def __init__(self, dlc_cfg_path, model_snapshot):
     self.dlc_cfg = load_config(dlc_cfg_path)
     self.dlc_cfg["init_weights"] = model_snapshot
     self.dlc_cfg['batch_size'] = 1
     self.sess, self.inputs, self.outputs = setup_pose_prediction(
         self.dlc_cfg)
     self.tracked_parts = self.dlc_cfg['all_joints_names']
Пример #2
0
def _get_pose_config(cfg, modelfolder, shuffle=1, trainIndex=0):
    projpath      = _Path(cfg["project_path"])
    pose_file     = modelfolder / 'test' / 'pose_cfg.yaml'
    try:
        return _config.load_config(str(pose_file))
    except FileNotFoundError:
        raise FileNotFoundError(f"'pose_cfg.yaml' for shuffle {shuffle} trainFraction {cfg['TrainingFraction'][trainIndex]}.")
Пример #3
0
def display_dataset():
    logging.basicConfig(level=logging.DEBUG)

    cfg = load_config()
    dataset = dataset_create(cfg)
    dataset.set_shuffle(False)

    while True:
        batch = dataset.next_batch()

        for frame_id in range(1):
            img = batch[Batch.inputs][frame_id, :, :, :]
            img = np.squeeze(img).astype('uint8')

            scmap = batch[Batch.part_score_targets][frame_id, :, :, :]
            scmap = np.squeeze(scmap)

            # scmask = batch[Batch.part_score_weights]
            # if scmask.size > 1:
            #     scmask = np.squeeze(scmask).astype('uint8')
            # else:
            #     scmask = np.zeros(img.shape)

            subplot_height = 4
            subplot_width = 5
            num_plots = subplot_width * subplot_height
            f, axarr = plt.subplots(subplot_height, subplot_width)

            for j in range(num_plots):
                plot_j = j // subplot_width
                plot_i = j % subplot_width

                curr_plot = axarr[plot_j, plot_i]
                curr_plot.axis('off')

                if j >= cfg.num_joints:
                    continue

                scmap_part = scmap[:, :, j]
                scmap_part = np.array(
                    Image.fromarray(scmap_part).resize(8.0, Image.BICUBIC))
                scmap_part = np.lib.pad(scmap_part, ((4, 0), (4, 0)),
                                        'minimum')

                curr_plot.set_title("{}".format(j + 1))
                curr_plot.imshow(img)
                curr_plot.hold(True)
                curr_plot.imshow(scmap_part, alpha=.5)

        # figure(0)
        # plt.imshow(np.sum(scmap, axis=2))
        # plt.figure(100)
        # plt.imshow(img)
        # plt.figure(2)
        # plt.imshow(scmask)
        plt.show()
        plt.waitforbuttonpress()
Пример #4
0
def test_net(visualise, cache_scoremaps):
    logging.basicConfig(level=logging.INFO)

    cfg = load_config()
    dataset = create_dataset(cfg)
    dataset.set_shuffle(False)
    dataset.set_test_mode(True)

    sess, inputs, outputs = setup_pose_prediction(cfg)

    if cache_scoremaps:
        out_dir = cfg.scoremap_dir
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    num_images = dataset.num_images
    predictions = np.zeros((num_images, ), dtype=np.object)

    for k in range(num_images):
        print("processing image {}/{}".format(k, num_images - 1))

        batch = dataset.next_batch()

        outputs_np = sess.run(outputs, feed_dict={inputs: batch[Batch.inputs]})

        scmap, locref = extract_cnn_output(outputs_np, cfg)

        pose = argmax_pose_predict(scmap, locref, cfg.stride)

        pose_refscale = np.copy(pose)
        pose_refscale[:, 0:2] /= cfg.global_scale
        predictions[k] = pose_refscale

        if visualise:
            img = np.squeeze(batch[Batch.inputs]).astype("uint8")
            visualize.show_heatmaps(cfg, img, scmap, pose)
            visualize.waitforbuttonpress()

        if cache_scoremaps:
            base = os.path.basename(batch[Batch.data_item].im_path)
            raw_name = os.path.splitext(base)[0]
            out_fn = os.path.join(out_dir, raw_name + ".mat")
            scipy.io.savemat(out_fn,
                             mdict={"scoremaps": scmap.astype("float32")})

            out_fn = os.path.join(out_dir, raw_name + "_locreg" + ".mat")
            if cfg.location_refinement:
                scipy.io.savemat(
                    out_fn, mdict={"locreg_pred": locref.astype("float32")})

    scipy.io.savemat("predictions.mat", mdict={"joints": predictions})

    sess.close()
Пример #5
0
def load_deeplabcut():
    """
    Loads TensorFlow with predefined in config DeepLabCut model

    :return: tuple of DeepLabCut config, TensorFlow session, inputs and outputs
    """
    model = os.path.join(DLC_PATH, models_folder, MODEL)
    cfg = load_config(os.path.join(model, 'test/pose_cfg.yaml'))
    snapshots = sorted([sn.split('.')[0] for sn in os.listdir(model + '/train/') if "index" in sn])
    cfg['init_weights'] = model + '/train/' + snapshots[-1]

    sess, inputs, outputs = predict.setup_pose_prediction(cfg)
    return cfg, sess, inputs, outputs
Пример #6
0
    def __init__(self, weights_path, config):

        self.weights_path = weights_path
        self.config = config

        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
        #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        gputouse = None
        use_gpu = False


        # Suppress scientific notation while printing
        np.set_printoptions(suppress=True)

        ##################################################
        # SETUP everything until image prediction
        ##################################################



        if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
            del os.environ["TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

        if gputouse is not None:  # gpu selection
            os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

        tf.compat.v1.reset_default_graph()

        try:
            self.dlc_cfg = load_config(str(self.config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction)
            )

        self.dlc_cfg['init_weights'] = self.weights_path
        print("Running the weights: " + self.dlc_cfg['init_weights'])


        # Using GPU for prediction
        # Specifying state of model (snapshot / training state)

        self.sess, self.inputs, self.outputs = predict.setup_pose_prediction(self.dlc_cfg,allow_growth=True)
Пример #7
0
def get_train_config(cfg, shuffle=1):
    from deeplabcut.utils import auxiliaryfunctions
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    project_path = cfg['project_path']
    iteration = cfg['iteration']
    TrainingFraction = cfg['TrainingFraction'][iteration]
    modelfolder = os.path.join(
        project_path,
        str(auxiliaryfunctions.GetModelFolder(TrainingFraction, shuffle, cfg)))

    path_test_config = Path(modelfolder) / 'train' / 'pose_cfg.yaml'
    print(path_test_config)
    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle %s and trainFraction %s does not exist."
            % (shuffle, TrainingFraction))
    return dlc_cfg
Пример #8
0
        erreur = saccade + blink

    return erreur


filename_C = r'C:\Users\taches-comportements\Desktop\GBM3100_Final_Network-Enzo-2020-03-30\Analyses_Preliminaires\Calibration1.mp4'
filename_V = r'C:\Users\taches-comportements\Desktop\GBM3100_Final_Network-Enzo-2020-03-30\Analyses_Preliminaires\Saccade10_F.mp4'
cfg = auxiliaryfunctions.read_config(
    r"C:\Users\taches-comportements\Desktop\GBM3100_Final_Network-Enzo-2020-03-30\config.yaml"
)
modelfolder = (
    r"C:\Users\taches-comportements\Desktop\GBM3100_Final_Network-Enzo-2020-03-30\dlc-models\iteration-0\GBM3100_Final_NetworkMar30-trainset95shuffle1"
)
dlc_config = load_config(
    r"C:\Users\taches-comportements\Desktop\GBM3100_Final_Network-Enzo-2020-03-30\dlc-models\iteration-0\GBM3100_Final_NetworkMar30-trainset95shuffle1\test\pose_cfg.yaml"
)

win = visual.Window(size=(1024, 600),
                    fullscr=True,
                    screen=0,
                    winType='pyglet',
                    allowGUI=False,
                    allowStencil=False,
                    monitor='testMonitor',
                    color=[-1, -1, -1],
                    colorSpace='rgb',
                    blendMode='avg',
                    useFBO=True,
                    units='deg')
Пример #9
0
def load_model(cfg, shuffle=1, trainingsetindex=0, TFGPUinference=True, modelprefix=""):
    """

    Loads a tensorflow session with a DLC model from the associated configuration
    Return a tensorflow session with DLC model given cfg and shuffle

    Parameters:
    -----------
    cfg : dict
        Configuration read from the project's main config.yaml file

    shuffle : int, optional
        which shuffle to use

    trainingsetindex : int. optional
        which training fraction to use, identified by its index

    TFGPUinference : bool, optional
        use tensorflow inference model? default = True

    Returns:
    --------
    sess : tensorflow session
        tensorflow session with DLC model from the provided configuration, shuffle, and trainingsetindex

    checkpoint file path : string
        the path to the checkpoint file associated with the loaded model
    """

    ########################
    ### find snapshot to use
    ########################

    train_fraction = cfg["TrainingFraction"][trainingsetindex]
    model_folder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.GetModelFolder(
                train_fraction, shuffle, cfg, modelprefix=modelprefix
            )
        ),
    )
    path_test_config = os.path.normpath(model_folder + "/test/pose_cfg.yaml")
    path_train_config = os.path.normpath(model_folder + "/train/pose_cfg.yaml")

    try:
        dlc_cfg = load_config(str(path_train_config))
        # dlc_cfg_train = load_config(str(path_train_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle %s and trainFraction %s does not exist."
            % (shuffle, train_fraction)
        )

    # Check which snapshots are available and sort them by # iterations
    try:
        Snapshots = np.array(
            [
                fn.split(".")[0]
                for fn in os.listdir(os.path.join(model_folder, "train"))
                if "index" in fn
            ]
        )
    except FileNotFoundError:
        raise FileNotFoundError(
            "Snapshots not found! It seems the dataset for shuffle %s has not been trained/does not exist.\n Please train it before trying to export.\n Use the function 'train_network' to train the network for shuffle %s."
            % (shuffle, shuffle)
        )

    if len(Snapshots) == 0:
        raise FileNotFoundError(
            "The train folder for iteration %s and shuffle %s exists, but no snapshots were found.\n Please train this model before trying to export.\n Use the function 'train_network' to train the network for iteration %s shuffle %s."
            % (cfg["iteration"], shuffle, cfg["iteration"], shuffle)
        )

    if cfg["snapshotindex"] == "all":
        print(
            "Snapshotindex is set to 'all' in the config.yaml file. Changing snapshot index to -1!"
        )
        snapshotindex = -1
    else:
        snapshotindex = cfg["snapshotindex"]

    increasing_indices = np.argsort([int(m.split("-")[1]) for m in Snapshots])
    Snapshots = Snapshots[increasing_indices]

    ####################################
    ### Load and setup CNN part detector
    ####################################

    # Check if data already was generated:
    dlc_cfg["init_weights"] = os.path.join(
        model_folder, "train", Snapshots[snapshotindex]
    )
    trainingsiterations = (dlc_cfg["init_weights"].split(os.sep)[-1]).split("-")[-1]
    dlc_cfg["num_outputs"] = cfg.get("num_outputs", dlc_cfg.get("num_outputs", 1))
    dlc_cfg["batch_size"] = None

    # load network
    if TFGPUinference:
        sess, _, _ = predict.setup_GPUpose_prediction(dlc_cfg)
        output = ["concat_1"]
    else:
        sess, _, _ = predict.setup_pose_prediction(dlc_cfg)
        if dlc_cfg["location_refinement"]:
            output = ["Sigmoid", "pose/locref_pred/block4/BiasAdd"]
        else:
            output = ["Sigmoid", "pose/part_pred/block4/BiasAdd"]

    input = tf.get_default_graph().get_operations()[0].name

    return sess, input, output, dlc_cfg
Пример #10
0
def train(
    config_yaml,
    displayiters,
    saveiters,
    maxiters,
    max_to_keep=5,
    keepdeconvweights=True,
    allow_growth=False,
):
    start_path = os.getcwd()
    os.chdir(str(Path(config_yaml).parents[0])
             )  # switch to folder of config_yaml (for logging)
    setup_logging()

    cfg = load_config(config_yaml)
    net_type = cfg['net_type']
    if cfg['dataset_type'] in ("scalecrop", "tensorpack", "deterministic"):
        print(
            "Switching batchsize to 1, as tensorpack/scalecrop/deterministic loaders do not support batches >1. Use imgaug/default loader."
        )
        cfg["batch_size"] = 1  # in case this was edited for analysis.-

    dataset = create_dataset(cfg)
    batch_spec = get_batch_spec(cfg)
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)

    losses = pose_net(cfg).train(batch)
    total_loss = losses["total_loss"]

    for k, t in losses.items():
        TF.summary.scalar(k, t)
    merged_summaries = TF.summary.merge_all()

    if "snapshot" in Path(cfg['init_weights']).stem and keepdeconvweights:
        print("Loading already trained DLC with backbone:", net_type)
        variables_to_restore = slim.get_variables_to_restore()
    else:
        print("Loading ImageNet-pretrained", net_type)
        # loading backbone from ResNet, MobileNet etc.
        if "resnet" in net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["resnet_v1"])
        elif "mobilenet" in net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["MobilenetV2"])
        elif "efficientnet" in net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["efficientnet"])
            variables_to_restore = {
                var.op.name.replace("efficientnet/", "") +
                '/ExponentialMovingAverage': var
                for var in variables_to_restore
            }
        else:
            print("Wait for DLC 2.3.")

    restorer = TF.train.Saver(variables_to_restore)
    saver = TF.train.Saver(
        max_to_keep=max_to_keep
    )  # selects how many snapshots are stored, see https://github.com/AlexEMG/DeepLabCut/issues/8#issuecomment-387404835

    if allow_growth == True:
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        sess = TF.Session(config=config)
    else:
        sess = TF.Session()

    coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
    train_writer = TF.summary.FileWriter(cfg['log_dir'], sess.graph)

    if cfg.get("freezeencoder", False):
        if 'efficientnet' in net_type:
            print("Freezing ONLY supported MobileNet/ResNet currently!!")
            learning_rate, train_op, tstep = get_optimizer(total_loss, cfg)

        print("Freezing encoder...")
        learning_rate, _, train_op = get_optimizer_with_freeze(total_loss, cfg)
    else:
        learning_rate, train_op, tstep = get_optimizer(total_loss, cfg)

    sess.run(TF.global_variables_initializer())
    sess.run(TF.local_variables_initializer())

