Пример #1
0
 def __init__(self, output_names=None,
              use_dna=True, dna_wlen=None,
              replicate_names=None, cpg_wlen=None, cpg_max_dist=25000,
              encode_replicates=False):
     self.output_names = to_list(output_names)
     self.use_dna = use_dna
     self.dna_wlen = dna_wlen
     self.replicate_names = to_list(replicate_names)
     self.cpg_wlen = cpg_wlen
     self.cpg_max_dist = cpg_max_dist
     self.encode_replicates = encode_replicates
Пример #2
0
def read_anno_file(anno_file, chromos=None, nb_sample=None):
    """Read annotations from BED file.

    Reads annotations from BED file merges overlapping annotations.

    Parameters
    ----------
    anno_file: str
        File name.
    chromos: list
        List of chromosomes for filtering annotations.
    nb_sample: int
        Maximum number of annotated regions.

    Returns
    -------
    :class:`pandas.DataFrame`
        :class:`pandas.DataFrame` with columns `chromo`, `start`, `end`.
    """
    anno = pd.read_table(anno_file, header=None, usecols=[0, 1, 2],
                         dtype={0: 'str', 1: 'int32', 2: 'int32'},
                         nrows=nb_sample)
    anno.columns = ['chromo', 'start', 'end']
    anno.chromo = anno.chromo.str.upper().str.replace('chr', '', case=False)
    if chromos is not None:
        chromos = to_list(chromos)
        anno = anno.loc[anno.chromo.isin(chromos)]
    anno = join_overlapping_frame(anno)
    return anno
Пример #3
0
def read_anno_file(anno_file, chromos=None, nb_sample=None):
    """Read annotations from BED file.

    Reads annotations from BED file merges overlapping annotations.

    Parameters
    ----------
    anno_file: str
        File name.
    chromos: list
        List of chromosomes for filtering annotations.
    nb_sample: int
        Maximum number of annotated regions.

    Returns
    -------
    :class:`pandas.DataFrame`
        :class:`pandas.DataFrame` with columns `chromo`, `start`, `end`.
    """
    anno = pd.read_table(anno_file,
                         header=None,
                         usecols=[0, 1, 2],
                         dtype={
                             0: 'str',
                             1: 'int32',
                             2: 'int32'
                         },
                         nrows=nb_sample)
    anno.columns = ['chromo', 'start', 'end']
    anno.chromo = anno.chromo.str.upper().str.replace('chr', '', case=False)
    if chromos is not None:
        chromos = to_list(chromos)
        anno = anno.loc[anno.chromo.isin(chromos)]
    anno = join_overlapping_frame(anno)
    return anno
Пример #4
0
def data_reader_config_from_model(model, config_out_fpath = None, replicate_names=None):
    """Return :class:`DataReader` from `model`.
    Builds a :class:`DataReader` for reading data for `model`.
    Parameters
    ----------
    model: :class:`Model`.
        :class:`Model`.
    outputs: bool
        If `True`, return output labels.
    replicate_names: list
        Name of input cells of `model`.
    Returns
    -------
    :class:`DataReader`
        Instance of :class:`DataReader`.
    """
    use_dna = False
    dna_wlen = None
    cpg_wlen = None
    output_names = None
    encode_replicates = False
    #
    input_shapes = to_list(model.input_shape)
    for input_name, input_shape in zip(model.input_names, input_shapes):
        if input_name == 'dna':
            # Read DNA sequences.
            use_dna = True
            dna_wlen = input_shape[1]
        elif input_name.startswith('cpg/state/'):
            # DEPRECATED: legacy model. Decode replicate names from input name.
            replicate_names = decode_replicate_names(input_name.replace('cpg/state/', ''))
            assert len(replicate_names) == input_shape[1]
            cpg_wlen = input_shape[2]
            encode_replicates = True
        elif input_name == 'cpg/state':
            # Read neighboring CpG sites.
            if not replicate_names:
                raise ValueError('Replicate names required!')
            if len(replicate_names) != input_shape[1]:
                tmp = '{r} replicates found but CpG model was trained with' \
                    ' {s} replicates. Use `--nb_replicate {s}` or ' \
                    ' `--replicate_names` option to select {s} replicates!'
                tmp = tmp.format(r=len(replicate_names), s=input_shape[1])
                raise ValueError(tmp)
            cpg_wlen = input_shape[2]
    output_names = model.output_names
    config = {"output_names":output_names,
                      "use_dna":use_dna,
                      "dna_wlen":dna_wlen,
                      "cpg_wlen":cpg_wlen,
                      "replicate_names":replicate_names,
                      "encode_replicates":encode_replicates}
    if config_out_fpath is not None:
        with open(config_out_fpath, "w") as ofh:
            json.dump(config, ofh)
    return config
Пример #5
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)
            log.debug(opts)

