss
                self._optimizer.zero_grad()
                total_loss.backward()
                self._optimizer.step()
                # todo: meter recording.
                with torch.no_grad():
                    self.meters["contrastive_loss"].add(contrastive_loss.item())
                    self.meters["iic_loss"].add(iic_loss.item())
                    report_dict = self.meters.tracking_status()
                    indicator.set_postfix_dict(report_dict)
        return report_dict
Пример #2
0
    def _run(self, *args, **kwargs) -> EpochResultDict:
        self._model.train()
        assert self._model.training, self._model.training
        self.meters["lr"].add(get_lrs_from_optimizer(self._optimizer)[0])

        with tqdm(range(self._num_batches)).set_desc_from_epocher(self) as indicator:  # noqa
            for i, data in zip(indicator, self._pretrain_encoder_loader):
                (img, _), (img_tf, _), filename, partition_list, group_list = self._preprocess_data(data, self._device)
                _, *features = self._model(torch.cat([img, img_tf], dim=0), return_features=True)
                en = self._feature_extractor(features)[0]
                global_enc, global_tf_enc = torch.chunk(F.normalize(self._projection_head(en), dim=1), chunks=2, dim=0)
                labels = self._label_generation(partition_list, group_list)
                contrastive_loss = self._contrastive_criterion(
                    torch.stack([global_enc, global_tf_enc], dim=1),
                    labels=labels
                )
                self._optimizer.zero_grad()
                contrastive_loss.backward()
                self._optimizer.step()
                # todo: meter recording.
                with torch.no_grad():
                    self.meters["contrastive_loss"].add(contrastive_loss.item())
                    report_dict = self.meters.tracking_status()
                    indicator.set_postfix_dict(report_dict)
        return report_dict
    def _run(self, *args, **kwargs) -> EpochResultDict:
        self._model.train()
        assert self._model.training, self._model.training
        report_dict: EpochResultDict
        self.meters["lr"].add(get_lrs_from_optimizer(self._optimizer)[0])
        with tqdm(range(self._num_batches)).set_desc_from_epocher(self) as indicator:
            for i, label_data in zip(indicator, self._labeled_loader):
                (labelimage, labeltarget), _, filename, partition_list, group_list \
                    = self._preprocess_data(label_data, self._device)
                predict_logits = self._model(labelimage)
                assert not simplex(predict_logits), predict_logits

                onehot_ltarget = class2one_hot(labeltarget.squeeze(1), 4)
                sup_loss = self._sup_criterion(predict_logits.softmax(1), onehot_ltarget)

                self._optimizer.zero_grad()
                sup_loss.backward()
                self._optimizer.step()

                with torch.no_grad():
                    self.meters["sup_loss"].add(sup_loss.item())
                    self.meters["ds"].add(predict_logits.max(1)[1], labeltarget.squeeze(1),
                                          group_name=list(group_list))
                    report_dict = self.meters.tracking_status()
                    indicator.set_postfix_dict(report_dict)
            report_dict = self.meters.tracking_status()
        return report_dict
    def _run(self, *args, **kwargs) -> EpochResultDict:
        self._model.train()
        self._teacher_model.train()
        assert self._model.training, self._model.training
        assert self._teacher_model.training, self._teacher_model.training
        self.meters["lr"].add(self._optimizer.param_groups[0]["lr"])
        self.meters["reg_weight"].add(self._reg_weight)
        report_dict: EpochResultDict

        with tqdm(range(self._num_batches)).set_desc_from_epocher(self) as indicator:
            for i, label_data, all_data in zip(indicator, self._labeled_loader, self._tra_loader):
                (labelimage, labeltarget), _, filename, partition_list, group_list \
                    = self._preprocess_data(label_data, self._device)
                (unlabelimage, _), *_ = self._preprocess_data(label_data, self._device)

                seed = random.randint(0, int(1e6))
                with FixRandomSeed(seed):
                    unlabelimage_tf = torch.stack([self._transformer(x) for x in unlabelimage], dim=0)
                assert unlabelimage_tf.shape == unlabelimage.shape

                student_logits = self._model(torch.cat([labelimage, unlabelimage_tf], dim=0))
                if simplex(student_logits):
                    raise RuntimeError("output of the model should be logits, instead of simplex")
                student_sup_logits, student_unlabel_logits_tf = student_logits[:len(labelimage)], \
                                                                student_logits[len(labelimage):]

                with torch.no_grad():
                    teacher_unlabel_logits = self._teacher_model(unlabelimage)
                with FixRandomSeed(seed):
                    teacher_unlabel_logits_tf = torch.stack([self._transformer(x) for x in teacher_unlabel_logits])
                assert teacher_unlabel_logits.shape == teacher_unlabel_logits_tf.shape