    # Restore variables from disk.
    restorer.restore(sess, cfg['init_weights'])
    if maxiters == None:
        max_iter = int(cfg['multi_step'][-1][1])
    else:
        max_iter = min(int(cfg['multi_step'][-1][1]), int(maxiters))
        # display_iters = max(1,int(displayiters))
        print("Max_iters overwritten as", max_iter)

    if displayiters == None:
        display_iters = max(1, int(cfg['display_iters']))
    else:
        display_iters = max(1, int(displayiters))
        print("Display_iters overwritten as", display_iters)

    if saveiters == None:
        save_iters = max(1, int(cfg['save_iters']))

    else:
        save_iters = max(1, int(saveiters))
        print("Save_iters overwritten as", save_iters)

    cum_loss = 0.0
    lr_gen = LearningRate(cfg)

    stats_path = Path(config_yaml).with_name("learning_stats.csv")
    lrf = open(str(stats_path), "w")

    print("Training parameter:")
    print(cfg)
    print("Starting training....")
    for it in range(max_iter + 1):
        if 'efficientnet' in net_type:
            dict = {tstep: it}
            current_lr = sess.run(learning_rate, feed_dict=dict)
        else:
            current_lr = lr_gen.get_lr(it)
            dict = {learning_rate: current_lr}

        [_, loss_val, summary] = sess.run(
            [train_op, total_loss, merged_summaries],
            feed_dict=dict,
        )
        cum_loss += loss_val
        train_writer.add_summary(summary, it)

        if it % display_iters == 0 and it > 0:
            average_loss = cum_loss / display_iters
            cum_loss = 0.0
            logging.info("iteration: {} loss: {} lr: {}".format(
                it, "{0:.4f}".format(average_loss), current_lr))
            lrf.write("{}, {:.5f}, {}\n".format(it, average_loss, current_lr))
            lrf.flush()

        # Save snapshot
        if (it % save_iters == 0 and it != 0) or it == max_iter:
            model_name = cfg['snapshot_prefix']
            saver.save(sess, model_name, global_step=it)

    lrf.close()
    sess.close()
    coord.request_stop()
    coord.join([thread])
    # return to original path.
    os.chdir(str(start_path))
Пример #11
0
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=None,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
    c_engine=False,
):
    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ[
            "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )
    # Handle data previously annotated on a different platform
    sep = "/" if "/" in Data.index[0] else "\\"
    if sep != os.path.sep:
        Data.index = Data.index.str.replace(sep, os.path.sep)
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    all_bpts = np.asarray(
        len(cfg["individuals"]) * cfg["multianimalbodyparts"] +
        cfg["uniquebodyparts"])
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            joints = dlc_cfg["all_joints_names"]

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split(".")[0]
                for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                if "index" in fn
            ])
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    if os.path.isfile(
                            resultsfilename.split(".h5")[0] + "_full.pickle"):
                        print("Model already evaluated.", resultsfilename)
                    else:
                        if plotting:
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)

                        # print(dlc_cfg)
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)

                        PredicteData = {}
                        dist = np.full((len(Data), len(all_bpts)), np.nan)
                        conf = np.full_like(dist, np.nan)
                        distnorm = np.full(len(Data), np.nan)
                        print("Analyzing data...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image_path = os.path.join(cfg["project_path"],
                                                      imagename)
                            image = io.imread(image_path)
                            frame = img_as_ubyte(skimage.color.gray2rgb(image))

                            GT = Data.iloc[imageindex]
                            df = GT.unstack("coords").reindex(
                                joints, level='bodyparts')

                            # Evaluate PAF edge lengths to calibrate `distnorm`
                            temp = GT.unstack("bodyparts")[joints]
                            xy = temp.values.reshape(
                                (-1, 2, temp.shape[1])).swapaxes(1, 2)
                            edges = xy[:, dlc_cfg["partaffinityfield_graph"]]
                            lengths = np.sum(
                                (edges[:, :, 0] - edges[:, :, 1])**2, axis=2)
                            distnorm[imageindex] = np.nanmax(lengths)

                            # FIXME Is having an empty array vs nan really that necessary?!
                            groundtruthidentity = list(
                                df.index.get_level_values(
                                    "individuals").to_numpy().reshape((-1, 1)))
                            groundtruthcoordinates = list(
                                df.values[:, np.newaxis])
                            for i, coords in enumerate(groundtruthcoordinates):
                                if np.isnan(coords).any():
                                    groundtruthcoordinates[i] = np.empty(
                                        (0, 2), dtype=float)
                                    groundtruthidentity[i] = np.array(
                                        [], dtype=str)

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex

                            pred = predictma.get_detectionswithcostsandGT(
                                frame,
                                groundtruthcoordinates,
                                dlc_cfg,
                                sess,
                                inputs,
                                outputs,
                                outall=False,
                                nms_radius=dlc_cfg.nmsradius,
                                det_min_score=dlc_cfg.minconfidence,
                                c_engine=c_engine,
                            )
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            coords_pred = pred["coordinates"][0]
                            probs_pred = pred["confidence"]
                            for bpt, xy_gt in df.groupby(level="bodyparts"):
                                inds_gt = np.flatnonzero(
                                    np.all(~np.isnan(xy_gt), axis=1))
                                n_joint = joints.index(bpt)
                                xy = coords_pred[n_joint]
                                if inds_gt.size and xy.size:
                                    # Pick the predictions closest to ground truth,
                                    # rather than the ones the model has most confident in
                                    d = cdist(xy_gt.iloc[inds_gt], xy)
                                    rows, cols = linear_sum_assignment(d)
                                    min_dists = d[rows, cols]
                                    inds = np.flatnonzero(all_bpts == bpt)
                                    sl = imageindex, inds[inds_gt[rows]]
                                    dist[sl] = min_dists
                                    conf[sl] = probs_pred[n_joint][
                                        cols].squeeze()

                            if plotting:
                                fig = visualization.make_multianimal_labeled_image(
                                    frame,
                                    groundtruthcoordinates,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                )

                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )

                        sess.close()  # closes the current tf session

                        # Compute all distance statistics
                        df_dist = pd.DataFrame(dist, columns=df.index)
                        df_conf = pd.DataFrame(conf, columns=df.index)
                        df_joint = pd.concat([df_dist, df_conf],
                                             keys=["rmse", "conf"],
                                             names=["metrics"],
                                             axis=1)
                        df_joint = df_joint.reorder_levels(list(
                            np.roll(df_joint.columns.names, -1)),
                                                           axis=1)
                        df_joint.sort_index(axis=1,
                                            level=["individuals", "bodyparts"],
                                            ascending=[True, True],
                                            inplace=True)
                        write_path = os.path.join(
                            evaluationfolder,
                            f"dist_{trainingsiterations}.csv")
                        df_joint.to_csv(write_path)

                        # Calculate overall prediction error
                        error = df_joint.xs("rmse", level="metrics", axis=1)
                        mask = df_joint.xs("conf", level="metrics",
                                           axis=1) >= cfg["pcutoff"]
                        error_masked = error[mask]
                        error_train = np.nanmean(error.iloc[trainIndices])
                        error_train_cut = np.nanmean(
                            error_masked.iloc[trainIndices])
                        error_test = np.nanmean(error.iloc[testIndices])
                        error_test_cut = np.nanmean(
                            error_masked.iloc[testIndices])
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(error_train, 2),
                            np.round(error_test, 2),
                            cfg["pcutoff"],
                            np.round(error_train_cut, 2),
                            np.round(error_test_cut, 2),
                        ]
                        final_result.append(results)

                        # For OKS/PCK, compute the standard deviation error across all frames
                        sd = df_dist.groupby("bodyparts",
                                             axis=1).mean().std(axis=0)
                        sd["distnorm"] = np.sqrt(np.nanmax(distnorm))
                        sd.to_csv(write_path.replace("dist.csv", "sd.csv"))

                        if show_errors:
                            string = "Results for {} training iterations: {}, shuffle {}:\n" \
                                     "Train error: {} pixels. Test error: {} pixels.\n" \
                                     "With pcutoff of {}:\n" \
                                     "Train error: {} pixels. Test error: {} pixels."
                            print(string.format(*results))

                            print("##########################################")
                            print(
                                "Average Euclidean distance to GT per individual (in pixels)"
                            )
                            print(
                                error_masked.groupby(
                                    'individuals',
                                    axis=1).mean().mean().to_string())
                            print(
                                "Average Euclidean distance to GT per bodypart (in pixels)"
                            )
                            print(
                                error_masked.groupby(
                                    'bodyparts',
                                    axis=1).mean().mean().to_string())

                        PredicteData["metadata"] = {
                            "nms radius":
                            dlc_cfg.nmsradius,
                            "minimal confidence":
                            dlc_cfg.minconfidence,
                            "PAFgraph":
                            dlc_cfg.partaffinityfield_graph,
                            "all_joints":
                            [[i] for i in range(len(dlc_cfg.all_joints))],
                            "all_joints_names": [
                                dlc_cfg.all_joints_names[i]
                                for i in range(len(dlc_cfg.all_joints))
                            ],
                            "stride":
                            dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename)

                        tf.reset_default_graph()

                if len(final_result
                       ) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder,
                                      DLCscorer)

    # returning to intial folder
    os.chdir(str(start_path))
Пример #12
0
def train(config_yaml, displayiters, saveiters, max_to_keep=5):
    start_path = os.getcwd()
    os.chdir(str(Path(config_yaml).parents[0])
             )  #switch to folder of config_yaml (for logging)
    setup_logging()

    cfg = load_config(config_yaml)
    cfg['batch_size'] = 1  #in case this was edited for analysis.

    dataset = create_dataset(cfg)
    batch_spec = get_batch_spec(cfg)
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)
    losses = pose_net(cfg).train(batch)
    total_loss = losses['total_loss']

    for k, t in losses.items():
        tf.summary.scalar(k, t)
    merged_summaries = tf.summary.merge_all()

    variables_to_restore = slim.get_variables_to_restore(include=["resnet_v1"])
    restorer = tf.train.Saver(variables_to_restore)
    saver = tf.train.Saver(
        max_to_keep=max_to_keep
    )  # selects how many snapshots are stored, see https://github.com/AlexEMG/DeepLabCut/issues/8#issuecomment-387404835

    sess = tf.Session()
    coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
    train_writer = tf.summary.FileWriter(cfg.log_dir, sess.graph)
    learning_rate, train_op = get_optimizer(total_loss, cfg)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Restore variables from disk.
    restorer.restore(sess, cfg.init_weights)

    max_iter = int(cfg.multi_step[-1][1])

    if displayiters == None:
        display_iters = max(1, int(cfg.display_iters))
    else:
        display_iters = max(1, int(displayiters))
        print("Display_iters overwritten as", display_iters)

    if saveiters == None:
        save_iters = max(1, int(cfg.save_iters))

    else:
        save_iters = max(1, int(saveiters))
        print("Save_iters overwritten as", save_iters)

    cum_loss = 0.0
    lr_gen = LearningRate(cfg)

    stats_path = Path(config_yaml).with_name('learning_stats.csv')
    lrf = open(str(stats_path), 'w')

    print("Training parameter:")
    print(cfg)
    print("Starting training....")
    for it in range(max_iter + 1):
        current_lr = lr_gen.get_lr(it)
        [_, loss_val,
         summary] = sess.run([train_op, total_loss, merged_summaries],
                             feed_dict={learning_rate: current_lr})
        cum_loss += loss_val
        train_writer.add_summary(summary, it)

        if it % display_iters == 0 and it > 0:
            average_loss = cum_loss / display_iters
            cum_loss = 0.0
            logging.info("iteration: {} loss: {} lr: {}".format(
                it, "{0:.4f}".format(average_loss), current_lr))
            lrf.write("{}, {:.5f}, {}\n".format(it, average_loss, current_lr))
            lrf.flush()

        # Save snapshot
        if (it % save_iters == 0 and it != 0) or it == max_iter:
            model_name = cfg.snapshot_prefix
            saver.save(sess, model_name, global_step=it)

    lrf.close()
    sess.close()
    coord.request_stop()
    coord.join([thread])
    #return to original path.
    os.chdir(str(start_path))
Пример #13
0
def analyze_videos(config,videos,shuffle=1,trainingsetindex=0,videotype='avi',gputouse=None,save_as_csv=False, destfolder=None):
    """
    Makes prediction based on a trained network. The index of the trained network is specified by parameters in the config file (in particular the variable 'snapshotindex')
    
    You can crop the video (before analysis), by changing 'cropping'=True and setting 'x1','x2','y1','y2' in the config file. The same cropping parameters will then be used for creating the video.
    
    Output: The labels are stored as MultiIndex Pandas Array, which contains the name of the network, body part name, (x, y) label position \n
            in pixels, and the likelihood for each frame per body part. These arrays are stored in an efficient Hierarchical Data Format (HDF) \n
            in the same directory, where the video is stored. However, if the flag save_as_csv is set to True, the data can also be exported in \n
            comma-separated values format (.csv), which in turn can be imported in many programs, such as MATLAB, R, Prism, etc.
    
