Пример #1
0
    def setUp(self):
        # Load data
        Y = np.loadtxt(os.path.join(base_path, self.outputfile))
        X = np.loadtxt(os.path.join(base_path, self.inputfile))
        m = deepgp.DeepGP([Y.shape[1], 5, X.shape[1]],
                          Y,
                          X=X,
                          kernels=[
                              GPy.kern.RBF(5, ARD=True),
                              GPy.kern.RBF(X.shape[1], ARD=True)
                          ],
                          num_inducing=2,
                          back_constraint=False)
        if not os.path.exists(os.path.join(base_path, self.modelfile)):
            # Create the model file
            m.randomize()
            m._trigger_params_changed()
            m.save(os.path.join(base_path, self.modelfile))
            with h5py.File(os.path.join(base_path, self.modelfile), 'r+') as f:
                L = f.create_dataset("L", (1, ), dtype=np.float)
                L[:] = m._log_marginal_likelihood
                f.close()

        # Load model parameters
        with tables.open_file(os.path.join(base_path, self.modelfile),
                              'r') as f:
            m.param_array[:] = f.root.param_array[:]
            L = float(f.root.L[:])
            m._trigger_params_changed()
            f.close()
        self.model = m
        self.L = L
Пример #2
0
    def deepGaussianProcessClassifier(self, testIndex):
        print("Deep Gaussian Process Classification")
        trainIndex = self.posMusic + self.negMusic
        features = self.newFactory.musicFiles.mtFeatures
        likes = self.newFactory.musicFiles.like
        X1 = numpy.zeros((len(trainIndex), len(features[0][:33])))
        y1 = numpy.zeros((len(trainIndex), 1))
        for i, mem in enumerate(trainIndex):
            X1[i, :] = squeeze(features[mem][:33])
            if likes[mem] == True:
                y1[i] = 0
            else:
                y1[i] = 1

        Q = 2  ## Binary classification
        kern1 = GPy.kern.RBF(Q, ARD=True) + GPy.kern.Bias(Q)
        kern2 = GPy.kern.RBF(Q, ARD=False) + GPy.kern.Bias(X1.shape[1])

        m = deepgp.DeepGP([2, 2, X1.shape[1]],
                          y1,
                          X_tr=X1,
                          kernels=[kern1, kern2],
                          num_inducing=10,
                          back_constraint=False)

        m.optimize(max_iters=1500, messages=True)

        X2 = numpy.zeros((len(testIndex), len(features[0][:33])))
        for i, mem in enumerate(testIndex):
            X2[i, :] = squeeze(features[mem][:33])
        result = m.predict(X2)
        print(result[0], result[0].shape)
        for i in range(len(testIndex)):
            if likes[testIndex[i]] == True:
                print(i, "0")
            else:
                print(i, "1")
#--------- Model Construction ----------#

# Number of latent dimensions per layer
Q1, Q2 = 5, 4
# Type of kernel per layer
kern1 = GPy.kern.RBF(Q1,ARD=True) + GPy.kern.Bias(Q1)
kern2 = GPy.kern.RBF(Q2,ARD=True) + GPy.kern.Bias(Q2)
# Number of inducing points per layer (can be set to different if given as list).
num_inducing = 40
# Whether to use back-constraint for variational posterior
back_constraint = False
# Dimensions of the MLP back-constraint if set to true
encoder_dims=[[300],[150]]

m = deepgp.DeepGP([Y.shape[1],Q1,Q2],Y,kernels=[kern1,kern2], num_inducing=num_inducing, back_constraint=back_constraint, encoder_dims = encoder_dims)

#--------- Optimization ----------#
# Make sure initial noise variance gives a reasonable signal to noise ratio
for i in range(len(m.layers)):
    output_var = m.layers[i].Y.var() if i==0 else m.layers[i].Y.mean.var()
    m.layers[i].Gaussian_noise.variance = output_var*0.01

m.optimize(max_iters=5000, messages=True)