                # calcul the loss
                onehot_ltarget = class2one_hot(labeltarget.squeeze(1), 4)
                sup_loss = self._sup_criterion(student_sup_logits.softmax(1), onehot_ltarget)

                reg_loss = self._reg_criterion(student_unlabel_logits_tf.softmax(1),
                                               teacher_unlabel_logits_tf.detach().softmax(1))
                total_loss = sup_loss + self._reg_weight * reg_loss

                self._optimizer.zero_grad()
                total_loss.backward()
                self._optimizer.step()

                # update ema
                self._ema_updater(ema_model=self._teacher_model, student_model=self._model)

                with torch.no_grad():
                    self.meters["sup_loss"].add(sup_loss.item())
                    self.meters["reg_loss"].add(reg_loss.item())
                    self.meters["ds"].add(student_sup_logits.max(1)[1], labeltarget.squeeze(1),
                                          group_name=list(group_list))
                    report_dict = self.meters.tracking_status()
                    indicator.set_postfix_dict(report_dict)
            report_dict = self.meters.tracking_status()
        return report_dict
Пример #5
0
 def _register_indicator(self):
     assert isinstance(
         self._num_batches, int
     ), f"self._num_batches must be provided as an integer, given {self._num_batches}."
     sys.stdout.flush()
     indicator = tqdm(range(self._num_batches),
                      disable=False if self.on_master() else True)
     indicator = indicator.set_desc_from_epocher(self)
     yield indicator
     indicator._print_description()
     sys.stdout.flush()
 def _run(self, *args, **kwargs) -> Tuple[EpochResultDict, float]:
     self._model.eval()
     assert not self._model.training, self._model.training
     with tqdm(self._val_loader).set_desc_from_epocher(self) as indicator:
         for i, data in enumerate(indicator):
             images, targets, filename, partiton_list, group_list = self._preprocess_data(data, self._device)
             predict_logits = self._model(images)
             assert not simplex(predict_logits), predict_logits.shape
             onehot_targets = class2one_hot(targets.squeeze(1), 4)
             loss = self._sup_criterion(predict_logits.softmax(1), onehot_targets, disable_assert=True)
             self.meters["sup_loss"].add(loss.item())
             self.meters["ds"].add(predict_logits.max(1)[1], targets.squeeze(1), group_name=list(group_list))
             report_dict = self.meters.tracking_status()
             indicator.set_postfix_dict(report_dict)
     report_dict = self.meters.tracking_status()
     return report_dict, report_dict["ds"]["DSC_mean"]
Пример #7
0
    def _run(self, *args, **kwargs) -> EpochResultDict:
        self._model.train()
        assert self._model.training, self._model.training
        self.meters["lr"].add(get_lrs_from_optimizer(self._optimizer)[0])

        with tqdm(range(self._num_batches)).set_desc_from_epocher(self) as indicator:  # noqa
            for i, data in zip(indicator, self._pretrain_decoder_loader):
                (img, _), (img_ctf, _), filename, partition_list, group_list = self._preprocess_data(data, self._device)
                seed = random.randint(0, int(1e5))
                with FixRandomSeed(seed):
                    img_gtf = torch.stack([self._transformer(x) for x in img], dim=0)
                assert img_gtf.shape == img.shape, (img_gtf.shape, img.shape)
                _, *features = self._model(torch.cat([img_gtf, img_ctf], dim=0), return_features=True)
                dn = self._feature_extractor(features)[0]
                dn_gtf, dn_ctf = torch.chunk(dn, chunks=2, dim=0)
                with FixRandomSeed(seed):
                    dn_ctf_gtf = torch.stack([self._transformer(x) for x in dn_ctf], dim=0)
                assert dn_ctf_gtf.shape == dn_ctf.shape, (dn_ctf_gtf.shape, dn_ctf.shape)
                dn_tf = torch.cat([dn_gtf, dn_ctf_gtf])
                local_enc_tf, local_enc_tf_ctf = torch.chunk(self._projection_head(dn_tf), chunks=2, dim=0)
                # todo: convert representation to distance
                local_enc_unfold, _ = unfold_position(local_enc_tf, partition_num=(2, 2))
                local_tf_enc_unfold, _fold_partition = unfold_position(local_enc_tf_ctf, partition_num=(2, 2))
                b, *_ = local_enc_unfold.shape
                local_enc_unfold_norm = F.normalize(local_enc_unfold.view(b, -1), p=2, dim=1)
                local_tf_enc_unfold_norm = F.normalize(local_tf_enc_unfold.view(b, -1), p=2, dim=1)

                labels = self._label_generation(partition_list, group_list, _fold_partition)
                contrastive_loss = self._contrastive_criterion(
                    torch.stack([local_enc_unfold_norm, local_tf_enc_unfold_norm], dim=1),
                    labels=labels
                )
                if torch.isnan(contrastive_loss):
                    raise RuntimeError(contrastive_loss)
                self._optimizer.zero_grad()
                contrastive_loss.backward()
                self._optimizer.step()
                # todo: meter recording.
                with torch.no_grad():
                    self.meters["contrastive_loss"].add(contrastive_loss.item())
                    report_dict = self.meters.tracking_status()
                    indicator.set_postfix_dict(report_dict)
        return report_dict