    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    videos : list
        A list of strings containing the full paths to videos for analysis or a path to the directory where all the videos with same extension are stored.

    shuffle: int, optional
        An integer specifying the shuffle index of the training dataset used for training the network. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml).
        
    videotype: string, optional
        Checks for the extension of the video in case the input to the video is a directory.\nOnly videos with this extension are analyzed. The default is ``.avi``

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    save_as_csv: bool, optional
        Saves the predictions in a .csv file. The default is ``False``; if provided it must be either ``True`` or ``False``

    destfolder: string, optional
        Specifies the destination folder for analysis data (default is the path of the video)

    Examples
    --------
    If you want to analyze only 1 video
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi'])
    --------
    
    If you want to analyze all videos of type avi in a folder:
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos'],videotype='.avi')
    --------

    If you want to analyze multiple videos
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'])
    --------

    If you want to analyze multiple videos with shuffle = 2
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'], shuffle=2)

    --------
    If you want to analyze multiple videos with shuffle = 2 and save results as an additional csv file too
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'], shuffle=2,save_as_csv=True)
    --------

    """
    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ['TF_CUDNN_USE_AUTOTUNE'] #was potentially set during training
    
    tf.reset_default_graph()
    start_path=os.getcwd() #record cwd to return to this directory in the end
    
    cfg = auxiliaryfunctions.read_config(config)
    trainFraction = cfg['TrainingFraction'][trainingsetindex]
    
    modelfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg)))
    path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError("It seems the model for shuffle %s and trainFraction %s does not exist."%(shuffle,trainFraction))

    # Check which snapshots are available and sort them by # iterations
    try:
      Snapshots = np.array([fn.split('.')[0]for fn in os.listdir(os.path.join(modelfolder , 'train'))if "index" in fn])
    except FileNotFoundError:
      raise FileNotFoundError("Snapshots not found! It seems the dataset for shuffle %s has not been trained/does not exist.\n Please train it before using it to analyze videos.\n Use the function 'train_network' to train the network for shuffle %s."%(shuffle,shuffle))

    if cfg['snapshotindex'] == 'all':
        print("Snapshotindex is set to 'all' in the config.yaml file. Running video analysis with all snapshots is very costly! Use the function 'evaluate_network' to choose the best the snapshot. For now, changing snapshot index to -1!")
        snapshotindex = -1
    else:
        snapshotindex=cfg['snapshotindex']
        
    increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots])
    Snapshots = Snapshots[increasing_indices]
    
    print("Using %s" % Snapshots[snapshotindex], "for model", modelfolder)

    ##################################################
    # Load and setup CNN part detector
    ##################################################

    # Check if data already was generated:
    dlc_cfg['init_weights'] = os.path.join(modelfolder , 'train', Snapshots[snapshotindex])
    trainingsiterations = (dlc_cfg['init_weights'].split(os.sep)[-1]).split('-')[-1]
    
    #update batchsize (based on parameters in config.yaml)
    dlc_cfg['batch_size']=cfg['batch_size']
    # Name for scorer:
    DLCscorer = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations=trainingsiterations)
    
    sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
    pdindex = pd.MultiIndex.from_product([[DLCscorer], dlc_cfg['all_joints_names'], ['x', 'y', 'likelihood']],names=['scorer', 'bodyparts', 'coords'])

    if gputouse is not None: #gpu selectinon
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)
    
    ##################################################
    # Datafolder
    ##################################################
    #checks if input is a directory
    if [os.path.isdir(i) for i in videos] == [True]:#os.path.isdir(video)==True:
        """
        Analyzes all the videos in the directory.
        """
        print("Analyzing all the videos in the directory")
        videofolder= videos[0]
        os.chdir(videofolder)
        videolist=[fn for fn in os.listdir(os.curdir) if (videotype in fn) and ('_labeled.mp4' not in fn)] #exclude labeled-videos!
        Videos = sample(videolist,len(videolist)) # this is useful so multiple nets can be used to analzye simultanously
    else:
        if isinstance(videos,str):
            if os.path.isfile(videos): # #or just one direct path!
                Videos=[videos]
            else:
                Videos=[]
        else:
            Videos=[v for v in videos if os.path.isfile(v)]
    
    if len(Videos)>0:
        #looping over videos
        for video in Videos:
            AnalyzeVideo(video,DLCscorer,trainFraction,cfg,dlc_cfg,sess,inputs, outputs,pdindex,save_as_csv, destfolder)
    
    os.chdir(str(start_path))
    print("The videos are analyzed. Now your research can truly start! \n You can create labeled videos with 'create_labeled_video'.")
    print("If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract any outlier frames!")
Пример #14
0
def evaluate_network(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=False,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    rescale=False,
    modelprefix="",
):
    """

    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.
    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    plotting: bool or str, optional
        Plots the predictions on the train and test images.
        The default is ``False``; if provided it must be either ``True``, ``False``, "bodypart", or "individual".
        Setting to ``True`` defaults as "bodypart" for multi-animal projects.

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
        See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot, just evaluate shuffle 1.
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', Shuffles=[1])
    --------
    If you want to plot and evaluate shuffle 0 and 1.
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[0, 1],plotting = True)

    --------
    If you want to plot assemblies for a maDLC project:
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[1],plotting = "individual")

    Note: this defaults to standard plotting for single-animal projects.

    """
    if plotting not in (True, False, "bodypart", "individual"):
        raise ValueError(f"Unknown value for `plotting`={plotting}")

    import os

    start_path = os.getcwd()
    from deeplabcut.utils import auxiliaryfunctions

    cfg = auxiliaryfunctions.read_config(config)

    if cfg.get("multianimalproject", False):
        from .evaluate_multianimal import evaluate_multianimal_full

        # TODO: Make this code not so redundant!
        evaluate_multianimal_full(
            config=config,
            Shuffles=Shuffles,
            trainingsetindex=trainingsetindex,
            plotting=plotting,
            comparisonbodyparts=comparisonbodyparts,
            gputouse=gputouse,
            modelprefix=modelprefix,
        )
    else:
        from deeplabcut.utils.auxfun_videos import imread, imresize
        from deeplabcut.pose_estimation_tensorflow.core import predict
        from deeplabcut.pose_estimation_tensorflow.config import load_config
        from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input
        from deeplabcut.utils import auxiliaryfunctions, conversioncode
        import tensorflow as tf

        # If a string was passed in, auto-convert to True for backward compatibility
        plotting = bool(plotting)

        if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
            del os.environ[
                "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

        tf.compat.v1.reset_default_graph()
        os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
        #    tf.logging.set_verbosity(tf.logging.WARN)

        start_path = os.getcwd()
        # Read file path for pose_config file. >> pass it on
        cfg = auxiliaryfunctions.read_config(config)
        if gputouse is not None:  # gpu selectinon
            os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

        if trainingsetindex == "all":
            TrainingFractions = cfg["TrainingFraction"]
        else:
            if (trainingsetindex < len(cfg["TrainingFraction"])
                    and trainingsetindex >= 0):
                TrainingFractions = [
                    cfg["TrainingFraction"][int(trainingsetindex)]
                ]
            else:
                raise Exception(
                    "Please check the trainingsetindex! ",
                    trainingsetindex,
                    " should be an integer from 0 .. ",
                    int(len(cfg["TrainingFraction"]) - 1),
                )

        # Loading human annotatated data
        trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ))

        # Get list of body parts to evaluate network for
        comparisonbodyparts = (
            auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
                cfg, comparisonbodyparts))
        # Make folder for evaluation
        auxiliaryfunctions.attempttomakefolder(
            str(cfg["project_path"] + "/evaluation-results/"))
        for shuffle in Shuffles:
            for trainFraction in TrainingFractions:
                ##################################################
                # Load and setup CNN part detector
                ##################################################
                datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                    trainingsetfolder, trainFraction, shuffle, cfg)
                modelfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.GetModelFolder(
                            trainFraction,
                            shuffle,
                            cfg,
                            modelprefix=modelprefix)),
                )

                path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
                # Load meta data
                (
                    data,
                    trainIndices,
                    testIndices,
                    trainFraction,
                ) = auxiliaryfunctions.LoadMetadata(
                    os.path.join(cfg["project_path"], metadatafn))

                try:
                    dlc_cfg = load_config(str(path_test_config))
                except FileNotFoundError:
                    raise FileNotFoundError(
                        "It seems the model for shuffle %s and trainFraction %s does not exist."
                        % (shuffle, trainFraction))

                # change batch size, if it was edited during analysis!
                dlc_cfg[
                    "batch_size"] = 1  # in case this was edited for analysis.

                # Create folder structure to store results.
                evaluationfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.GetEvaluationFolder(
                            trainFraction,
                            shuffle,
                            cfg,
                            modelprefix=modelprefix)),
                )
                auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                       recursive=True)
                # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

                # Check which snapshots are available and sort them by # iterations
                Snapshots = np.array([
                    fn.split(".")[0] for fn in os.listdir(
                        os.path.join(str(modelfolder), "train"))
                    if "index" in fn
                ])
                try:  # check if any where found?
                    Snapshots[0]
                except IndexError:
                    raise FileNotFoundError(
                        "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                        % (shuffle, trainFraction))

                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    raise ValueError(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []

                ########################### RESCALING (to global scale)
                if rescale:
                    scale = dlc_cfg["global_scale"]
                    Data = (pd.read_hdf(
                        os.path.join(
                            cfg["project_path"],
                            str(trainingsetfolder),
                            "CollectedData_" + cfg["scorer"] + ".h5",
                        )) * scale)
                else:
                    scale = 1

                conversioncode.guarantee_multiindex_rows(Data)
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # Name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of training iterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )
                    if notanalyzed:
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)
                        Numimages = len(Data.index)
                        PredicteData = np.zeros(
                            (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
                        print("Running evaluation ...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image = imread(
                                os.path.join(cfg["project_path"], *imagename),
                                mode="skimage",
                            )
                            if scale != 1:
                                image = imresize(image, scale)

                            image_batch = data_to_input(image)
                            # Compute prediction with the CNN
                            outputs_np = sess.run(
                                outputs, feed_dict={inputs: image_batch})
                            scmap, locref = predict.extract_cnn_output(
                                outputs_np, dlc_cfg)

                            # Extract maximum scoring location from the heatmap, assume 1 person
                            pose = predict.argmax_pose_predict(
                                scmap, locref, dlc_cfg["stride"])
                            PredicteData[imageindex, :] = (
                                pose.flatten()
                            )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                        sess.close()  # closes the current tf session

                        index = pd.MultiIndex.from_product(
                            [
                                [DLCscorer],
                                dlc_cfg["all_joints_names"],
                                ["x", "y", "likelihood"],
                            ],
                            names=["scorer", "bodyparts", "coords"],
                        )

                        # Saving results
                        DataMachine = pd.DataFrame(PredicteData,
                                                   columns=index,
                                                   index=Data.index)
                        DataMachine.to_hdf(resultsfilename, "df_with_missing")

                        print(
                            "Analysis is done and the results are stored (see evaluation-results) for snapshot: ",
                            Snapshots[snapindex],
                        )
                        DataCombined = pd.concat([Data.T, DataMachine.T],
                                                 axis=0,
                                                 sort=False).T

                        RMSE, RMSEpcutoff = pairwisedistances(
                            DataCombined,
                            cfg["scorer"],
                            DLCscorer,
                            cfg["pcutoff"],
                            comparisonbodyparts,
                        )
                        testerror = np.nanmean(
                            RMSE.iloc[testIndices].values.flatten())
                        trainerror = np.nanmean(
                            RMSE.iloc[trainIndices].values.flatten())
                        testerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[testIndices].values.flatten())
                        trainerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[trainIndices].values.flatten())
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(trainerror, 2),
                            np.round(testerror, 2),
                            cfg["pcutoff"],
                            np.round(trainerrorpcutoff, 2),
                            np.round(testerrorpcutoff, 2),
                        ]
                        final_result.append(results)

                        if show_errors:
                            print(
                                "Results for",
                                trainingsiterations,
                                " training iterations:",
                                int(100 * trainFraction),
                                shuffle,
                                "train error:",
                                np.round(trainerror, 2),
                                "pixels. Test error:",
                                np.round(testerror, 2),
                                " pixels.",
                            )
                            print(
                                "With pcutoff of",
                                cfg["pcutoff"],
                                " train error:",
                                np.round(trainerrorpcutoff, 2),
                                "pixels. Test error:",
                                np.round(testerrorpcutoff, 2),
                                "pixels",
                            )
                            if scale != 1:
                                print(
                                    "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:",
                                    scale,
                                )
                            print(
                                "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                            )

                        if plotting:
                            print("Plotting...")
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )  # Rescaling coordinates to have figure in original size!

                        tf.compat.v1.reset_default_graph()
                        # print(final_result)
                    else:
                        DataMachine = pd.read_hdf(resultsfilename)
                        conversioncode.guarantee_multiindex_rows(DataMachine)
                        if plotting:
                            DataCombined = pd.concat([Data.T, DataMachine.T],
                                                     axis=0,
                                                     sort=False).T
                            print(
                                "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)"
                            )
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )

                if len(final_result
                       ) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder,
                                      DLCscorer)
                    print(
                        "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
                    )
                    print(
                        "Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
                    )
                    print(
                        "Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)"
                    )

    # returning to initial folder
    os.chdir(str(start_path))
Пример #15
0
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=None,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
    c_engine=False,
):
    """
    WIP multi animal project.
    """

    import os

    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ[
            "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split(".")[0]
                for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                if "index" in fn
            ])
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                (
                    individuals,
                    uniquebodyparts,
                    multianimalbodyparts,
                ) = auxfun_multianimal.extractindividualsandbodyparts(cfg)

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    if os.path.isfile(
                            resultsfilename.split(".h5")[0] + "_full.pickle"):
                        print("Model already evaluated.", resultsfilename)
                    else:
                        if plotting:
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)

                        # print(dlc_cfg)
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)

                        PredicteData = {}
                        print("Analyzing data...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image_path = os.path.join(cfg["project_path"],
                                                      imagename)
                            image = io.imread(image_path)
                            frame = img_as_ubyte(skimage.color.gray2rgb(image))

                            GT = Data.iloc[imageindex]

                            # Storing GT data as dictionary, so it can be used for calculating connection costs
                            groundtruthcoordinates = []
                            groundtruthidentity = []
                            for bptindex, bpt in enumerate(
                                    dlc_cfg["all_joints_names"]):
                                coords = np.zeros([len(individuals), 2
                                                   ]) * np.nan
                                identity = []
                                for prfxindex, prefix in enumerate(
                                        individuals):
                                    if bpt in uniquebodyparts and prefix == "single":
                                        coords[prfxindex, :] = np.array([
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["x"],
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["y"],
                                        ])
                                        identity.append(prefix)
                                    elif (bpt in multianimalbodyparts
                                          and prefix != "single"):
                                        coords[prfxindex, :] = np.array([
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["x"],
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["y"],
                                        ])
                                        identity.append(prefix)
                                    else:
                                        identity.append("nix")

                                groundtruthcoordinates.append(
                                    coords[np.isfinite(coords[:, 0]), :])
                                groundtruthidentity.append(
                                    np.array(identity)[np.isfinite(coords[:,
                                                                          0])])

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex

                            pred = predictma.get_detectionswithcostsandGT(
                                frame,
                                groundtruthcoordinates,
                                dlc_cfg,
                                sess,
                                inputs,
                                outputs,
                                outall=False,
                                nms_radius=dlc_cfg.nmsradius,
                                det_min_score=dlc_cfg.minconfidence,
                                c_engine=c_engine,
                            )
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            if plotting:
                                coords_pred = pred["coordinates"][0]
                                probs_pred = pred["confidence"]
                                fig = visualization.make_multianimal_labeled_image(
                                    frame,
                                    groundtruthcoordinates,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                )

