Пример #1
0
def test_MLRs(region_sparse, region_dense, base_sparse, base_dense,
              bias_sparse, bias_dense):
    model_name = "MLRs"
    _, y, region_feature_columns = get_test_data(
        SAMPLE_SIZE,
        sparse_feature_num=region_sparse,
        dense_feature_num=region_dense,
        prefix='region')
    base_x, y, base_feature_columns = get_test_data(
        SAMPLE_SIZE,
        sparse_feature_num=region_sparse,
        dense_feature_num=region_dense,
        prefix='base')
    bias_x, y, bias_feature_columns = get_test_data(
        SAMPLE_SIZE,
        sparse_feature_num=region_sparse,
        dense_feature_num=region_dense,
        prefix='bias')

    model = MLR(region_feature_columns,
                base_feature_columns,
                bias_feature_columns=bias_feature_columns)
    model.compile('adam',
                  'binary_crossentropy',
                  metrics=['binary_crossentropy'])
    print(model_name + " test pass!")
Пример #2
0
def test_MLRs(region_sparse, region_dense, base_sparse, base_dense,
              bias_sparse, bias_dense):
    model_name = "MLRs"
    region_fd = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [region_sparse, region_dense]):
        if name == "sparse":
            for i in range(num):
                region_fd[name][name + '_' + str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                region_fd[name].append(name + '_' + str(i))

    base_fd = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [base_sparse, base_dense]):
        if name == "sparse":
            for i in range(num):
                base_fd[name][name + '_' + str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                base_fd[name].append(name + '_' + str(i))
    bias_fd = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [bias_sparse, bias_dense]):
        if name == "sparse":
            for i in range(num):
                bias_fd[name][name + '_' + str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                bias_fd[name].append(name + '_' + str(i))

    model = MLR(region_fd, base_fd, bias_feature_dim_dict=bias_fd)
    model.compile('adam',
                  'binary_crossentropy',
                  metrics=['binary_crossentropy'])
    print(model_name + " test pass!")
Пример #3
0
def test_MLRs(region_sparse, region_dense, base_sparse, base_dense, bias_sparse, bias_dense):
    model_name = "MLRs"
    region_fd = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [region_sparse, region_dense]):
        if name == "sparse":
            for i in range(num):
                region_fd[name][name + '_' + str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                region_fd[name].append(name + '_' + str(i))

    base_fd = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [base_sparse, base_dense]):
        if name == "sparse":
            for i in range(num):
                base_fd[name][name + '_' + str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                base_fd[name].append(name + '_' + str(i))
    bias_fd = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [bias_sparse, bias_dense]):
        if name == "sparse":
            for i in range(num):
                bias_fd[name][name + '_' + str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                bias_fd[name].append(name + '_' + str(i))

    model = MLR(region_fd, base_fd, bias_feature_dim_dict=bias_fd)
    model.compile('adam', 'binary_crossentropy',
                  metrics=['binary_crossentropy'])
    print(model_name + " test pass!")
Пример #4
0
def test_MLR():
    model_name = "MLR"
    sample_size = 64
    feature_dim_dict = {'sparse': {'sparse_1': 2, 'sparse_2': 5,
                                   'sparse_3': 10}, 'dense': ['dense_1', 'dense_2', 'dense_3']}
    sparse_input = [np.random.randint(0, dim, sample_size)
                    for dim in feature_dim_dict['sparse'].values()]
    dense_input = [np.random.random(sample_size)
                   for name in feature_dim_dict['dense']]
    y = np.random.randint(0, 2, sample_size)
    x = sparse_input + dense_input

    model = MLR(feature_dim_dict)
    model.compile('adam', 'binary_crossentropy',
                  metrics=['binary_crossentropy'])
    model.fit(x, y, batch_size=100, epochs=1, validation_split=0.5)
    print(model_name+" test train valid pass!")
    model.save_weights(model_name + '_weights.h5')
    model.load_weights(model_name + '_weights.h5')
    print(model_name+" test save load weight pass!")
    save_model(model, model_name + '.h5')
    model = load_model(model_name + '.h5', custom_objects)
    print(model_name + " test save load model pass!")

    print(model_name + " test pass!")
Пример #5
0
def test_MLR():
    model_name = "MLR"
    region_x, y, region_feature_columns = get_test_data(SAMPLE_SIZE,
                                                        3,
                                                        3,
                                                        prefix='region')
    base_x, y, base_feature_columns = get_test_data(SAMPLE_SIZE,
                                                    3,
                                                    3,
                                                    prefix='base')
    bias_x, y, bias_feature_columns = get_test_data(SAMPLE_SIZE,
                                                    3,
                                                    3,
                                                    prefix='bias')

    model = MLR(region_feature_columns)
    model.compile('adam',
                  'binary_crossentropy',
                  metrics=['binary_crossentropy'])

    check_model(model, model_name, region_x, y)
    print(model_name + " test pass!")