        if opts.seed is not None:
            np.random.seed(opts.seed)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        K.set_learning_phase(0)
        model = mod.load_model(opts.model_files, log=log.info)

        weight_layer, act_layer = mod.get_first_conv_layer(model.layers, True)
        log.info('Using activation layer "%s"' % act_layer.name)
        log.info('Using weight layer "%s"' % weight_layer.name)

        try:
            dna_idx = model.input_names.index('dna')
        except BaseException:
            raise IOError('Model is not a valid DNA model!')

        fun_outputs = to_list(act_layer.output)
        if opts.store_preds:
            fun_outputs += to_list(model.output)
        fun = K.function([to_list(model.input)[dna_idx]], fun_outputs)

        log.info('Reading data ...')
        if opts.store_outputs or opts.store_preds:
            output_names = model.output_names
        else:
            output_names = None
        data_reader = mod.DataReader(
            output_names=output_names,
            use_dna=True,
            dna_wlen=to_list(model.input_shape)[dna_idx][1]
        )
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False,
                                  shuffle=opts.shuffle)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False,
                                 shuffle=False)

        out_file = h5.File(opts.out_file, 'w')
        out_group = out_file

        weights = weight_layer.get_weights()
        out_group['weights/weights'] = weights[0]
        out_group['weights/bias'] = weights[1]

        def h5_dump(path, data, idx, dtype=None, compression='gzip'):
            if path not in out_group:
                if dtype is None:
                    dtype = data.dtype
                out_group.create_dataset(
                    name=path,
                    shape=[nb_sample] + list(data.shape[1:]),
                    dtype=dtype,
                    compression=compression
                )
            out_group[path][idx:idx+len(data)] = data

        log.info('Computing activations')
        progbar = ProgressBar(nb_sample, log.info)
        idx = 0
        for data in data_reader:
            if isinstance(data, tuple):
                inputs, outputs, weights = data
            else:
                inputs = data
            if isinstance(inputs, dict):
                inputs = list(inputs.values())
            batch_size = len(inputs[0])
            progbar.update(batch_size)

            if opts.store_inputs:
                for i, name in enumerate(model.input_names):
                    h5_dump('inputs/%s' % name,
                            dna.onehot_to_int(inputs[i]), idx)

            if opts.store_outputs:
                for name, output in six.iteritems(outputs):
                    h5_dump('outputs/%s' % name, output, idx)

            fun_eval = fun(inputs)
            act = fun_eval[0]

            if opts.act_wlen:
                delta = opts.act_wlen // 2
                ctr = act.shape[1] // 2
                act = act[:, (ctr-delta):(ctr+delta+1)]

            if opts.act_fun:
                if opts.act_fun == 'mean':
                    act = act.mean(axis=1)
                elif opts.act_fun == 'wmean':
                    weights = linear_weights(act.shape[1])
                    act = np.average(act, axis=1, weights=weights)
                elif opts.act_fun == 'max':
                    act = act.max(axis=1)
                else:
                    raise ValueError('Invalid function "%s"!' % (opts.act_fun))

            h5_dump('act', act, idx)

            if opts.store_preds:
                preds = fun_eval[1:]
                for i, name in enumerate(model.output_names):
                    h5_dump('preds/%s' % name, preds[i].squeeze(), idx)

            for name, value in six.iteritems(next(meta_reader)):
                h5_dump(name, value, idx)

            idx += batch_size
        progbar.close()

        out_file.close()
        log.info('Done!')

        return 0
Пример #6
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        model = mod.load_model(opts.model_files)

        log.info('Loading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(opts.data_files[0],
                                                  regex=opts.replicate_names,
                                                  nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names, replicate_names=replicate_names)

        # Seed used since unobserved input CpG states are randomly sampled
        if opts.seed is not None:
            np.random.seed(opts.seed)
            random.seed(opts.seed)