                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )

                        sess.close()  # closes the current tf session
                        PredicteData["metadata"] = {
                            "nms radius":
                            dlc_cfg.nmsradius,
                            "minimal confidence":
                            dlc_cfg.minconfidence,
                            "PAFgraph":
                            dlc_cfg.partaffinityfield_graph,
                            "all_joints":
                            [[i] for i in range(len(dlc_cfg.all_joints))],
                            "all_joints_names": [
                                dlc_cfg.all_joints_names[i]
                                for i in range(len(dlc_cfg.all_joints))
                            ],
                            "stride":
                            dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename)

                        tf.reset_default_graph()

    # returning to intial folder
    os.chdir(str(start_path))
Пример #16
0
def train(config_yaml,
          displayiters,
          saveiters,
          maxiters,
          max_to_keep=5,
          keepdeconvweights=True):
    start_path = os.getcwd()
    os.chdir(str(Path(config_yaml).parents[0])
             )  #switch to folder of config_yaml (for logging)
    setup_logging()

    cfg = load_config(config_yaml)
    if cfg.dataset_type == 'default' or cfg.dataset_type == 'tensorpack' or cfg.dataset_type == 'deterministic':
        print(
            "Switching batchsize to 1, as default/tensorpack/deterministic loaders do not support batches >1. Use imgaug loader."
        )

        cfg['batch_size'] = 1  #in case this was edited for analysis.-

    dataset = create_dataset(cfg)
    batch_spec = get_batch_spec(cfg)
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)
    losses = pose_net(cfg).train(batch)
    total_loss = losses['total_loss']

    for k, t in losses.items():
        TF.summary.scalar(k, t)
    merged_summaries = TF.summary.merge_all()

    if 'snapshot' in Path(cfg.init_weights).stem and keepdeconvweights:
        print("Loading already trained DLC with backbone:", cfg.net_type)
        variables_to_restore = slim.get_variables_to_restore()
    else:
        print("Loading ImageNet-pretrained", cfg.net_type)
        #loading backbone from ResNet, MobileNet etc.
        if 'resnet' in cfg.net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["resnet_v1"])
        elif 'mobilenet' in cfg.net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["MobilenetV2"])
        else:
            print("Wait for DLC 2.3.")

    restorer = TF.train.Saver(variables_to_restore)
    saver = TF.train.Saver(
        max_to_keep=max_to_keep
    )  # selects how many snapshots are stored, see https://github.com/AlexEMG/DeepLabCut/issues/8#issuecomment-387404835

    sess = TF.Session(config=config)
    coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
    train_writer = TF.summary.FileWriter(cfg.log_dir, sess.graph)
    learning_rate, train_op = get_optimizer(total_loss, cfg)

    sess.run(TF.global_variables_initializer())
    sess.run(TF.local_variables_initializer())

    # Restore variables from disk.
    restorer.restore(sess, cfg.init_weights)
    if maxiters == None:
        max_iter = int(cfg.multi_step[-1][1])
    else:
        max_iter = min(int(cfg.multi_step[-1][1]), int(maxiters))
        #display_iters = max(1,int(displayiters))
        print("Max_iters overwritten as", max_iter)

    if displayiters == None:
        display_iters = max(1, int(cfg.display_iters))
    else:
        display_iters = max(1, int(displayiters))
        print("Display_iters overwritten as", display_iters)

    if saveiters == None:
        save_iters = max(1, int(cfg.save_iters))

    else:
        save_iters = max(1, int(saveiters))
        print("Save_iters overwritten as", save_iters)

    cum_loss = 0.0
    lr_gen = LearningRate(cfg)

    stats_path = Path(config_yaml).with_name('learning_stats.csv')
    lrf = open(str(stats_path), 'w')

    print("Training parameter:")
    print(cfg)
    print("Starting training....")
    for it in range(max_iter + 1):
        current_lr = lr_gen.get_lr(it)
        [_, loss_val,
         summary] = sess.run([train_op, total_loss, merged_summaries],
                             feed_dict={learning_rate: current_lr})
        cum_loss += loss_val
        train_writer.add_summary(summary, it)

        if it % display_iters == 0 and it > 0:
            average_loss = cum_loss / display_iters
            cum_loss = 0.0
            logging.info("iteration: {} loss: {} lr: {}".format(
                it, "{0:.4f}".format(average_loss), current_lr))
            lrf.write("{}, {:.5f}, {}\n".format(it, average_loss, current_lr))
            lrf.flush()

        # Save snapshot
        if (it % save_iters == 0 and it != 0) or it == max_iter:
            model_name = cfg.snapshot_prefix
            saver.save(sess, model_name, global_step=it)

    lrf.close()
    sess.close()
    coord.request_stop()
    coord.join([thread])
    #return to original path.
    os.chdir(str(start_path))
Пример #17
0
def evaluate_network(config,
                     Shuffles=[1],
                     plotting=None,
                     show_errors=True,
                     comparisonbodyparts="all",
                     gputouse=None):
    """
    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    plotting: bool, optional
        Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False``

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------

    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """
    import os
    from skimage import io
    import skimage.color

    from deeplabcut.pose_estimation_tensorflow.nnet import predict as ptf_predict
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions, visualization
    import tensorflow as tf

    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ[
            'TF_CUDNN_USE_AUTOTUNE']  #was potentially set during training

    vers = (tf.__version__).split('.')
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    TF.reset_default_graph()

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)
    if gputouse is not None:  #gpu selectinon
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(cfg["project_path"], str(trainingsetfolder),
                     'CollectedData_' + cfg["scorer"] + '.h5'),
        'df_with_missing')
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in cfg["TrainingFraction"]:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(trainFraction, shuffle,
                                                      cfg)))
            path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
            # Load meta data
            data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            #change batch size, if it was edited during analysis!
            dlc_cfg['batch_size'] = 1  #in case this was edited for analysis.
            #Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg)))
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split('.')[0]
                for fn in os.listdir(os.path.join(str(modelfolder), 'train'))
                if "index" in fn
            ])
            try:  #check if any where found?
                Snapshots[0]
            except IndexError:
                raise FileNotFoundError(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))

            increasing_indices = np.argsort(
                [int(m.split('-')[1]) for m in Snapshots])
            Snapshots = Snapshots[increasing_indices]

            if cfg["snapshotindex"] == -1:
                snapindices = [-1]
            elif cfg["snapshotindex"] == "all":
                snapindices = range(len(Snapshots))
            elif cfg["snapshotindex"] < len(Snapshots):
                snapindices = [cfg["snapshotindex"]]
            else:
                print(
                    "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                )

            final_result = []
            ##################################################
            # Compute predictions over images
            ##################################################
            for snapindex in snapindices:
                dlc_cfg['init_weights'] = os.path.join(
                    str(modelfolder), 'train', Snapshots[snapindex]
                )  #setting weights to corresponding snapshot.
                trainingsiterations = (
                    dlc_cfg['init_weights'].split(os.sep)[-1]
                ).split(
                    '-'
                )[-1]  #read how many training siterations that corresponds to.

                #name for deeplabcut net (based on its parameters)
                DLCscorer = auxiliaryfunctions.GetScorerName(
                    cfg, shuffle, trainFraction, trainingsiterations)
                print("Running ", DLCscorer, " with # of trainingiterations:",
                      trainingsiterations)
                resultsfilename = os.path.join(
                    str(evaluationfolder),
                    DLCscorer + '-' + Snapshots[snapindex] + '.h5')
                try:
                    DataMachine = pd.read_hdf(resultsfilename,
                                              'df_with_missing')
                    print("This net has already been evaluated!")
                except FileNotFoundError:
                    # Specifying state of model (snapshot / training state)
                    sess, inputs, outputs = ptf_predict.setup_pose_prediction(
                        dlc_cfg)

                    Numimages = len(Data.index)
                    PredicteData = np.zeros(
                        (Numimages, 3 * len(dlc_cfg['all_joints_names'])))
                    print("Analyzing data...")
                    for imageindex, imagename in tqdm(enumerate(Data.index)):
                        image = io.imread(os.path.join(cfg['project_path'],
                                                       imagename),
                                          mode='RGB')
                        image = skimage.color.gray2rgb(image)
                        image_batch = data_to_input(image)

                        # Compute prediction with the CNN
                        outputs_np = sess.run(outputs,
                                              feed_dict={inputs: image_batch})
                        scmap, locref = ptf_predict.extract_cnn_output(
                            outputs_np, dlc_cfg)

                        # Extract maximum scoring location from the heatmap, assume 1 person
                        pose = ptf_predict.argmax_pose_predict(
                            scmap, locref, dlc_cfg.stride)
                        PredicteData[imageindex, :] = pose.flatten(
                        )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                    sess.close()  #closes the current tf session

                    index = pd.MultiIndex.from_product(
                        [[DLCscorer], dlc_cfg['all_joints_names'],
                         ['x', 'y', 'likelihood']],
                        names=['scorer', 'bodyparts', 'coords'])

                    # Saving results
                    DataMachine = pd.DataFrame(PredicteData,
                                               columns=index,
                                               index=Data.index.values)
                    DataMachine.to_hdf(resultsfilename,
                                       'df_with_missing',
                                       format='table',
                                       mode='w')

                    print("Done and results stored for snapshot: ",
                          Snapshots[snapindex])
                    DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                    RMSE, RMSEpcutoff = pairwisedistances(
                        DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"],
                        comparisonbodyparts)
                    testerror = np.nanmean(
                        RMSE.iloc[testIndices].values.flatten())
                    trainerror = np.nanmean(
                        RMSE.iloc[trainIndices].values.flatten())
                    testerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[testIndices].values.flatten())
                    trainerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[trainIndices].values.flatten())
                    results = [
                        trainingsiterations,
                        int(100 * trainFraction), shuffle,
                        np.round(trainerror, 2),
                        np.round(testerror, 2), cfg["pcutoff"],
                        np.round(trainerrorpcutoff, 2),
                        np.round(testerrorpcutoff, 2)
                    ]
                    final_result.append(results)

                    if show_errors == True:
                        print("Results for",
                              trainingsiterations, " training iterations:",
                              int(100 * trainFraction), shuffle,
                              "train error:",
                              np.round(trainerror, 2), "pixels. Test error:",
                              np.round(testerror, 2), " pixels.")
                        print("With pcutoff of",
                              cfg["pcutoff"], " train error:",
                              np.round(trainerrorpcutoff,
                                       2), "pixels. Test error:",
                              np.round(testerrorpcutoff, 2), "pixels")
                        print(
                            "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                        )

                    if plotting == True:
                        print("Plotting...")
                        colors = visualization.get_cmap(
                            len(comparisonbodyparts), name=cfg['colormap'])

                        foldername = os.path.join(
                            str(evaluationfolder), 'LabeledImages_' +
                            DLCscorer + '_' + Snapshots[snapindex])
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        NumFrames = np.size(DataCombined.index)
                        for ind in np.arange(NumFrames):
                            visualization.PlottingandSaveLabeledFrame(
                                DataCombined, ind, trainIndices, cfg, colors,
                                comparisonbodyparts, DLCscorer, foldername)

                    TF.reset_default_graph()
                    #print(final_result)
            make_results_file(final_result, evaluationfolder, DLCscorer)
            print(
                "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
            )
            print(
                "If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
            )
            print(
                "Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)"
            )

    #returning to intial folder
    os.chdir(str(start_path))
Пример #18
0
def train(
    config_yaml,
    displayiters,
    saveiters,
    maxiters,
    max_to_keep=5,
    keepdeconvweights=True,
    allow_growth=False,
):
    start_path = os.getcwd()
    os.chdir(
        str(Path(config_yaml).parents[0])
    )  # switch to folder of config_yaml (for logging)

    setup_logging()

    cfg = load_config(config_yaml)
    if cfg["optimizer"] != "adam":
        print(
            "Setting batchsize to 1! Larger batchsize not supported for this loader:",
            cfg["dataset_type"],
        )
        cfg["batch_size"] = 1

    if (
        cfg["partaffinityfield_predict"] and "multi-animal" in cfg["dataset_type"]
    ):  # the PAF code currently just hijacks the pairwise net stuff (for the batch feeding via Batch.pairwise_targets: 5)
        print("Activating limb prediction...")
        cfg["pairwise_predict"] = True

    dataset = create_dataset(cfg)
    batch_spec = get_batch_spec(cfg)
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)

    losses = pose_net(cfg).train(batch)
    total_loss = losses["total_loss"]

    for k, t in losses.items():
        TF.summary.scalar(k, t)
    merged_summaries = TF.summary.merge_all()
    net_type = cfg["net_type"]

    if "snapshot" in Path(cfg["init_weights"]).stem and keepdeconvweights:
        print("Loading already trained DLC with backbone:", net_type)
        variables_to_restore = slim.get_variables_to_restore()
    else:
        print("Loading ImageNet-pretrained", net_type)
        # loading backbone from ResNet, MobileNet etc.
        if "resnet" in net_type:
            variables_to_restore = slim.get_variables_to_restore(include=["resnet_v1"])
        elif "mobilenet" in net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["MobilenetV2"]
            )
        elif "efficientnet" in net_type:
            variables_to_restore = slim.get_variables_to_restore(
                include=["efficientnet"]
            )
            variables_to_restore = {
                var.op.name.replace("efficientnet/", "")
                + "/ExponentialMovingAverage": var
                for var in variables_to_restore
            }
        else:
            print("Wait for DLC 2.3.")

