def saliency(image): saliency_map = FasaSaliencyMapping(image.shape[0], image.shape[1]) image_salient_1 = saliency_map.returnMask(image, tot_bins=8, format='BGR2LAB') image_salient = cv2.GaussianBlur(image_salient_1, (3, 3), 1) image_salient = cv2.convertScaleAbs(image_salient) return image_salient
def main(): # Open the video stream and set the webcam resolution. # It may give problem if your webcam does not support the particular resolution used. video_capture = cv2.VideoCapture(0) video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, RESOLUTION_WIDTH) video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, RESOLUTION_HEIGHT) print video_capture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH) print video_capture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT) if (video_capture.isOpened() == False): print("Error: the resource is busy or unvailable") return else: print("The video source has been opened correctly...") # Create the main window and move it cv2.namedWindow('Video') cv2.moveWindow('Video', 20, 20) # Obtaining the CAM dimension cam_w = int(video_capture.get(3)) cam_h = int(video_capture.get(4)) # Defining the FASA object using the camera resolution my_map = FasaSaliencyMapping(cam_h, cam_w) while True: start = timer() # Capture frame-by-frame ret, frame = video_capture.read() image_salient = my_map.returnMask(frame, tot_bins=8, format='BGR2LAB') end = timer() # Print the time for processing the frame if PRINT_TIME: print("--- %s Tot seconds ---" % (end - start)) print("") cv2.imshow('Video', image_salient) # Press Q to exit if cv2.waitKey(1) & 0xFF == ord('q'): break
def main(): # Open the video stream and set the webcam resolution. # It may give problem if your webcam does not support the particular resolution used. video_capture = cv2.VideoCapture(0) video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, RESOLUTION_WIDTH) video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, RESOLUTION_HEIGHT) print video_capture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH) print video_capture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT) if(video_capture.isOpened() == False): print("Error: the resource is busy or unvailable") return else: print("The video source has been opened correctly...") # Create the main window and move it cv2.namedWindow('Video') cv2.moveWindow('Video', 20, 20) # Obtaining the CAM dimension cam_w = int(video_capture.get(3)) cam_h = int(video_capture.get(4)) # Defining the FASA object using the camera resolution my_map = FasaSaliencyMapping(cam_h, cam_w) while True: start = timer() # Capture frame-by-frame ret, frame = video_capture.read() image_salient = my_map.returnMask(frame, tot_bins=8, format='BGR2LAB') end = timer() # Print the time for processing the frame if PRINT_TIME: print("--- %s Tot seconds ---" % (end - start)) print("") cv2.imshow('Video', image_salient) # Press Q to exit if cv2.waitKey(1) & 0xFF == ord('q'): break
def main(): image_1 = cv2.imread("./horse.jpg") image_2 = cv2.imread("./car.jpg") image_3 = cv2.imread("./plane.jpg") image_4 = cv2.imread("./pear.jpg") # for each image the same operations are repeated my_map = FasaSaliencyMapping(image_1.shape[0], image_1.shape[1]) # init the saliency object start = timer() image_salient_1 = my_map.returnMask(image_1, tot_bins=8, format='BGR2LAB') # get the mask from the original image image_salient_1 = cv2.GaussianBlur(image_salient_1, (3,3), 1) # applying gaussin blur to make it pretty end = timer() print("--- %s Image 1 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_2.shape[0], image_2.shape[1]) start = timer() image_salient_2 = my_map.returnMask(image_2, tot_bins=8, format='BGR2LAB') image_salient_2 = cv2.GaussianBlur(image_salient_2, (3,3), 1) end = timer() print("--- %s Image 2 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_3.shape[0], image_3.shape[1]) start = timer() image_salient_3 = my_map.returnMask(image_3, tot_bins=8, format='BGR2LAB') #image_salient_3 = cv2.GaussianBlur(image_salient_3, (3,3), 1) end = timer() print("--- %s Image 3 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_4.shape[0], image_4.shape[1]) start = timer() image_salient_4 = my_map.returnMask(image_4, tot_bins=8, format='BGR2LAB') image_salient_4 = cv2.GaussianBlur(image_salient_4, (3,3), 1) end = timer() print("--- %s Image 4 tot seconds ---" % (end - start)) # Creating stack of images and showing them on screen original_images_stack = np.hstack((image_1, image_2, image_3, image_4)) saliency_images_stack = np.hstack((image_salient_1, image_salient_2, image_salient_3, image_salient_4)) saliency_images_stack = np.dstack((saliency_images_stack,saliency_images_stack,saliency_images_stack)) cv2.imshow("Original-Saliency", np.vstack((original_images_stack, saliency_images_stack))) while True: if cv2.waitKey(33) == ord('q'): cv2.destroyAllWindows() break
