def find(img_path, db_path, model_name='VGG-Face', distance_metric='cosine', model=None, enforce_detection=True, detector_backend='mtcnn'): """ This function applies verification several times and find an identity in a database Parameters: img_path: exact image path, numpy array or based64 encoded image. If you are going to find several identities, then you should pass img_path as array instead of calling find function in a for loop. e.g. img_path = ["img1.jpg", "img2.jpg"] db_path (string): You should store some .jpg files in a folder and pass the exact folder path to this. model_name (string): VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib or Ensemble distance_metric (string): cosine, euclidean, euclidean_l2 model: built deepface model. A face recognition models are built in every call of find function. You can pass pre-built models to speed the function up. model = DeepFace.build_model('VGG-Face') enforce_detection (boolean): The function throws exception if a face could not be detected. Set this to True if you don't want to get exception. This might be convenient for low resolution images. detector_backend (string): set face detector backend as mtcnn, opencv, ssd or dlib Returns: This function returns pandas data frame. If a list of images is passed to img_path, then it will return list of pandas data frame. """ tic = time.time() img_paths, bulkProcess = functions.initialize_input(img_path) functions.initialize_detector(detector_backend=detector_backend) #------------------------------- if os.path.isdir(db_path) == True: if model == None: if model_name == 'Ensemble': print("Ensemble learning enabled") models = Boosting.loadModel() else: #model is not ensemble model = build_model(model_name) models = {} models[model_name] = model else: #model != None print("Already built model is passed") if model_name == 'Ensemble': Boosting.validate_model(model) models = model.copy() else: models = {} models[model_name] = model #--------------------------------------- if model_name == 'Ensemble': model_names = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace'] metric_names = ['cosine', 'euclidean', 'euclidean_l2'] elif model_name != 'Ensemble': model_names = [] metric_names = [] model_names.append(model_name) metric_names.append(distance_metric) #--------------------------------------- file_name = "representations_%s.pkl" % (model_name) file_name = file_name.replace("-", "_").lower() if path.exists(db_path + "/" + file_name): # print("WARNING: Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.") f = open(db_path + '/' + file_name, 'rb') representations = pickle.load(f) print("There are ", len(representations), " representations found in ", file_name) else: #create representation.pkl from scratch employees = [] for r, d, f in os.walk( db_path): # r=root, d=directories, f = files for file in f: if ('.jpg' in file.lower()) or ('.png' in file.lower()): exact_path = r + "/" + file employees.append(exact_path) if len(employees) == 0: raise ValueError( "There is no image in ", db_path, " folder! Validate .jpg or .png files exist in this path.") #------------------------ #find representations for db images representations = [] pbar = tqdm(range(0, len(employees)), desc='Finding representations') #for employee in employees: for index in pbar: employee = employees[index] instance = [] instance.append(employee) for j in model_names: custom_model = models[j] #---------------------------------- #decide input shape input_shape = functions.find_input_shape(custom_model) input_shape_x = input_shape[0] input_shape_y = input_shape[1] #---------------------------------- img = functions.preprocess_face( img=employee, target_size=(input_shape_y, input_shape_x), enforce_detection=enforce_detection, detector_backend=detector_backend) representation = custom_model.predict(img)[0, :] instance.append(representation) #------------------------------- representations.append(instance) f = open(db_path + '/' + file_name, "wb") pickle.dump(representations, f) f.close() print( "Representations stored in ", db_path, "/", file_name, " file. Please delete this file when you add new identities in your database." ) #---------------------------- #now, we got representations for facial database if model_name != 'Ensemble': df = pd.DataFrame( representations, columns=["identity", "%s_representation" % (model_name)]) else: #ensemble learning columns = ['identity'] [columns.append('%s_representation' % i) for i in model_names] df = pd.DataFrame(representations, columns=columns) df_base = df.copy( ) #df will be filtered in each img. we will restore it for the next item. resp_obj = [] global_pbar = tqdm(range(0, len(img_paths)), desc='Analyzing') for j in global_pbar: img_path = img_paths[j] #find representation for passed image for j in model_names: custom_model = models[j] #-------------------------------- #decide input shape input_shape = functions.find_input_shape(custom_model) input_shape_x = input_shape[0] input_shape_y = input_shape[1] #-------------------------------- img = functions.preprocess_face( img=img_path, target_size=(input_shape_y, input_shape_x), enforce_detection=enforce_detection, detector_backend=detector_backend) target_representation = custom_model.predict(img)[0, :] for k in metric_names: distances = [] for index, instance in df.iterrows(): source_representation = instance["%s_representation" % (j)] if k == 'cosine': distance = dst.findCosineDistance( source_representation, target_representation) elif k == 'euclidean': distance = dst.findEuclideanDistance( source_representation, target_representation) elif k == 'euclidean_l2': distance = dst.findEuclideanDistance( dst.l2_normalize(source_representation), dst.l2_normalize(target_representation)) distances.append(distance) #--------------------------- if model_name == 'Ensemble' and j == 'OpenFace' and k == 'euclidean': continue else: df["%s_%s" % (j, k)] = distances if model_name != 'Ensemble': threshold = dst.findThreshold(j, k) df = df.drop(columns=["%s_representation" % (j)]) df = df[df["%s_%s" % (j, k)] <= threshold] df = df.sort_values( by=["%s_%s" % (j, k)], ascending=True).reset_index(drop=True) resp_obj.append(df) df = df_base.copy( ) #restore df for the next iteration #---------------------------------- if model_name == 'Ensemble': feature_names = [] for j in model_names: for k in metric_names: if model_name == 'Ensemble' and j == 'OpenFace' and k == 'euclidean': continue else: feature = '%s_%s' % (j, k) feature_names.append(feature) #print(df.head()) x = df[feature_names].values #-------------------------------------- boosted_tree = Boosting.build_gbm() y = boosted_tree.predict(x) verified_labels = [] scores = [] for i in y: verified = np.argmax(i) == 1 score = i[np.argmax(i)] verified_labels.append(verified) scores.append(score) df['verified'] = verified_labels df['score'] = scores df = df[df.verified == True] #df = df[df.score > 0.99] #confidence score df = df.sort_values(by=["score"], ascending=False).reset_index(drop=True) df = df[['identity', 'verified', 'score']] resp_obj.append(df) df = df_base.copy() #restore df for the next iteration #---------------------------------- toc = time.time() print("find function lasts ", toc - tic, " seconds") if len(resp_obj) == 1: return resp_obj[0] return resp_obj else: raise ValueError("Passed db_path does not exist!") return None
def verify(img1_path, img2_path='', model_name='VGG-Face', distance_metric='cosine', model=None, enforce_detection=True, detector_backend='mtcnn'): tic = time.time() img_list, bulkProcess = initialize_input(img1_path, img2_path) functions.initialize_detector(detector_backend=detector_backend) resp_objects = [] #-------------------------------- if model_name == 'Ensemble': model_names = ["VGG-Face", "Facenet", "OpenFace", "DeepFace"] metrics = ["cosine", "euclidean", "euclidean_l2"] else: model_names = [] metrics = [] model_names.append(model_name) metrics.append(distance_metric) #-------------------------------- if model == None: if model_name == 'Ensemble': models = Boosting.loadModel() else: model = build_model(model_name) models = {} models[model_name] = model else: if model_name == 'Ensemble': Boosting.validate_model(model) else: models = {} models[model_name] = model #------------------------------ #calling deepface in a for loop causes lots of progress bars. this prevents it. disable_option = False if len(img_list) > 1 else True pbar = tqdm(range(0, len(img_list)), desc='Verification', disable=disable_option) for index in pbar: instance = img_list[index] if type(instance) == list and len(instance) >= 2: img1_path = instance[0] img2_path = instance[1] ensemble_features = [] for i in