    restorer = TF.train.Saver(variables_to_restore)
    saver = TF.train.Saver(
        max_to_keep=max_to_keep
    )  # selects how many snapshots are stored, see https://github.com/AlexEMG/DeepLabCut/issues/8#issuecomment-387404835

    if allow_growth:
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        sess = TF.Session(config=config)
    else:
        sess = TF.Session()

    coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
    train_writer = TF.summary.FileWriter(cfg["log_dir"], sess.graph)
    learning_rate, train_op, tstep = get_optimizer(total_loss, cfg)

    sess.run(TF.global_variables_initializer())
    sess.run(TF.local_variables_initializer())

    restorer.restore(sess, cfg["init_weights"])
    if maxiters == None:
        max_iter = int(cfg["multi_step"][-1][1])
    else:
        max_iter = min(int(cfg["multi_step"][-1][1]), int(maxiters))
        # display_iters = max(1,int(displayiters))
        print("Max_iters overwritten as", max_iter)

    if displayiters == None:
        display_iters = max(1, int(cfg["display_iters"]))
    else:
        display_iters = max(1, int(displayiters))
        print("Display_iters overwritten as", display_iters)

    if saveiters == None:
        save_iters = max(1, int(cfg["save_iters"]))

    else:
        save_iters = max(1, int(saveiters))
        print("Save_iters overwritten as", save_iters)

    cumloss, partloss, locrefloss, pwloss = 0.0, 0.0, 0.0, 0.0
    lr_gen = LearningRate(cfg)
    stats_path = Path(config_yaml).with_name("learning_stats.csv")
    lrf = open(str(stats_path), "w")

    print("Training parameters:")
    print(cfg)
    print("Starting multi-animal training....")
    for it in range(max_iter + 1):
        if "efficientnet" in net_type:
            dict = {tstep: it}
            current_lr = sess.run(learning_rate, feed_dict=dict)
        else:
            current_lr = lr_gen.get_lr(it)
            dict = {learning_rate: current_lr}

        # [_, loss_val, summary] = sess.run([train_op, total_loss, merged_summaries],feed_dict={learning_rate: current_lr})
        [_, alllosses, loss_val, summary] = sess.run(
            [train_op, losses, total_loss, merged_summaries], feed_dict=dict
        )

        partloss += alllosses["part_loss"]  # scoremap loss
        if cfg["location_refinement"]:
            locrefloss += alllosses["locref_loss"]
        if cfg["pairwise_predict"]:  # paf loss
            pwloss += alllosses["pairwise_loss"]

        cumloss += loss_val
        train_writer.add_summary(summary, it)

        if it % display_iters == 0 and it > 0:
            logging.info(
                "iteration: {} loss: {} scmap loss: {} locref loss: {} limb loss: {} lr: {}".format(
                    it,
                    "{0:.4f}".format(cumloss / display_iters),
                    "{0:.4f}".format(partloss / display_iters),
                    "{0:.4f}".format(locrefloss / display_iters),
                    "{0:.4f}".format(pwloss / display_iters),
                    current_lr,
                )
            )

            lrf.write(
                "iteration: {}, loss: {}, scmap loss: {}, locref loss: {}, limb loss: {}, lr: {}\n".format(
                    it,
                    "{0:.4f}".format(cumloss / display_iters),
                    "{0:.4f}".format(partloss / display_iters),
                    "{0:.4f}".format(locrefloss / display_iters),
                    "{0:.4f}".format(pwloss / display_iters),
                    current_lr,
                )
            )

            cumloss, partloss, locrefloss, pwloss = 0.0, 0.0, 0.0, 0.0
            lrf.flush()

        # Save snapshot
        if (it % save_iters == 0 and it != 0) or it == max_iter:
            model_name = cfg["snapshot_prefix"]
            saver.save(sess, model_name, global_step=it)

    lrf.close()

    sess.close()
    coord.request_stop()
    coord.join([thread])
    # return to original path.
    os.chdir(str(start_path))
Пример #19
0
def create_train_sets(task,
                      date,
                      schedule_id=2,
                      trainindex=0,
                      uniform=True,
                      create_default_run=False):
    #%%
    # Deprecated
    #%%
    shuffle_indices = []
    #%%
    data_info = DataLoader(task)

    # get project configuration file
    cfg = get_model_config(task,
                           data_info.model_data_dir,
                           scorer=data_info.scorer,
                           date=date)
    project_path = Path(cfg["project_path"])
    path_config_file = project_path / "config.yaml"
    #%%
    trainIndexes, testIndexes, _ = load_train_test_indices(
        path_config_file, trainindex=trainindex, uniform=uniform)
    # store train and test indices for schedule
    #%%
    # get the largest index
    largestshuffleindex = get_largestshuffle_index(str(path_config_file))
    #%%
    TrainingFraction = cfg["TrainingFraction"]

    #%%
    # create log file
    logger_name = "training_model_comparison_trainindex_{}_uniform_{}".format(
        trainindex, uniform)
    log_file_name = str(project_path / (logger_name + ".log"))
    logger = logging.getLogger(logger_name)
    # print(logger.handlers)
    #%%
    if not logger.handlers:
        # create logger comparison data
        new_iteration_shuffle = True
        logger = logging.getLogger(logger_name)
        hdlr = logging.FileHandler(log_file_name)
        formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")
        hdlr.setFormatter(formatter)
        logger.addHandler(hdlr)
        logger.setLevel(logging.INFO)
    else:
        # logger exists! shuffle should be set to > max
        new_iteration_shuffle = False

    #%%
    if create_default_run:
        # Create shuffle 0 for default params
        if new_iteration_shuffle & largestshuffleindex == 0:
            create_training_dataset(
                str(path_config_file),
                Shuffles=[largestshuffleindex],
                trainIndexes=trainIndexes,
                testIndexes=testIndexes,
            )

        # reading file struct for training and test files as pose_yaml files
        if new_iteration_shuffle & largestshuffleindex == 0:
            trainFraction = TrainingFraction[0]
            modelfoldername = auxiliaryfunctions.GetModelFolder(
                trainFraction, largestshuffleindex, cfg)
            path_train_config = str(project_path / Path(modelfoldername) /
                                    "train" / "pose_cfg.yaml")
            # path_test_config = str(project_path / Path(modelfoldername) /'test' /'pose_cfg.yaml')

            # cfg_train = auxiliaryfunctions.read_config(path_train_config)
            cfg_train = load_config(filename=path_train_config)

            # load_config gets the training datas
            log_info = str("Shuffle index: {},".format(largestshuffleindex) +
                           "".join("{!r}: {!r},".format(k, v)
                                   for k, v in cfg_train.items()))
            logger.info(log_info)

            shuffle_indices.append(largestshuffleindex)
    #%% Run schedule
    schedule = default_scheduling(schedule_id, str(project_path))
    print("Setting up {} experiments".format(len(schedule)))
    print(
        "Last scheduled experiment was shuffle {}".format(largestshuffleindex))
    #%%
    # TO DO: add read log_info function to avoid modified params
    # TO DO: skip creating new data
    for schedule_config_idx, schedule_config in enumerate(schedule):
        print(schedule_config)
        #schedule_config['project_path'] = str(str(project_path))
        get_max_shuffle_idx = largestshuffleindex + schedule_config_idx + 1
        # Create dataset for that shuffle with deterministic data
        add_train_shuffle(get_max_shuffle_idx,
                          cfg,
                          trainIndexes,
                          testIndexes,
                          schedule_config=schedule_config)

        # replace by all config files
        # log_info = str("Shuffle index: {},".format(get_max_shuffle_idx) + "".join("{!r}: {!r},".format(k, v)
        #                  for k, v in schedule_config.items()))

        trainFraction = TrainingFraction[cfg["iteration"]]
        modelfoldername = auxiliaryfunctions.GetModelFolder(
            trainFraction, get_max_shuffle_idx, cfg)
        path_train_config = str(project_path / Path(modelfoldername) /
                                "train" / "pose_cfg.yaml")
        # path_test_config = str(project_path / Path(modelfoldername) /'test' /'pose_cfg.yaml')

        # cfg_train = auxiliaryfunctions.read_config(path_train_config)
        cfg_train = load_config(filename=path_train_config)
        # load_config gets the training datas
        log_info = str("Shuffle index: {},".format(get_max_shuffle_idx) +
                       "".join("{!r}: {!r},".format(k, v)
                               for k, v in cfg_train.items()))
        logger.info(log_info)

        print(log_info)

        shuffle_indices.append(get_max_shuffle_idx)
    logging.shutdown()
    return shuffle_indices
Пример #20
0
def analyze_videos(config,videos, videotype='avi', shuffle=1, trainingsetindex=0,
                    gputouse=None, save_as_csv=False, destfolder=None, batchsize=None,
                    cropping=None,get_nframesfrommetadata=True, TFGPUinference=True,dynamic=(False,.5,10)):
    """
    Makes prediction based on a trained network. The index of the trained network is specified by parameters in the config file (in particular the variable 'snapshotindex')

    You can crop the video (before analysis), by changing 'cropping'=True and setting 'x1','x2','y1','y2' in the config file. The same cropping parameters will then be used for creating the video.

    Output: The labels are stored as MultiIndex Pandas Array, which contains the name of the network, body part name, (x, y) label position \n
            in pixels, and the likelihood for each frame per body part. These arrays are stored in an efficient Hierarchical Data Format (HDF) \n
            in the same directory, where the video is stored. However, if the flag save_as_csv is set to True, the data can also be exported in \n
            comma-separated values format (.csv), which in turn can be imported in many programs, such as MATLAB, R, Prism, etc.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    videos : list
        A list of strings containing the full paths to videos for analysis or a path to the directory, where all the videos with same extension are stored.

    videotype: string, optional
        Checks for the extension of the video in case the input to the video is a directory.\n Only videos with this extension are analyzed. The default is ``.avi``

    shuffle: int, optional
        An integer specifying the shuffle index of the training dataset used for training the network. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    save_as_csv: bool, optional
        Saves the predictions in a .csv file. The default is ``False``; if provided it must be either ``True`` or ``False``

    destfolder: string, optional
        Specifies the destination folder for analysis data (default is the path of the video). Note that for subsequent analysis this
        folder also needs to be passed.

    batchsize: int, default from pose_cfg.yaml
        Change batch size for inference; if given overwrites value in pose_cfg.yaml

    TFGPUinference: bool, default: True
        Perform inference on GPU with Tensorflow code. Introduced in "Pretraining boosts out-of-domain robustness for pose estimation" by
        Alexander Mathis, Mert Yüksekgönül, Byron Rogers, Matthias Bethge, Mackenzie W. Mathis Source: https://arxiv.org/abs/1909.11229

    dynamic: triple containing (state,detectiontreshold,margin)
        If the state is true, then dynamic cropping will be performed. That means that if an object is detected (i.e. any body part > detectiontreshold),
        then object boundaries are computed according to the smallest/largest x position and smallest/largest y position of all body parts. This  window is
        expanded by the margin and from then on only the posture within this crop is analyzed (until the object is lost, i.e. <detectiontreshold). The
        current position is utilized for updating the crop window for the next frame (this is why the margin is important and should be set large
        enough given the movement of the animal).

    Examples
    --------

    Windows example for analyzing 1 video
    >>> deeplabcut.analyze_videos('C:\\myproject\\reaching-task\\config.yaml',['C:\\yourusername\\rig-95\\Videos\\reachingvideo1.avi'])
    --------

    If you want to analyze only 1 video
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi'])
    --------

    If you want to analyze all videos of type avi in a folder:
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos'],videotype='.avi')
    --------

    If you want to analyze multiple videos
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'])
    --------

    If you want to analyze multiple videos with shuffle = 2
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'], shuffle=2)

    --------
    If you want to analyze multiple videos with shuffle = 2 and save results as an additional csv file too
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'], shuffle=2,save_as_csv=True)
    --------

    """
    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ['TF_CUDNN_USE_AUTOTUNE'] #was potentially set during training

    if gputouse is not None: #gpu selection
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    tf.reset_default_graph()
    start_path=os.getcwd() #record cwd to return to this directory in the end

    cfg = auxiliaryfunctions.read_config(config)
    trainFraction = cfg['TrainingFraction'][trainingsetindex]

    if cropping is not None:
        cfg['cropping']=True
        cfg['x1'],cfg['x2'],cfg['y1'],cfg['y2']=cropping
        print("Overwriting cropping parameters:", cropping)
        print("These are used for all videos, but won't be save to the cfg file.")

    modelfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg)))
    path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError("It seems the model for shuffle %s and trainFraction %s does not exist."%(shuffle,trainFraction))

    # Check which snapshots are available and sort them by # iterations
    try:
      Snapshots = np.array([fn.split('.')[0]for fn in os.listdir(os.path.join(modelfolder , 'train'))if "index" in fn])
    except FileNotFoundError:
      raise FileNotFoundError("Snapshots not found! It seems the dataset for shuffle %s has not been trained/does not exist.\n Please train it before using it to analyze videos.\n Use the function 'train_network' to train the network for shuffle %s."%(shuffle,shuffle))

    if cfg['snapshotindex'] == 'all':
        print("Snapshotindex is set to 'all' in the config.yaml file. Running video analysis with all snapshots is very costly! Use the function 'evaluate_network' to choose the best the snapshot. For now, changing snapshot index to -1!")
        snapshotindex = -1
    else:
        snapshotindex=cfg['snapshotindex']

    increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots])
    Snapshots = Snapshots[increasing_indices]

    print("Using %s" % Snapshots[snapshotindex], "for model", modelfolder)

    ##################################################
    # Load and setup CNN part detector
    ##################################################

    # Check if data already was generated:
    dlc_cfg['init_weights'] = os.path.join(modelfolder , 'train', Snapshots[snapshotindex])
    trainingsiterations = (dlc_cfg['init_weights'].split(os.sep)[-1]).split('-')[-1]
    # Update number of output and batchsize
    dlc_cfg['num_outputs'] = cfg.get('num_outputs', dlc_cfg.get('num_outputs', 1))

    if batchsize==None:
        #update batchsize (based on parameters in config.yaml)
        dlc_cfg['batch_size']=cfg['batch_size']
    else:
        dlc_cfg['batch_size']=batchsize
        cfg['batch_size']=batchsize

    if dynamic[0]: #state=true
        #(state,detectiontreshold,margin)=dynamic
        print("Starting analysis in dynamic cropping mode with parameters:", dynamic)
        dlc_cfg['num_outputs']=1
        TFGPUinference=False
        dlc_cfg['batch_size']=1
        print("Switching batchsize to 1, num_outputs (per animal) to 1 and TFGPUinference to False (all these features are not supported in this mode).")