        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False,
                                  shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False,
                                 shuffle=False)

        writer = None
        if opts.out_data:
            writer = H5Writer(opts.out_data, nb_sample)

        log.info('Predicting ...')
        nb_tot = 0
        nb_eval = 0
        data_eval = dict()
        perf_eval = []
        progbar = ProgressBar(nb_sample, log.info)
        for inputs, outputs, weights in data_reader:
            batch_size = len(list(inputs.values())[0])
            nb_tot += batch_size
            progbar.update(batch_size)

            preds = to_list(model.predict(inputs))

            data_batch = dict()
            data_batch['preds'] = dict()
            data_batch['outputs'] = dict()
            for i, name in enumerate(model.output_names):
                data_batch['preds'][name] = preds[i].squeeze()
                data_batch['outputs'][name] = outputs[name].squeeze()

            for name, value in six.iteritems(next(meta_reader)):
                data_batch[name] = value

            if writer:
                writer.write_dict(data_batch)

            nb_eval += batch_size
            dat.add_to_dict(data_batch, data_eval)

            if nb_tot >= nb_sample or \
                    (opts.eval_size and nb_eval >= opts.eval_size):
                data_eval = dat.stack_dict(data_eval)
                perf_eval.append(
                    ev.evaluate_outputs(data_eval['outputs'],
                                        data_eval['preds']))
                data_eval = dict()
                nb_eval = 0

        progbar.close()
        if writer:
            writer.close()

        report = pd.concat(perf_eval)
        report = report.groupby(['metric', 'output']).mean().reset_index()

        if opts.out_report:
            report.to_csv(opts.out_report, sep='\t', index=False)

        report = ev.unstack_report(report)
        print(report.to_string())

        log.info('Done!')

        return 0
Пример #7
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)
            log.debug(opts)

        if opts.seed is not None:
            np.random.seed(opts.seed)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        K.set_learning_phase(0)
        model = mod.load_model(opts.model_files, log=log.info)

        weight_layer, act_layer = mod.get_first_conv_layer(model.layers, True)
        log.info('Using activation layer "%s"' % act_layer.name)
        log.info('Using weight layer "%s"' % weight_layer.name)

        try:
            dna_idx = model.input_names.index('dna')
        except BaseException:
            raise IOError('Model is not a valid DNA model!')

        fun_outputs = to_list(act_layer.output)
        if opts.store_preds:
            fun_outputs += to_list(model.output)
        fun = K.function([to_list(model.input)[dna_idx]], fun_outputs)

        log.info('Reading data ...')
        if opts.store_outputs or opts.store_preds:
            output_names = model.output_names
        else:
            output_names = None
        data_reader = mod.DataReader(output_names=output_names,
                                     use_dna=True,
                                     dna_wlen=to_list(
                                         model.input_shape)[dna_idx][1])
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False,
                                  shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False,
                                 shuffle=False)

        out_file = h5.File(opts.out_file, 'w')
        out_group = out_file

        weights = weight_layer.get_weights()
        out_group['weights/weights'] = weights[0]
        out_group['weights/bias'] = weights[1]

        def h5_dump(path, data, idx, dtype=None, compression='gzip'):
            if path not in out_group:
                if dtype is None:
                    dtype = data.dtype
                out_group.create_dataset(name=path,
                                         shape=[nb_sample] +
                                         list(data.shape[1:]),
                                         dtype=dtype,
                                         compression=compression)
            out_group[path][idx:idx + len(data)] = data

        log.info('Computing activations')
        progbar = ProgressBar(nb_sample, log.info)
        idx = 0
        for data in data_reader:
            if isinstance(data, tuple):
                inputs, outputs, weights = data
            else:
                inputs = data
            if isinstance(inputs, dict):
                inputs = list(inputs.values())
            batch_size = len(inputs[0])
            progbar.update(batch_size)

            if opts.store_inputs:
                for i, name in enumerate(model.input_names):
                    h5_dump('inputs/%s' % name, dna.onehot_to_int(inputs[i]),
                            idx)

            if opts.store_outputs:
                for name, output in six.iteritems(outputs):
                    h5_dump('outputs/%s' % name, output, idx)

            fun_eval = fun(inputs)
            act = fun_eval[0]

            if opts.act_wlen:
                delta = opts.act_wlen // 2
                ctr = act.shape[1] // 2
                act = act[:, (ctr - delta):(ctr + delta + 1)]

