Пример #1
0
className2Id['I_PERSON'] = 6

num_categories = len(className2Id)

print('Loading data... (Train)')
(X1, y_train) = deepctxt_util.load_sequence_data_x_y('./data/train.cleaned.tsv', className2Id)
y_train = encode_category_vector.one_hot_category(y_train, num_categories)
print('Done')

print('Loading data... (Test)')
(X3, y_test) = deepctxt_util.load_sequence_data_x_y('./data/test.cleaned.tsv', className2Id)
y_test = encode_category_vector.one_hot_category(y_test, num_categories)
print('Done')

print('Converting data... (Train)')
X_train = tokenizer.texts_to_sequences(X1, maxlen)
print('Done')

print('Converting data... (Test)')
X_test = tokenizer.texts_to_sequences(X3, maxlen)
print('Done')

print(len(X_train), 'y_train sequences')
print(len(X_test), 'y_test sequences')


print("Pad sequences (samples x time)")
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
Y_train = sequence.pad_sequences(y_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
Y_test = sequence.pad_sequences(y_test, maxlen=maxlen)
Пример #2
0
(x_test, y_test_class
 ) = deepctxt_util.load_sequence_raw_data_x_y('./data/test.cleaned.tsv')

y_test = []
for class_name_array in y_test_class:
    y = []
    for class_name in class_name_array:
        class_id = className2Id[class_name]
        y.append(class_id)
    y_test.append(y)

y_test = encode_category_vector.one_hot_category(y_test, num_categories)
print('Done')

print('Converting data... (Test)')
x_test = tokenizer.texts_to_sequences(x_test, maxlen)
print('Done')
print(len(x_test), 'y_test sequences')

#print("Pad sequences (samples x time)")
X_test = sequence.pad_sequences(x_test, maxlen=maxlen)
Y_test = sequence.pad_sequences(y_test, maxlen=maxlen)
#print('X_test shape:', X_test.shape)

print('Load model...')

file = open('./query_ner_birnn_lstm_glove_100.15b.json', 'rb')
model_string = file.read()
file.close()
model = model_from_json(model_string)
model.load_weights('./query_ner_birnn_lstm_glove_100.15b.h5')
print('Loading data... (Train)')
(X1,
 y_train) = deepctxt_util.load_sequence_data_x_y('./data/train.cleaned.tsv',
                                                 className2Id)
#(X1, y_train) = deepctxt_util.load_sequence_data_x_y('./data/test.cleaned.tsv', className2Id)
y_train = encode_category_vector.one_hot_category(y_train, num_categories)
print('Done')

print('Loading data... (Test)')
(X3, y_test) = deepctxt_util.load_sequence_data_x_y('./data/test.cleaned.tsv',
                                                    className2Id)
y_test = encode_category_vector.one_hot_category(y_test, num_categories)
print('Done')

print('Converting data... (Train)')
X_train = tokenizer.texts_to_sequences(X1, maxlen)
print('Done')

print('Converting data... (Test)')
X_test = tokenizer.texts_to_sequences(X3, maxlen)
print('Done')

print(len(X_train), 'y_train sequences')
print(len(X_test), 'y_test sequences')

print("Pad sequences (samples x time)")
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
Y_train = sequence.pad_sequences(y_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
Y_test = sequence.pad_sequences(y_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
Пример #4
0
#tokenizer.load('./glove.42B.300d.txt')
print('Done')

print('Loading model')
with open("./coarse_type_model_lstm_glove_100b.json", "r") as f:
    json_string = f.readline()
    model = model_from_json(json_string)
print('Done')

print('Compile model')
model.compile(loss='categorical_crossentropy', optimizer='adam')
print('Done')

print('Loading weights')
model.load_weights('./coarse_type_model_lstm_glove_100b.h5')
print('Done')

idx2type = {0:"DESCRIPTION", 1:"NUMERIC", 2:"ENTITY", 3:"PERSON", 4:"LOCATION"}

while True:
    print("===============================================")
    query = raw_input('Enter query: ')
    X1 = []
    X1.append(query)
    X2 = tokenizer.texts_to_sequences(X1, maxlen)
    X = sequence.pad_sequences(X2, maxlen=maxlen)
    pred = model.predict_proba(X, batch_size=1)
    idx = np.argmax(pred[0])
    print("Type=" + idx2type[idx])
    print(pred)
Пример #5
0
tokenizer.load('./glove.6B.100d.txt')
#tokenizer.load('./glove.42B.300d.txt')
print('Done')