    # Name for scorer:
    DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations=trainingsiterations)
    if dlc_cfg['num_outputs']>1:
        if  TFGPUinference:
            print("Switching to numpy-based keypoint extraction code, as multiple point extraction is not supported by TF code currently.")
            TFGPUinference=False
        print("Extracting ", dlc_cfg['num_outputs'], "instances per bodypart")
        xyz_labs_orig = ['x', 'y', 'likelihood']
        suffix = [str(s+1) for s in range(dlc_cfg['num_outputs'])]
        suffix[0] = '' # first one has empty suffix for backwards compatibility
        xyz_labs = [x+s for s in suffix for x in xyz_labs_orig]
    else:
        xyz_labs = ['x', 'y', 'likelihood']

    #sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
    if TFGPUinference:
        sess, inputs, outputs = predict.setup_GPUpose_prediction(dlc_cfg)
    else:
        sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)

    pdindex = pd.MultiIndex.from_product([[DLCscorer],
                                          dlc_cfg['all_joints_names'],
                                          xyz_labs],
                                         names=['scorer', 'bodyparts', 'coords'])

    ##################################################
    # Datafolder
    ##################################################
    Videos=auxiliaryfunctions.Getlistofvideos(videos,videotype)
    if len(Videos)>0:
        #looping over videos
        for video in Videos:
            DLCscorer=AnalyzeVideo(video,DLCscorer,DLCscorerlegacy,trainFraction,cfg,dlc_cfg,sess,inputs, outputs,pdindex,save_as_csv, destfolder,TFGPUinference,dynamic)

        os.chdir(str(start_path))
        print("The videos are analyzed. Now your research can truly start! \n You can create labeled videos with 'create_labeled_video'.")
        print("If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract any outlier frames!")
        return DLCscorer #note: this is either DLCscorer or DLCscorerlegacy depending on what was used!
    else:
        print("No video/s found. Please check your path!")
        return DLCscorer
Пример #21
0
def train(config_yaml, displayiters, saveiters, maxiters, max_to_keep=5):
    start_path = os.getcwd()
    os.chdir(str(Path(config_yaml).parents[0])
             )  #switch to folder of config_yaml (for logging)
    setup_logging()

    cfg = load_config(config_yaml)
    cfg['batch_size'] = 1  #in case this was edited for analysis.

    dataset = create_dataset(cfg)
    batch_spec = get_batch_spec(cfg)
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)
    losses = pose_net(cfg).train(batch)
    total_loss = losses['total_loss']

    for k, t in losses.items():
        TF.summary.scalar(k, t)
    merged_summaries = TF.summary.merge_all()

    variables_to_restore = slim.get_variables_to_restore(include=["resnet_v1"])
    restorer = TF.train.Saver(variables_to_restore)
    saver = TF.train.Saver(
        max_to_keep=max_to_keep
    )  # selects how many snapshots are stored, see https://github.com/AlexEMG/DeepLabCut/issues/8#issuecomment-387404835

    # sess = TF.Session()
    sess = TF.Session(config=TF.ConfigProto(device_count={'GPU': 0}))
    coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
    train_writer = TF.summary.FileWriter(cfg.log_dir, sess.graph)
    learning_rate, train_op = get_optimizer(total_loss, cfg)

    sess.run(TF.global_variables_initializer())
    sess.run(TF.local_variables_initializer())

    # Restore variables from disk.
    restorer.restore(sess, cfg.init_weights)
    if maxiters == None:
        max_iter = int(cfg.multi_step[-1][1])
    else:
        max_iter = min(int(cfg.multi_step[-1][1]), int(maxiters))
        #display_iters = max(1,int(displayiters))
        print("\n\nMax_iters overwritten as", max_iter)

    if displayiters == None:
        display_iters = max(1, int(cfg.display_iters))
    else:
        display_iters = max(1, int(displayiters))
        print("Display_iters overwritten as", display_iters)

    if saveiters == None:
        save_iters = max(1, int(cfg.save_iters))

    else:
        save_iters = max(1, int(saveiters))
        print("Save_iters overwritten as", save_iters)

    cum_loss = 0.0
    lr_gen = LearningRate(cfg)

    stats_path = Path(config_yaml).with_name('learning_stats.csv')
    lrf = open(str(stats_path), 'w')

    print("\nTraining parameter:\n")
    pprint.pprint(cfg)
    print("\n\nStarting training....")
    start = time.time()
    print("\nStarting time of training:  {} \n".format(
        datetime.datetime.now()))
    for it in range(max_iter + 1):
        current_lr = lr_gen.get_lr(it)
        [_, loss_val,
         summary] = sess.run([train_op, total_loss, merged_summaries],
                             feed_dict={learning_rate: current_lr})
        cum_loss += loss_val
        train_writer.add_summary(summary, it)

        if it % display_iters == 0:
            end = time.time()
            hours, rem = divmod(end - start, 3600)
            time_hours, time_rem = divmod(end, 3600)
            minutes, seconds = divmod(rem, 60)
            time_mins, _ = divmod(time_rem, 60)
            average_loss = cum_loss / display_iters
            cum_loss = 0.0
            logging.info(
                "iteration: {}/{},    loss:  {:.4f},    lr: {},  |   Elapsed Time:  {:0>2}:{:0>2}:{:05.2f},    Time:  {}"
                .format(it, max_iter, average_loss, current_lr, int(hours),
                        int(minutes), seconds,
                        datetime.datetime.now().strftime("%H:%M")))
            lrf.write("{}, {:.5f}, {}\n".format(it, average_loss, current_lr))
            lrf.flush()

        # Save snapshot
        if (it % save_iters == 0 and it != 0) or it == max_iter:
            model_name = cfg.snapshot_prefix
            saver.save(sess, model_name, global_step=it)

    lrf.close()
    sess.close()
    coord.request_stop()
    coord.join([thread])
    #return to original path.
    os.chdir(str(start_path))
Пример #22
0
def return_evaluate_network_data(
    config,
    shuffle=0,
    trainingsetindex=0,
    comparisonbodyparts="all",
    Snapindex=None,
    rescale=False,
    fulldata=False,
    show_errors=True,
    modelprefix="",
    returnjustfns=True,
):
    """
    Returns the results for (previously evaluated) network. deeplabcut.evaluate_network(..)
    Returns list of (per model): [trainingsiterations,trainfraction,shuffle,trainerror,testerror,pcutoff,trainerrorpcutoff,testerrorpcutoff,Snapshots[snapindex],scale,net_type]

    If fulldata=True, also returns (the complete annotation and prediction array)
    Returns list of: (DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer,comparisonbodyparts, cfg, Snapshots[snapindex])
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut._evaluate_network_data('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------
    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """

    import os

    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.utils import auxiliaryfunctions

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    # Data=pd.read_hdf(os.path.join(cfg["project_path"],str(trainingsetfolder),'CollectedData_' + cfg["scorer"] + '.h5'),'df_with_missing')

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    ##################################################
    # Load data...
    ##################################################
    trainFraction = cfg["TrainingFraction"][trainingsetindex]
    datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
        trainingsetfolder, trainFraction, shuffle, cfg)
    modelfolder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.GetModelFolder(trainFraction,
                                              shuffle,
                                              cfg,
                                              modelprefix=modelprefix)),
    )
    path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
    # Load meta data
    data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
        os.path.join(cfg["project_path"], metadatafn))

    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle %s and trainFraction %s does not exist."
            % (shuffle, trainFraction))

    ########################### RESCALING (to global scale)
    if rescale == True:
        scale = dlc_cfg["global_scale"]
        print("Rescaling Data to ", scale)
        Data = (pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            )) * scale)
    else:
        scale = 1
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ))

    evaluationfolder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.GetEvaluationFolder(trainFraction,
                                                   shuffle,
                                                   cfg,
                                                   modelprefix=modelprefix)),
    )
    # Check which snapshots are available and sort them by # iterations
    Snapshots = np.array([
        fn.split(".")[0]
        for fn in os.listdir(os.path.join(str(modelfolder), "train"))
        if "index" in fn
    ])

    if len(Snapshots) == 0:
        print(
            "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
            % (shuffle, trainFraction))
        snapindices = []
    else:
        increasing_indices = np.argsort(
            [int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]
        if Snapindex == None:
            Snapindex = cfg["snapshotindex"]

        if Snapindex == -1:
            snapindices = [-1]
        elif Snapindex == "all":
            snapindices = range(len(Snapshots))
        elif Snapindex < len(Snapshots):
            snapindices = [Snapindex]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

    DATA = []
    results = []
    resultsfns = []
    for snapindex in snapindices:
        dlc_cfg["init_weights"] = os.path.join(
            str(modelfolder), "train",
            Snapshots[snapindex])  # setting weights to corresponding snapshot.
        trainingsiterations = (dlc_cfg["init_weights"].split(
            os.sep)[-1]).split("-")[
                -1]  # read how many training siterations that corresponds to.

        # name for deeplabcut net (based on its parameters)
        DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
            cfg,
            shuffle,
            trainFraction,
            trainingsiterations,
            modelprefix=modelprefix)
        if not returnjustfns:
            print(
                "Retrieving ",
                DLCscorer,
                " with # of trainingiterations:",
                trainingsiterations,
            )

        (
            notanalyzed,
            resultsfilename,
            DLCscorer,
        ) = auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),
                                                   DLCscorer, DLCscorerlegacy,
                                                   Snapshots[snapindex])
        # resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + str(Snapshots[snapindex])+  '.h5') # + '-' + str(snapshot)+  ' #'-' + Snapshots[snapindex]+  '.h5')
        print(resultsfilename)
        resultsfns.append(resultsfilename)
        if not returnjustfns:
            if not notanalyzed and os.path.isfile(
                    resultsfilename):  # data exists..
                DataMachine = pd.read_hdf(resultsfilename)
                DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                RMSE, RMSEpcutoff = pairwisedistances(
                    DataCombined,
                    cfg["scorer"],
                    DLCscorer,
                    cfg["pcutoff"],
                    comparisonbodyparts,
                )

                testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten())
                trainerror = np.nanmean(
                    RMSE.iloc[trainIndices].values.flatten())
                testerrorpcutoff = np.nanmean(
                    RMSEpcutoff.iloc[testIndices].values.flatten())
                trainerrorpcutoff = np.nanmean(
                    RMSEpcutoff.iloc[trainIndices].values.flatten())
                if show_errors == True:
                    print(
                        "Results for",
                        trainingsiterations,
                        " training iterations:",
                        int(100 * trainFraction),
                        shuffle,
                        "train error:",
                        np.round(trainerror, 2),
                        "pixels. Test error:",
                        np.round(testerror, 2),
                        " pixels.",
                    )
                    print(
                        "With pcutoff of",
                        cfg["pcutoff"],
                        " train error:",
                        np.round(trainerrorpcutoff, 2),
                        "pixels. Test error:",
                        np.round(testerrorpcutoff, 2),
                        "pixels",
                    )
                    print("Snapshot", Snapshots[snapindex])

                r = [
                    trainingsiterations,
                    int(100 * trainFraction),
                    shuffle,
                    np.round(trainerror, 2),
                    np.round(testerror, 2),
                    cfg["pcutoff"],
                    np.round(trainerrorpcutoff, 2),
                    np.round(testerrorpcutoff, 2),
                    Snapshots[snapindex],
                    scale,
                    dlc_cfg["net_type"],
                ]
                results.append(r)
            else:
                print("Model not trained/evaluated!")
            if fulldata == True:
                DATA.append([
                    DataMachine,
                    Data,
                    data,
                    trainIndices,
                    testIndices,
                    trainFraction,
                    DLCscorer,
                    comparisonbodyparts,
                    cfg,
                    evaluationfolder,
                    Snapshots[snapindex],
                ])

    os.chdir(start_path)
    if returnjustfns:
        return resultsfns
    else:
        if fulldata == True:
            return DATA, results
        else:
            return results
Пример #23
0
def calculatepafdistancebounds(config,
                               shuffle=0,
                               trainingsetindex=0,
                               modelprefix="",
                               numdigits=0,
                               onlytrain=False):
    """
    Returns distances along paf edges in train/test data

    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    numdigits: number of digits to round for distances.

    """
    import os
    from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal
    from deeplabcut.pose_estimation_tensorflow.config import load_config

    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    if cfg["multianimalproject"]:
        (
            individuals,
            uniquebodyparts,
            multianimalbodyparts,
        ) = auxfun_multianimal.extractindividualsandbodyparts(cfg)

        # Loading human annotatated data
        trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
        trainFraction = cfg["TrainingFraction"][trainingsetindex]
        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)
        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )

        # Load meta data & annotations
        (
            data,
            trainIndices,
            testIndices,
            trainFraction,
        ) = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ))[cfg["scorer"]]

        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        dlc_cfg = load_config(str(path_test_config))

        # get the graph!
        partaffinityfield_graph = dlc_cfg["partaffinityfield_graph"]
        jointnames = [
            dlc_cfg["all_joints_names"][i]
            for i in range(len(dlc_cfg["all_joints"]))
        ]
        path_inferencebounds_config = (Path(modelfolder) / "test" /
                                       "inferencebounds.yaml")
        inferenceboundscfg = {}
        for pi, edge in enumerate(partaffinityfield_graph):
            j1, j2 = jointnames[edge[0]], jointnames[edge[1]]
            ds_within = []
            ds_across = []
            for ind in individuals:
                for ind2 in individuals:
                    if ind != "single" and ind2 != "single":
                        if (ind, j1, "x") in Data.keys() and (
                                ind2,
                                j2,
                                "y",
                        ) in Data.keys():
                            distances = (np.sqrt(
                                (Data[ind, j1, "x"] - Data[ind2, j2, "x"])**2 +
                                (Data[ind, j1, "y"] - Data[ind2, j2, "y"])**2)
                                         / dlc_cfg["stride"])
                        else:
                            distances = None

                        if distances is not None:
                            if onlytrain:
                                distances = distances.iloc[trainIndices]
                            if ind == ind2:
                                ds_within.extend(distances.values.flatten())
                            else:
                                ds_across.extend(distances.values.flatten())

            edgeencoding = str(edge[0]) + "_" + str(edge[1])
            inferenceboundscfg[edgeencoding] = {}
            if len(ds_within) > 0:
                inferenceboundscfg[edgeencoding]["intra_max"] = str(
                    round(np.nanmax(ds_within), numdigits))
                inferenceboundscfg[edgeencoding]["intra_min"] = str(
                    round(np.nanmin(ds_within), numdigits))
            else:
                inferenceboundscfg[edgeencoding]["intra_max"] = str(
                    1e5)  # large number (larger than any image diameter)
                inferenceboundscfg[edgeencoding]["intra_min"] = str(0)