            if opts.act_fun:
                if opts.act_fun == 'mean':
                    act = act.mean(axis=1)
                elif opts.act_fun == 'wmean':
                    weights = linear_weights(act.shape[1])
                    act = np.average(act, axis=1, weights=weights)
                elif opts.act_fun == 'max':
                    act = act.max(axis=1)
                else:
                    raise ValueError('Invalid function "%s"!' % (opts.act_fun))

            h5_dump('act', act, idx)

            if opts.store_preds:
                preds = fun_eval[1:]
                for i, name in enumerate(model.output_names):
                    h5_dump('preds/%s' % name, preds[i].squeeze(), idx)

            for name, value in six.iteritems(next(meta_reader)):
                h5_dump(name, value, idx)

            idx += batch_size
        progbar.close()

        out_file.close()
        log.info('Done!')

        return 0
Пример #8
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        model = mod.load_model(opts.model_files)

        log.info('Loading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(
            opts.data_files[0],
            regex=opts.replicate_names,
            nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names, replicate_names=replicate_names)

        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False, shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False, shuffle=False)

        log.info('Predicting ...')
        data = dict()
        progbar = ProgressBar(nb_sample, log.info)
        for inputs, outputs, weights in data_reader:
            batch_size = len(list(inputs.values())[0])
            progbar.update(batch_size)

            preds = to_list(model.predict(inputs))

            data_batch = dict()
            data_batch['preds'] = dict()
            data_batch['outputs'] = dict()
            for i, name in enumerate(model.output_names):
                data_batch['preds'][name] = preds[i].squeeze()
                data_batch['outputs'][name] = outputs[name].squeeze()

            for name, value in next(meta_reader).items():
                data_batch[name] = value
            dat.add_to_dict(data_batch, data)
        progbar.close()
        data = dat.stack_dict(data)

        report = ev.evaluate_outputs(data['outputs'], data['preds'])

        if opts.out_report:
            report.to_csv(opts.out_report, sep='\t', index=False)

        report = ev.unstack_report(report)
        print(report.to_string())

        if opts.out_data:
            hdf.write_data(data, opts.out_data)

        log.info('Done!')

        return 0
Пример #9
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        model = mod.load_model(opts.model_files)

        log.info('Loading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(
            opts.data_files[0],
            regex=opts.replicate_names,
            nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names, replicate_names=replicate_names)

        # Seed used since unobserved input CpG states are randomly sampled
        if opts.seed is not None:
            np.random.seed(opts.seed)
            random.seed(opts.seed)

        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False, shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False, shuffle=False)

        writer = None
        if opts.out_data:
            writer = H5Writer(opts.out_data, nb_sample)

        log.info('Predicting ...')
        nb_tot = 0
        nb_eval = 0
        data_eval = dict()
        perf_eval = []
        progbar = ProgressBar(nb_sample, log.info)
        for inputs, outputs, weights in data_reader:
            batch_size = len(list(inputs.values())[0])
            nb_tot += batch_size
            progbar.update(batch_size)

            preds = to_list(model.predict(inputs))

            data_batch = dict()
            data_batch['preds'] = dict()
            data_batch['outputs'] = dict()
            for i, name in enumerate(model.output_names):
                data_batch['preds'][name] = preds[i].squeeze()
                data_batch['outputs'][name] = outputs[name].squeeze()

            for name, value in six.iteritems(next(meta_reader)):
                data_batch[name] = value

            if writer:
                writer.write_dict(data_batch)

            nb_eval += batch_size
            dat.add_to_dict(data_batch, data_eval)

            if nb_tot >= nb_sample or \
                    (opts.eval_size and nb_eval >= opts.eval_size):
                data_eval = dat.stack_dict(data_eval)
                perf_eval.append(ev.evaluate_outputs(data_eval['outputs'],
                                                     data_eval['preds']))
                data_eval = dict()
                nb_eval = 0

        progbar.close()
        if writer:
            writer.close()

        report = pd.concat(perf_eval)
        report = report.groupby(['metric', 'output']).mean().reset_index()

        if opts.out_report:
            report.to_csv(opts.out_report, sep='\t', index=False)

        report = ev.unstack_report(report)
        print(report.to_string())

        log.info('Done!')

        return 0