max_features = tokenizer.n_symbols
vocab_dim = tokenizer.vocab_dim

print('Loading data... (Test)')
#(X2, y_test) = deepctxt_util.load_raw_data_x_y(path='./raw_data/bing_query.tsv', y_shift=0)
(X2, y_test) = deepctxt_util.load_raw_data_x_y(
    path='./raw_data/person_birthday_deep_learning_eval_rawquery_cleaned.tsv',
    y_shift=0)
print('Done')

print('Converting data... (Test)')
X_test = tokenizer.texts_to_sequences(X2, maxlen)
print('Done')

print(len(X_test), 'y_test sequences')

nb_classes = np.max(y_test) + 1
Y_test = np_utils.to_categorical(y_test, nb_classes)

print('Y_test shape:', Y_test.shape)

print("Pad sequences (samples x time)")
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_test shape:', X_test.shape)

print('Load model...')
print('Loading tokenizer')
tokenizer.load('./glove.6B.100d.txt')
#tokenizer.load('./glove.42B.300d.txt')
print('Done')

max_features = tokenizer.n_symbols
vocab_dim = tokenizer.vocab_dim

print('Loading data... (Test)')
#(X2, y_test) = deepctxt_util.load_raw_data_x_y(path='./raw_data/bing_query.tsv', y_shift=0)
(X2, y_test) = deepctxt_util.load_raw_data_x_y(path='./raw_data/person_birthday_deep_learning_eval_rawquery_cleaned.tsv', y_shift=0)
print('Done')


print('Converting data... (Test)')
X_test = tokenizer.texts_to_sequences(X2, maxlen)
print('Done')

print(len(X_test), 'y_test sequences')

nb_classes = np.max(y_test)+1
Y_test = np_utils.to_categorical(y_test, nb_classes)

print('Y_test shape:', Y_test.shape)

print("Pad sequences (samples x time)")
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_test shape:', X_test.shape)

print('Load model...')
Пример #7
0
    model = model_from_json(json_string)
print('Done')

print('Compile model')
model.compile(loss='categorical_crossentropy', optimizer='adam')
print('Done')

print('Loading weights')
model.load_weights('./coarse_type_model_lstm_glove_100b.h5')
print('Done')

idx2type = {
    0: "DESCRIPTION",
    1: "NUMERIC",
    2: "ENTITY",
    3: "PERSON",
    4: "LOCATION"
}

while True:
    print("===============================================")
    query = raw_input('Enter query: ')
    X1 = []
    X1.append(query)
    X2 = tokenizer.texts_to_sequences(X1, maxlen)
    X = sequence.pad_sequences(X2, maxlen=maxlen)
    pred = model.predict_proba(X, batch_size=1)
    idx = np.argmax(pred[0])
    print("Type=" + idx2type[idx])
    print(pred)
print('Loading data... (Test)')
(x_test, y_test_class) = deepctxt_util.load_sequence_raw_data_x_y('./data/test.cleaned.tsv')

y_test = []
for class_name_array in y_test_class:
    y = []
    for class_name in class_name_array:
        class_id = className2Id[class_name]
        y.append(class_id)
    y_test.append(y)  

y_test = encode_category_vector.one_hot_category(y_test, num_categories)
print('Done')

print('Converting data... (Test)')
x_test = tokenizer.texts_to_sequences(x_test, maxlen)
print('Done')
print(len(x_test), 'y_test sequences')

#print("Pad sequences (samples x time)")
X_test = sequence.pad_sequences(x_test, maxlen=maxlen)
Y_test = sequence.pad_sequences(y_test, maxlen=maxlen)
#print('X_test shape:', X_test.shape)

print('Load model...')

file = open('./query_ner_birnn_lstm_glove_100.15b.json', 'rb')
model_string = file.read()
file.close()
model = model_from_json(model_string)
model.load_weights('./query_ner_birnn_lstm_glove_100.15b.h5')