model_names: custom_model = models[i] #decide input shape input_shape = functions.find_input_shape(custom_model) input_shape_x = input_shape[0] input_shape_y = input_shape[1] #---------------------- #detect and align faces img1 = functions.preprocess_face( img=img1_path, target_size=(input_shape_y, input_shape_x), enforce_detection=enforce_detection, detector_backend=detector_backend) img2 = functions.preprocess_face( img=img2_path, target_size=(input_shape_y, input_shape_x), enforce_detection=enforce_detection, detector_backend=detector_backend) #---------------------- #find embeddings img1_representation = custom_model.predict(img1)[0, :] img2_representation = custom_model.predict(img2)[0, :] #---------------------- #find distances between embeddings for j in metrics: if j == 'cosine': distance = dst.findCosineDistance( img1_representation, img2_representation) elif j == 'euclidean': distance = dst.findEuclideanDistance( img1_representation, img2_representation) elif j == 'euclidean_l2': distance = dst.findEuclideanDistance( dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation)) else: raise ValueError("Invalid distance_metric passed - ", distance_metric) #---------------------- #decision if model_name != 'Ensemble': threshold = dst.findThreshold(i, j) if distance <= threshold: identified = True else: identified = False resp_obj = { "verified": identified, "distance": distance, "max_threshold_to_verify": threshold, "model": model_name, "similarity_metric": distance_metric } if bulkProcess == True: resp_objects.append(resp_obj) else: return resp_obj else: #Ensemble #this returns same with OpenFace - euclidean_l2 if i == 'OpenFace' and j == 'euclidean': continue else: ensemble_features.append(distance) #---------------------- if model_name == 'Ensemble': boosted_tree = Boosting.build_gbm() prediction = boosted_tree.predict( np.expand_dims(np.array(ensemble_features), axis=0))[0] verified = np.argmax(prediction) == 1 score = prediction[np.argmax(prediction)] resp_obj = { "verified": verified, "score": score, "distance": ensemble_features, "model": ["VGG-Face", "Facenet", "OpenFace", "DeepFace"], "similarity_metric": ["cosine", "euclidean", "euclidean_l2"] } if bulkProcess == True: resp_objects.append(resp_obj) else: return resp_obj #---------------------- else: raise ValueError("Invalid arguments passed to verify function: ", instance) #------------------------- toc = time.time() if bulkProcess == True: resp_obj = {} for i in range(0, len(resp_objects)): resp_item = resp_objects[i] resp_obj["pair_%d" % (i + 1)] = resp_item return resp_obj
def verify(img1_path, img2_path='', model_name='VGG-Face', distance_metric='cosine', model=None, enforce_detection=True, detector_backend='mtcnn'): """ This function verifies an image pair is same person or different persons. Parameters: img1_path, img2_path: exact image path, numpy array or based64 encoded images could be passed. If you are going to call verify function for a list of image pairs, then you should pass an array instead of calling the function in for loops. e.g. img1_path = [ ['img1.jpg', 'img2.jpg'], ['img2.jpg', 'img3.jpg'] ] model_name (string): VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib, ArcFace or Ensemble distance_metric (string): cosine, euclidean, euclidean_l2 model: Built deepface model. A face recognition model is built every call of verify function. You can pass pre-built face recognition model optionally if you will call verify function several times. model = DeepFace.build_model('VGG-Face') enforce_detection (boolean): If any face could not be detected in an image, then verify function will return exception. Set this to False not to have this exception. This might be convenient for low resolution images. detector_backend (string): set face detector backend as mtcnn, opencv, ssd or dlib Returns: Verify function returns a dictionary. If img1_path is a list of image pairs, then the function will return list of dictionary. { "verified": True , "distance": 0.2563 , "max_threshold_to_verify": 0.40 , "model": "VGG-Face" , "similarity_metric": "cosine" } """ tic = time.time() img_list, bulkProcess = functions.initialize_input(img1_path, img2_path) functions.initialize_detector(detector_backend=detector_backend) resp_objects = [] #-------------------------------- if model_name == 