#--------- Inspection ----------#
# Plot ARD scales per layer
m.obslayer.kern.plot_ARD()
m.layer_1.kern.plot_ARD()
Пример #4
0
# Number of latent dimensions (single hidden layer, since the top layer is observed)
Q = 5
# Define what kernels to use per layer
kern1 = GPy.kern.RBF(Q, ARD=True) + GPy.kern.Bias(Q)
kern2 = GPy.kern.RBF(Q, ARD=False) + GPy.kern.Bias(X_tr.shape[1])
# Number of inducing points to use
num_inducing = 40
# Whether to use back-constraint for variational posterior
back_constraint = True
# Dimensions of the MLP back-constraint if set to true
encoder_dims = [[300], [150]]

m = deepgp.DeepGP([Y_tr.shape[1], Q, X_tr.shape[1]],
                  Y_tr,
                  X_tr=X_tr,
                  kernels=[kern1, kern2],
                  num_inducing=num_inducing,
                  back_constraint=back_constraint)

#--------- Optimization ----------#
# Make sure initial noise variance gives a reasonable signal to noise ratio.
# Fix to that value for a few iterations to avoid early local minima
for i in range(len(m.layers)):
    output_var = m.layers[i].Y.var() if i == 0 else m.layers[i].Y.mean.var()
    m.layers[i].Gaussian_noise.variance = output_var * 0.01
    m.layers[i].Gaussian_noise.variance.fix()

m.optimize(max_iters=800, messages=True)
# Unfix noise variance now that we have initialized the model
for i in range(len(m.layers)):
    m.layers[i].Gaussian_noise.variance.unfix()
Пример #5
0
# Number of latent dimensions (single hidden layer, since the top layer is observed)
Q = 1
# Define what kernels to use per layer
# 初始超参数选择

kern1 = GPy.kern.RBF(Q, ARD=True) + GPy.kern.Bias(Q) # Q表示隐结点个数
kern2 = GPy.kern.RBF(train_x.shape[1], ARD=True) + GPy.kern.Bias(train_x.shape[1])
# Number of inducing points to use
num_inducing = 100
# Whether to use back-constraint for variational posterior
back_constraint = False
# Dimensions of the MLP back-constraint if set to true
# encoder_dims = [[300], [150]]

m = deepgp.DeepGP([norm_train_y.shape[1], Q, train_x.shape[1]], norm_train_y, X_tr=train_x, kernels=[kern1, kern2], num_inducing=num_inducing,
                  back_constraint=back_constraint)

# print(np.mean(m.layers[0].Y))
# exit()
# --------- Optimization ----------#
# Make sure initial noise variance gives a reasonable signal to noise ratio.
# Fix to that value for a few iterations to avoid early local minima
for i in range(len(m.layers)):
    output_var = m.layers[i].Y.var() if i == 0 else m.layers[i].Y.mean.var()
    m.layers[i].Gaussian_noise.variance = output_var * 0.01
    m.layers[i].Gaussian_noise.variance.fix()

m.optimize(max_iters=1000, messages=True)

# # Unfix noise variance now that we have initialized the model
# for i in range(len(m.layers)):
kern3 = GPy.kern.RBF(QX, ARD=False) + GPy.kern.Bias(QX)  # Layer X  -> H2

# Number of inducing points to use
num_inducing = 40
# Whether to use back-constraint for variational posterior
back_constraint = False
# Dimensions of the MLP back-constraint if set to true
encoder_dims = [[300], [150], [150]]

# Collect the dimensions of [Y, H1, H2, X]
dimensions = [Y_tr.shape[1], Q1, Q2, QX]

# Create model
m = deepgp.DeepGP(dimensions,
                  Y_tr_scaled,
                  X=X_tr_scaled,
                  kernels=[kern1, kern2, kern3],
                  num_inducing=num_inducing,
                  back_constraint=back_constraint)

# print(m) # This will print the model

#--------- Optimization ----------#
# Make sure initial noise variance gives a reasonable signal to noise ratio.
# Fix to that value for a few iterations to avoid early local minima
for i in range(len(m.layers)):
    output_var = m.layers[i].Y.var() if i == 0 else m.layers[i].Y.mean.var()
    m.layers[i].Gaussian_noise.variance = output_var * 0.01
    m.layers[i].Gaussian_noise.variance.fix()

m.optimize(max_iters=800, messages=True)
# Unfix noise variance now that we have initialized the model