def main(): for i in range (512): # was 200 image_1 = cv2.imread("./horse.jpg") image_2 = cv2.imread("./car.jpg") image_3 = cv2.imread("./plane.jpg") image_4 = cv2.imread("./pear.jpg") # for each image the same operations are repeated my_map = FasaSaliencyMapping(image_1.shape[0], image_1.shape[1]) # init the saliency object start = timer() image_salient_1 = my_map.returnMask(image_1, tot_bins=8, format='BGR2LAB') # get the mask from the original image image_salient_1 = cv2.GaussianBlur(image_salient_1, (3,3), 1) # applying gaussin blur to make it pretty end = timer() #print("--- %s Image 1 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_2.shape[0], image_2.shape[1]) start = timer() image_salient_2 = my_map.returnMask(image_2, tot_bins=8, format='BGR2LAB') image_salient_2 = cv2.GaussianBlur(image_salient_2, (3,3), 1) end = timer() #print("--- %s Image 2 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_3.shape[0], image_3.shape[1]) start = timer() image_salient_3 = my_map.returnMask(image_3, tot_bins=8, format='BGR2LAB') #image_salient_3 = cv2.GaussianBlur(image_salient_3, (3,3), 1) end = timer() #print("--- %s Image 3 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_4.shape[0], image_4.shape[1]) start = timer() image_salient_4 = my_map.returnMask(image_4, tot_bins=8, format='BGR2LAB') image_salient_4 = cv2.GaussianBlur(image_salient_4, (3,3), 1) end = timer() #print("--- %s Image 4 tot seconds ---" % (end - start)) # Creating stack of images and showing them on screen original_images_stack = np.hstack((image_1, image_2, image_3, image_4)) saliency_images_stack = np.hstack((image_salient_1, image_salient_2, image_salient_3, image_salient_4)) saliency_images_stack = np.dstack((saliency_images_stack,saliency_images_stack,saliency_images_stack)) cv2.imshow("Original-Saliency", np.vstack((original_images_stack, saliency_images_stack))) cv2.destroyAllWindows()
def main(): i = 0 loopNum = 0 a = open('latency_start.csv', 'a') a.write('start' + '\n') b = open('latency_end.csv', 'a') b.write('end' + '\n') c = open('latency_time.csv', 'a') c.write('time' + '\n') d = open('latency_loop.csv', 'a') d.write('loop' + '\n') for i in range(10): loopNum += 1 image_1 = cv2.imread("./horse.jpg") image_2 = cv2.imread("./car.jpg") image_3 = cv2.imread("./plane.jpg") image_4 = cv2.imread("./pear.jpg") # for each image the same operations are repeated my_map = FasaSaliencyMapping( image_1.shape[0], image_1.shape[1]) # init the saliency object start = timer() image_salient_1 = my_map.returnMask( image_1, tot_bins=8, format='BGR2LAB') # get the mask from the original image image_salient_1 = cv2.GaussianBlur( image_salient_1, (3, 3), 1) # applying gaussin blur to make it pretty end = timer() #print("--- %s Image 1 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_2.shape[0], image_2.shape[1]) start = timer() image_salient_2 = my_map.returnMask(image_2, tot_bins=8, format='BGR2LAB') image_salient_2 = cv2.GaussianBlur(image_salient_2, (3, 3), 1) end = timer() #print("--- %s Image 2 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_3.shape[0], image_3.shape[1]) start = timer() image_salient_3 = my_map.returnMask(image_3, tot_bins=8, format='BGR2LAB') #image_salient_3 = cv2.GaussianBlur(image_salient_3, (3,3), 1) end = timer() #print("--- %s Image 3 tot seconds ---" % (end - start)) my_map = FasaSaliencyMapping(image_4.shape[0], image_4.shape[1]) start = timer() image_salient_4 = my_map.returnMask(image_4, tot_bins=8, format='BGR2LAB') image_salient_4 = cv2.GaussianBlur(image_salient_4, (3, 3), 1) end = timer() #print("--- %s Image 4 tot seconds ---" % (end - start)) # Creating stack of images and showing them on screen original_images_stack = np.hstack((image_1, image_2, image_3, image_4)) saliency_images_stack = np.hstack((image_salient_1, image_salient_2, image_salient_3, image_salient_4)) saliency_images_stack = np.dstack( (saliency_images_stack, saliency_images_stack, saliency_images_stack)) t0 = timer() cv2.imshow("Original-Saliency", np.vstack((original_images_stack, saliency_images_stack))) t1 = timer() while True: t4 = timer() if cv2.waitKey(33) == ord('q'): t2 = timer() cv2.destroyAllWindows() t3 = timer() t5 = timer() break start = t1 - t0 end = t3 - t2 latency = t5 - t4 a.write(str(start) + '\n') b.write(str(end) + '\n') c.write(str(latency) + '\n') d.write(str(loopNum) + '\n') a.close() b.close() c.close() d.close()