            # NOTE: the inter-animal distances are currently not used, but are interesting to compare to intra_*
            if len(ds_across) > 0:
                inferenceboundscfg[edgeencoding]["inter_max"] = str(
                    round(np.nanmax(ds_across), numdigits))
                inferenceboundscfg[edgeencoding]["inter_min"] = str(
                    round(np.nanmin(ds_across), numdigits))
            else:
                inferenceboundscfg[edgeencoding]["inter_max"] = str(
                    1e5
                )  # large number (larger than image diameters in typical experiments)
                inferenceboundscfg[edgeencoding]["inter_min"] = str(0)

        auxiliaryfunctions.write_plainconfig(str(path_inferencebounds_config),
                                             dict(inferenceboundscfg))
        return inferenceboundscfg
    else:
        print("You might as well bring owls to Athens.")
        return {}
def train(config_yaml, displayiters, saveiters, maxiters, max_to_keep=5):
    start_path = os.getcwd()
    os.chdir(str(Path(config_yaml).parents[0])
             )  # switch to folder of config_yaml (for logging)
    setup_logging()

    cfg = load_config(config_yaml)
    cfg['batch_size'] = 1  # in case this was edited for analysis.
    dataset = UnsupDataset(cfg)
    #dataset = create_dataset(cfg)
    batch_spec = get_batch_spec(cfg)
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)
    auto = AutoEncoderNet(cfg)
    losses = auto.train(batch)
    total_loss = losses['total_loss']

    for k, t in losses.items():
        tf.summary.scalar(k, t)
    merged_summaries = tf.summary.merge_all()

    variables_to_restore = slim.get_variables_to_restore(include=["resnet_v1"])
    restorer = tf.train.Saver(variables_to_restore)
    #restorer = tf.train.Saver()
    saver = tf.train.Saver(
        max_to_keep=max_to_keep
    )  # selects how many snapshots are stored, see https://github.com/AlexEMG/DeepLabCut/issues/8#issuecomment-387404835

    sess = tf.Session()
    coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
    train_writer = tf.summary.FileWriter(cfg.log_dir, sess.graph)
    learning_rate, train_op = get_optimizer(total_loss, cfg)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Restore variables from disk.
    if cfg.init_weights == 'He':
        # Default in ResNet
        print("Random weight initalization using He.")
    else:
        print("Pretrained weight initalization.")
        restorer.restore(sess, cfg.init_weights)
    if maxiters == None:
        max_iter = int(cfg.multi_step[-1][1])
    else:
        max_iter = min(int(cfg.multi_step[-1][1]), int(maxiters))
        # display_iters = max(1,int(displayiters))
        print("Max_iters overwritten as", max_iter)

    if displayiters == None:
        display_iters = max(1, int(cfg.display_iters))
    else:
        display_iters = max(1, int(displayiters))
        print("Display_iters overwritten as", display_iters)

    if saveiters == None:
        save_iters = max(1, int(cfg.save_iters))

    else:
        save_iters = max(1, int(saveiters))
        print("Save_iters overwritten as", save_iters)

    cum_loss = 0.0
    lr_gen = LearningRate(cfg)

    stats_path = Path(config_yaml).with_name('learning_stats.csv')
    lrf = open(str(stats_path), 'w')
    imgs_path = Path(config_yaml).parents[0] / 'imgs'
    imgs_path.mkdir(parents=True)

    print("Training parameter:")
    print(cfg)
    print("Starting training....")
    import matplotlib.pyplot as plt
    for it in range(max_iter + 1):
        current_lr = lr_gen.get_lr(it)
        [_, loss_val, summary, _inp, _outp, _targ,
         _mask] = sess.run([
             train_op, total_loss, merged_summaries, auto.input, auto.output,
             auto.target, auto.mask
         ],
                           feed_dict={learning_rate: current_lr})
        cum_loss += loss_val
        train_writer.add_summary(summary, it)

        if it % display_iters == 0:  # and it > 0:
            average_loss = cum_loss / display_iters
            cum_loss = 0.0
            logging.info("iteration: {} loss: {} lr: {}".format(
                it, "{0:.4f}".format(average_loss), current_lr))
            lrf.write("{}, {:.5f}, {}\n".format(it, average_loss, current_lr))
            lrf.flush()
            fig, axs = plt.subplots(2, 2)
            axs[0][0].imshow(_inp[0, :, :, :] / 255)
            axs[0][1].imshow(np.clip(_outp[0, :, :, :], 0, 1))
            axs[1][0].imshow(_targ[0, :, :, :])
            axs[1][1].imshow(_mask[0, :, :, :])
            plt.savefig(str('imgs/pretrain_iter' + str(it) + '.png'),
                        bbox_inches='tight')
            plt.close()

        # Save snapshot
        if (it % save_iters == 0 and it != 0) or it == max_iter:
            model_name = cfg.snapshot_prefix
            saver.save(sess, model_name, global_step=it)

    lrf.close()
    sess.close()
    coord.request_stop()
    coord.join([thread])
    # return to original path.
    os.chdir(str(start_path))
Пример #25
0
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=False,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
):
    from deeplabcut.pose_estimation_tensorflow.core import (
        predict,
        predict_multianimal as predictma,
    )
    from deeplabcut.utils import (
        auxiliaryfunctions,
        auxfun_multianimal,
        auxfun_videos,
        conversioncode,
    )

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ["TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.compat.v1.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    if plotting is True:
        plotting = "bodypart"

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        )
    )
    conversioncode.guarantee_multiindex_rows(Data)

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts
    )
    all_bpts = np.asarray(
        len(cfg["individuals"]) * cfg["multianimalbodyparts"] + cfg["uniquebodyparts"]
    )
    colors = visualization.get_cmap(len(comparisonbodyparts), name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/")
    )
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg
            )
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix
                    )
                ),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn)
            )

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction)
                )

            pipeline = iaa.Sequential(random_order=False)
            pre_resize = dlc_cfg.get("pre_resize")
            if pre_resize:
                width, height = pre_resize
                pipeline.add(iaa.Resize({"height": height, "width": width}))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            stride = dlc_cfg["stride"]
            # Ignore best edges possibly defined during a prior evaluation
            _ = dlc_cfg.pop("paf_best", None)
            joints = dlc_cfg["all_joints_names"]

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix
                    )
                ),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array(
                [
                    fn.split(".")[0]
                    for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                    if "index" in fn
                ]
            )
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction)
                )
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots]
                )
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split("-")[
                        -1
                    ]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    data_path = resultsfilename.split(".h5")[0] + "_full.pickle"

                    if plotting:
                        foldername = os.path.join(
                            str(evaluationfolder),
                            "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex],
                        )
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        if plotting == "bodypart":
                            fig, ax = visualization.create_minimal_figure()

                    if os.path.isfile(data_path):
                        print("Model already evaluated.", resultsfilename)
                    else:

                        (sess, inputs, outputs,) = predict.setup_pose_prediction(
                            dlc_cfg
                        )

                        PredicteData = {}
                        dist = np.full((len(Data), len(all_bpts)), np.nan)
                        conf = np.full_like(dist, np.nan)
                        print("Network Evaluation underway...")
                        for imageindex, imagename in tqdm(enumerate(Data.index)):
                            image_path = os.path.join(cfg["project_path"], *imagename)
                            frame = auxfun_videos.imread(image_path, mode="skimage")

                            GT = Data.iloc[imageindex]
                            if not GT.any():
                                continue

                            # Pass the image and the keypoints through the resizer;
                            # this has no effect if no augmenters were added to it.
                            keypoints = [GT.to_numpy().reshape((-1, 2)).astype(float)]
                            frame_, keypoints = pipeline(
                                images=[frame], keypoints=keypoints
                            )
                            frame = frame_[0]
                            GT[:] = keypoints[0].flatten()

                            df = GT.unstack("coords").reindex(joints, level="bodyparts")

                            # FIXME Is having an empty array vs nan really that necessary?!
                            groundtruthidentity = list(
                                df.index.get_level_values("individuals")
                                .to_numpy()
                                .reshape((-1, 1))
                            )
                            groundtruthcoordinates = list(df.values[:, np.newaxis])
                            for i, coords in enumerate(groundtruthcoordinates):
                                if np.isnan(coords).any():
                                    groundtruthcoordinates[i] = np.empty(
                                        (0, 2), dtype=float
                                    )
                                    groundtruthidentity[i] = np.array([], dtype=str)

                            # Form 2D array of shape (n_rows, 4) where the last dimension
                            # is (sample_index, peak_y, peak_x, bpt_index) to slice the PAFs.
                            temp = df.reset_index(level="bodyparts").dropna()
                            temp["bodyparts"].replace(
                                dict(zip(joints, range(len(joints)))), inplace=True,
                            )
                            temp["sample"] = 0
                            peaks_gt = temp.loc[
                                :, ["sample", "y", "x", "bodyparts"]
                            ].to_numpy()
                            peaks_gt[:, 1:3] = (peaks_gt[:, 1:3] - stride // 2) / stride

                            pred = predictma.predict_batched_peaks_and_costs(
                                dlc_cfg,
                                np.expand_dims(frame, axis=0),
                                sess,
                                inputs,
                                outputs,
                                peaks_gt.astype(int),
                            )

                            if not pred:
                                continue
                            else:
                                pred = pred[0]

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            coords_pred = pred["coordinates"][0]
                            probs_pred = pred["confidence"]
                            for bpt, xy_gt in df.groupby(level="bodyparts"):
                                inds_gt = np.flatnonzero(
                                    np.all(~np.isnan(xy_gt), axis=1)
                                )
                                n_joint = joints.index(bpt)
                                xy = coords_pred[n_joint]
                                if inds_gt.size and xy.size:
                                    # Pick the predictions closest to ground truth,
                                    # rather than the ones the model has most confident in
                                    xy_gt_values = xy_gt.iloc[inds_gt].values
                                    neighbors = _find_closest_neighbors(
                                        xy_gt_values, xy, k=3
                                    )
                                    found = neighbors != -1
                                    min_dists = np.linalg.norm(
                                        xy_gt_values[found] - xy[neighbors[found]],
                                        axis=1,
                                    )
                                    inds = np.flatnonzero(all_bpts == bpt)
                                    sl = imageindex, inds[inds_gt[found]]
                                    dist[sl] = min_dists
                                    conf[sl] = probs_pred[n_joint][
                                        neighbors[found]
                                    ].squeeze()

                            if plotting == "bodypart":
                                temp_xy = GT.unstack("bodyparts")[joints].values
                                gt = temp_xy.reshape(
                                    (-1, 2, temp_xy.shape[1])
                                ).T.swapaxes(1, 2)
                                h, w, _ = np.shape(frame)
                                fig.set_size_inches(w / 100, h / 100)
                                ax.set_xlim(0, w)
                                ax.set_ylim(0, h)
                                ax.invert_yaxis()
                                ax = visualization.make_multianimal_labeled_image(
                                    frame,
                                    gt,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                    ax=ax,
                                )
                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )
                                visualization.erase_artists(ax)

                        sess.close()  # closes the current tf session

                        # Compute all distance statistics
                        df_dist = pd.DataFrame(dist, columns=df.index)
                        df_conf = pd.DataFrame(conf, columns=df.index)
                        df_joint = pd.concat(
                            [df_dist, df_conf],
                            keys=["rmse", "conf"],
                            names=["metrics"],
                            axis=1,
                        )
                        df_joint = df_joint.reorder_levels(
                            list(np.roll(df_joint.columns.names, -1)), axis=1
                        )
                        df_joint.sort_index(
                            axis=1,
                            level=["individuals", "bodyparts"],
                            ascending=[True, True],
                            inplace=True,
                        )
                        write_path = os.path.join(
                            evaluationfolder, f"dist_{trainingsiterations}.csv"
                        )
                        df_joint.to_csv(write_path)

                        # Calculate overall prediction error
                        error = df_joint.xs("rmse", level="metrics", axis=1)
                        mask = (
                            df_joint.xs("conf", level="metrics", axis=1)
                            >= cfg["pcutoff"]
                        )
                        error_masked = error[mask]
                        error_train = np.nanmean(error.iloc[trainIndices])
                        error_train_cut = np.nanmean(error_masked.iloc[trainIndices])
                        error_test = np.nanmean(error.iloc[testIndices])
                        error_test_cut = np.nanmean(error_masked.iloc[testIndices])
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(error_train, 2),
                            np.round(error_test, 2),
                            cfg["pcutoff"],
                            np.round(error_train_cut, 2),
                            np.round(error_test_cut, 2),
                        ]
                        final_result.append(results)

                        if show_errors:
                            string = (
                                "Results for {} training iterations, training fraction of {}, and shuffle {}:\n"
                                "Train error: {} pixels. Test error: {} pixels.\n"
                                "With pcutoff of {}:\n"
                                "Train error: {} pixels. Test error: {} pixels."
                            )
                            print(string.format(*results))

                            print("##########################################")
                            print(
                                "Average Euclidean distance to GT per individual (in pixels; test-only)"
                            )
                            print(
                                error_masked.iloc[testIndices]
                                .groupby("individuals", axis=1)
                                .mean()
                                .mean()
                                .to_string()
                            )
                            print(
                                "Average Euclidean distance to GT per bodypart (in pixels; test-only)"
                            )
                            print(
                                error_masked.iloc[testIndices]
                                .groupby("bodyparts", axis=1)
                                .mean()
                                .mean()
                                .to_string()
                            )

                        PredicteData["metadata"] = {
                            "nms radius": dlc_cfg["nmsradius"],
                            "minimal confidence": dlc_cfg["minconfidence"],
                            "sigma": dlc_cfg.get("sigma", 1),
                            "PAFgraph": dlc_cfg["partaffinityfield_graph"],
                            "PAFinds": np.arange(
                                len(dlc_cfg["partaffinityfield_graph"])
                            ),
                            "all_joints": [
                                [i] for i in range(len(dlc_cfg["all_joints"]))
                            ],
                            "all_joints_names": [
                                dlc_cfg["all_joints_names"][i]
                                for i in range(len(dlc_cfg["all_joints"]))
                            ],
                            "stride": dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        _ = auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename
                        )

                        tf.compat.v1.reset_default_graph()

                    n_multibpts = len(cfg["multianimalbodyparts"])
                    if n_multibpts == 1:
                        continue