'Ensemble': model_names = ["VGG-Face", "Facenet", "OpenFace", "DeepFace"] metrics = ["cosine", "euclidean", "euclidean_l2"] else: model_names = [] metrics = [] model_names.append(model_name) metrics.append(distance_metric) #-------------------------------- if model == None: if model_name == 'Ensemble': models = Boosting.loadModel() else: model = build_model(model_name) models = {} models[model_name] = model else: if model_name == 'Ensemble': Boosting.validate_model(model) models = model.copy() else: models = {} models[model_name] = model #------------------------------ #calling deepface in a for loop causes lots of progress bars. this prevents it. disable_option = False if len(img_list) > 1 else True pbar = tqdm(range(0, len(img_list)), desc='Verification', disable=disable_option) for index in pbar: instance = img_list[index] if type(instance) == list and len(instance) >= 2: img1_path = instance[0] img2_path = instance[1] ensemble_features = [] for i in model_names: custom_model = models[i] #decide input shape input_shape = functions.find_input_shape(custom_model) input_shape_x = input_shape[0] input_shape_y = input_shape[1] #---------------------- #detect and align faces img1 = functions.preprocess_face( img=img1_path, target_size=(input_shape_y, input_shape_x), enforce_detection=enforce_detection, detector_backend=detector_backend) img2 = functions.preprocess_face( img=img2_path, target_size=(input_shape_y, input_shape_x), enforce_detection=enforce_detection, detector_backend=detector_backend) #---------------------- #find embeddings img1_representation = custom_model.predict(img1)[0, :] img2_representation = custom_model.predict(img2)[0, :] #---------------------- #find distances between embeddings for j in metrics: if j == 'cosine': distance = dst.findCosineDistance( img1_representation, img2_representation) elif j == 'euclidean': distance = dst.findEuclideanDistance( img1_representation, img2_representation) elif j == 'euclidean_l2': distance = dst.findEuclideanDistance( dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation)) else: raise ValueError("Invalid distance_metric passed - ", distance_metric) distance = np.float64( distance ) #causes trobule for euclideans in api calls if this is not set (issue #175) #---------------------- #decision if model_name != 'Ensemble': threshold = dst.findThreshold(i, j) if distance <= threshold: identified = True else: identified = False resp_obj = { "verified": identified, "distance": distance, "max_threshold_to_verify": threshold, "model": model_name, "similarity_metric": distance_metric } if bulkProcess == True: resp_objects.append(resp_obj) else: return resp_obj else: #Ensemble #this returns same with OpenFace - euclidean_l2 if i == 'OpenFace' and j == 'euclidean': continue else: ensemble_features.append(distance) #---------------------- if model_name == 'Ensemble': boosted_tree = Boosting.build_gbm() prediction = boosted_tree.predict( np.expand_dims(np.array(ensemble_features), axis=0))[0] verified = np.argmax(prediction) == 1 score = prediction[np.argmax(prediction)] resp_obj = { "verified": verified, "score": score, "distance": ensemble_features, "model": ["VGG-Face", "Facenet", "OpenFace", "DeepFace"], "similarity_metric": ["cosine", "euclidean", "euclidean_l2"] } if bulkProcess == True: resp_objects.append(resp_obj) else: return resp_obj #---------------------- else: raise ValueError("Invalid arguments passed to verify function: ", instance) #------------------------- toc = time.time() if bulkProcess == True: resp_obj = {} for i in range(0, len(resp_objects)): resp_item = resp_objects[i] resp_obj["pair_%d" % (i + 1)] = resp_item return resp_obj
for i in range(0, len(dataset)): item = resp_obj['pair_%s' % (i + 1)] verified = item["verified"] score = item["score"] print(verified) #----------------------------------- print("--------------------------") print("Pre-trained ensemble method - find") from deepface import DeepFace from deepface.basemodels import Boosting model = Boosting.loadModel() df = DeepFace.find("dataset/img1.jpg", db_path="dataset", model_name='Ensemble', model=model, enforce_detection=False) print(df) #----------------------------------- print("--------------------------") print("Pre-trained ensemble method - verify") res = DeepFace.verify(dataset, model_name="Ensemble", model=model) print(res)