                    # Skip data-driven skeleton selection unless
                    # the model was trained on the full graph.
                    max_n_edges = n_multibpts * (n_multibpts - 1) // 2
                    n_edges = len(dlc_cfg["partaffinityfield_graph"])
                    if n_edges == max_n_edges:
                        print("Selecting best skeleton...")
                        n_graphs = 10
                        paf_inds = None
                    else:
                        n_graphs = 1
                        paf_inds = [list(range(n_edges))]
                    (
                        results,
                        paf_scores,
                        best_assemblies,
                    ) = crossvalutils.cross_validate_paf_graphs(
                        config,
                        str(path_test_config).replace("pose_", "inference_"),
                        data_path,
                        data_path.replace("_full.", "_meta."),
                        n_graphs=n_graphs,
                        paf_inds=paf_inds,
                        oks_sigma=dlc_cfg.get("oks_sigma", 0.1),
                        margin=dlc_cfg.get("bbox_margin", 0),
                        symmetric_kpts=dlc_cfg.get("symmetric_kpts"),
                    )
                    if plotting == "individual":
                        assemblies, assemblies_unique, image_paths = best_assemblies
                        fig, ax = visualization.create_minimal_figure()
                        n_animals = len(cfg["individuals"])
                        if cfg["uniquebodyparts"]:
                            n_animals += 1
                        colors = visualization.get_cmap(n_animals, name=cfg["colormap"])
                        for k, v in tqdm(assemblies.items()):
                            imname = image_paths[k]
                            image_path = os.path.join(cfg["project_path"], *imname)
                            frame = auxfun_videos.imread(image_path, mode="skimage")

                            h, w, _ = np.shape(frame)
                            fig.set_size_inches(w / 100, h / 100)
                            ax.set_xlim(0, w)
                            ax.set_ylim(0, h)
                            ax.invert_yaxis()

                            gt = [
                                s.to_numpy().reshape((-1, 2))
                                for _, s in Data.loc[imname].groupby("individuals")
                            ]
                            coords_pred = []
                            coords_pred += [ass.xy for ass in v]
                            probs_pred = []
                            probs_pred += [ass.data[:, 2:3] for ass in v]
                            if assemblies_unique is not None:
                                unique = assemblies_unique.get(k, None)
                                if unique is not None:
                                    coords_pred.append(unique[:, :2])
                                    probs_pred.append(unique[:, 2:3])
                            while len(coords_pred) < len(gt):
                                coords_pred.append(np.full((1, 2), np.nan))
                                probs_pred.append(np.full((1, 2), np.nan))
                            ax = visualization.make_multianimal_labeled_image(
                                frame,
                                gt,
                                coords_pred,
                                probs_pred,
                                colors,
                                cfg["dotsize"],
                                cfg["alphavalue"],
                                cfg["pcutoff"],
                                ax=ax,
                            )
                            visualization.save_labeled_frame(
                                fig, image_path, foldername, k in trainIndices,
                            )
                            visualization.erase_artists(ax)

                    df = results[1].copy()
                    df.loc(axis=0)[("mAP_train", "mean")] = [
                        d[0]["mAP"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAR_train", "mean")] = [
                        d[0]["mAR"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAP_test", "mean")] = [
                        d[1]["mAP"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAR_test", "mean")] = [
                        d[1]["mAR"] for d in results[2]
                    ]
                    with open(data_path.replace("_full.", "_map."), "wb") as file:
                        pickle.dump((df, paf_scores), file)

                if len(final_result) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder, DLCscorer)

    os.chdir(str(start_path))
Пример #26
0
def analyze_videos(config,
                   videos,
                   videotype='avi',
                   shuffle=1,
                   trainingsetindex=0,
                   gputouse=None,
                   save_as_csv=False,
                   destfolder=None,
                   cropping=None):
    """
    Makes prediction based on a trained network. The index of the trained network is specified by parameters in the config file (in particular the variable 'snapshotindex')

    You can crop the video (before analysis), by changing 'cropping'=True and setting 'x1','x2','y1','y2' in the config file. The same cropping parameters will then be used for creating the video.
    Note: you can also pass cropping = [x1,x2,y1,y2] coordinates directly, that then will be used for all videos. You can of course loop over videos & pass specific coordinates for each case.

    Output: The labels are stored as MultiIndex Pandas Array, which contains the name of the network, body part name, (x, y) label position \n
            in pixels, and the likelihood for each frame per body part. These arrays are stored in an efficient Hierarchical Data Format (HDF) \n
            in the same directory, where the video is stored. However, if the flag save_as_csv is set to True, the data can also be exported in \n
            comma-separated values format (.csv), which in turn can be imported in many programs, such as MATLAB, R, Prism, etc.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    videos : list
        A list of strings containing the full paths to videos for analysis or a path to the directory, where all the videos with same extension are stored.

    videotype: string, optional
        Checks for the extension of the video in case the input to the video is a directory.\n Only videos with this extension are analyzed. The default is ``.avi``

    shuffle: int, optional
        An integer specifying the shuffle index of the training dataset used for training the network. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    save_as_csv: bool, optional
        Saves the predictions in a .csv file. The default is ``False``; if provided it must be either ``True`` or ``False``

    destfolder: string, optional
        Specifies the destination folder for analysis data (default is the path of the video). Note that for subsequent analysis this
        folder also needs to be passed.

    Examples
    --------

    Windows example for analyzing 1 video
    >>> deeplabcut.analyze_videos('C:\\myproject\\reaching-task\\config.yaml',['C:\\yourusername\\rig-95\\Videos\\reachingvideo1.avi'])
    --------

    If you want to analyze only 1 video
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi'])
    --------

    If you want to analyze all videos of type avi in a folder:
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos'],videotype='.avi')
    --------

    If you want to analyze multiple videos
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'])
    --------

    If you want to analyze multiple videos with shuffle = 2
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'], shuffle=2)

    --------
    If you want to analyze multiple videos with shuffle = 2 and save results as an additional csv file too
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml',['/analysis/project/videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'], shuffle=2,save_as_csv=True)
    --------

    """
    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ[
            'TF_CUDNN_USE_AUTOTUNE']  #was potentially set during training

    if gputouse is not None:  #gpu selection
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    vers = (tf.__version__).split('.')
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    TF.reset_default_graph()
    start_path = os.getcwd(
    )  #record cwd to return to this directory in the end

    cfg = auxiliaryfunctions.read_config(config)

    if cropping is not None:
        cfg['cropping'] = True
        cfg['x1'], cfg['x2'], cfg['y1'], cfg['y2'] = cropping
        print("Overwriting cropping parameters:", cropping)
        print(
            "These are used for all videos, but won't be save to the cfg file."
        )

    trainFraction = cfg['TrainingFraction'][trainingsetindex]

    modelfolder = os.path.join(
        cfg["project_path"],
        str(auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg)))
    path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle %s and trainFraction %s does not exist."
            % (shuffle, trainFraction))

    # Check which snapshots are available and sort them by # iterations
    try:
        Snapshots = np.array([
            fn.split('.')[0]
            for fn in os.listdir(os.path.join(modelfolder, 'train'))
            if "index" in fn
        ])
    except FileNotFoundError:
        raise FileNotFoundError(
            "Snapshots not found! It seems the dataset for shuffle %s has not been trained/does not exist.\n Please train it before using it to analyze videos.\n Use the function 'train_network' to train the network for shuffle %s."
            % (shuffle, shuffle))

    if cfg['snapshotindex'] == 'all':
        print(
            "Snapshotindex is set to 'all' in the config.yaml file. Running video analysis with all snapshots is very costly! Use the function 'evaluate_network' to choose the best the snapshot. For now, changing snapshot index to -1!"
        )
        snapshotindex = -1
    else:
        snapshotindex = cfg['snapshotindex']

    increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots])
    Snapshots = Snapshots[increasing_indices]

    print("Using %s" % Snapshots[snapshotindex], "for model", modelfolder)

    ##################################################
    # Load and setup CNN part detector
    ##################################################

    # Check if data already was generated:
    dlc_cfg['init_weights'] = os.path.join(modelfolder, 'train',
                                           Snapshots[snapshotindex])
    trainingsiterations = (dlc_cfg['init_weights'].split(
        os.sep)[-1]).split('-')[-1]

    #update batchsize (based on parameters in config.yaml)
    dlc_cfg['batch_size'] = cfg['batch_size']

    # update number of outputs
    dlc_cfg['num_outputs'] = cfg.get('num_outputs', 1)

    print('num_outputs = ', dlc_cfg['num_outputs'])

    # Name for scorer:
    DLCscorer = auxiliaryfunctions.GetScorerName(
        cfg, shuffle, trainFraction, trainingsiterations=trainingsiterations)

    sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)

    xyz_labs_orig = ['x', 'y', 'likelihood']
    suffix = [str(s + 1) for s in range(dlc_cfg['num_outputs'])]
    suffix[0] = ''  # first one has empty suffix for backwards compatibility
    xyz_labs = [x + s for s in suffix for x in xyz_labs_orig]

    pdindex = pd.MultiIndex.from_product(
        [[DLCscorer], dlc_cfg['all_joints_names'], xyz_labs],
        names=['scorer', 'bodyparts', 'coords'])

    ##################################################
    # Datafolder
    ##################################################
    Videos = auxiliaryfunctions.Getlistofvideos(videos, videotype)

    if len(Videos) > 0:
        #looping over videos
        for video in Videos:
            AnalyzeVideo(video, DLCscorer, trainFraction, cfg, dlc_cfg, sess,
                         inputs, outputs, pdindex, save_as_csv, destfolder)

        os.chdir(str(start_path))
        print(
            "The videos are analyzed. Now your research can truly start! \n You can create labeled videos with 'create_labeled_video'."
        )
        print(
            "If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract any outlier frames!"
        )
    else:
        print("No video was found in the path/ or single video with path:",
              videos)
        print(
            "Perhaps the videotype is distinct from the videos in the path, I was looking for:",
            videotype)

    return DLCscorer
Пример #27
0
def analyze_time_lapse_frames(config,directory,frametype='.png',shuffle=1,trainingsetindex=0,gputouse=None,save_as_csv=False):
    """
    Analyzed all images (of type = frametype) in a folder and stores the output in one file. 
    
    You can crop the frames (before analysis), by changing 'cropping'=True and setting 'x1','x2','y1','y2' in the config file. 
    
    Output: The labels are stored as MultiIndex Pandas Array, which contains the name of the network, body part name, (x, y) label position \n
            in pixels, and the likelihood for each frame per body part. These arrays are stored in an efficient Hierarchical Data Format (HDF) \n
            in the same directory, where the video is stored. However, if the flag save_as_csv is set to True, the data can also be exported in \n
            comma-separated values format (.csv), which in turn can be imported in many programs, such as MATLAB, R, Prism, etc.
    
    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    directory: string
        Full path to directory containing the frames that shall be analyzed

    frametype: string, optional
        Checks for the file extension of the frames. Only images with this extension are analyzed. The default is ``.png``

    shuffle: int, optional
        An integer specifying the shuffle index of the training dataset used for training the network. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml).
    
    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    save_as_csv: bool, optional
        Saves the predictions in a .csv file. The default is ``False``; if provided it must be either ``True`` or ``False``

    Examples
    --------
    If you want to analyze all frames in /analysis/project/timelapseexperiment1
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml','/analysis/project/timelapseexperiment1')
    --------
    
    If you want to analyze all frames in /analysis/project/timelapseexperiment1
    >>> deeplabcut.analyze_videos('/analysis/project/reaching-task/config.yaml','/analysis/project/timelapseexperiment1', frametype='.bmp')
    --------
    
    Note: for test purposes one can extract all frames from a video with ffmeg, e.g. ffmpeg -i testvideo.avi thumb%04d.png 
    """
    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ['TF_CUDNN_USE_AUTOTUNE'] #was potentially set during training
    
    tf.reset_default_graph()
    start_path=os.getcwd() #record cwd to return to this directory in the end
    
    cfg = auxiliaryfunctions.read_config(config)
    trainFraction = cfg['TrainingFraction'][trainingsetindex]
    modelfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg)))
    path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError("It seems the model for shuffle %s and trainFraction %s does not exist."%(shuffle,trainFraction))

    # Check which snapshots are available and sort them by # iterations
    try:
      Snapshots = np.array([fn.split('.')[0]for fn in os.listdir(os.path.join(modelfolder , 'train'))if "index" in fn])
    except FileNotFoundError:
      raise FileNotFoundError("Snapshots not found! It seems the dataset for shuffle %s has not been trained/does not exist.\n Please train it before using it to analyze videos.\n Use the function 'train_network' to train the network for shuffle %s."%(shuffle,shuffle))

    if cfg['snapshotindex'] == 'all':
        print("Snapshotindex is set to 'all' in the config.yaml file. Running video analysis with all snapshots is very costly! Use the function 'evaluate_network' to choose the best the snapshot. For now, changing snapshot index to -1!")
        snapshotindex = -1
    else:
        snapshotindex=cfg['snapshotindex']
        
    increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots])
    Snapshots = Snapshots[increasing_indices]
    
    print("Using %s" % Snapshots[snapshotindex], "for model", modelfolder)

    ##################################################
    # Load and setup CNN part detector
    ##################################################

    # Check if data already was generated:
    dlc_cfg['init_weights'] = os.path.join(modelfolder , 'train', Snapshots[snapshotindex])
    trainingsiterations = (dlc_cfg['init_weights'].split(os.sep)[-1]).split('-')[-1]
    
    #update batchsize (based on parameters in config.yaml)
    dlc_cfg['batch_size']=cfg['batch_size'] 
    
    # Name for scorer:
    DLCscorer = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations=trainingsiterations)
    sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
    pdindex = pd.MultiIndex.from_product([[DLCscorer], dlc_cfg['all_joints_names'], ['x', 'y', 'likelihood']],names=['scorer', 'bodyparts', 'coords'])

    if gputouse is not None: #gpu selectinon
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)
    
    ##################################################
    # Loading the images
    ##################################################
    #checks if input is a directory
    if os.path.isdir(directory)==True:
        """
        Analyzes all the frames in the directory.
        """
        print("Analyzing all frames in the directory: ", directory)
        os.chdir(directory)
        framelist=np.sort([fn for fn in os.listdir(os.curdir) if (frametype in fn)])

        vname = Path(directory).stem
        dataname = os.path.join(directory,vname + DLCscorer + '.h5')
        try:
            # Attempt to load data...
            pd.read_hdf(dataname)
            print("Frames already analyzed!", dataname)
        except FileNotFoundError:
            nframes = len(framelist)
            if nframes>1:
                start = time.time()
                
                PredicteData,nframes,nx,ny=GetPosesofFrames(cfg,dlc_cfg, sess, inputs, outputs,directory,framelist,nframes,dlc_cfg['batch_size'])
                stop = time.time()
                
                if cfg['cropping']==True:
                    coords=[cfg['x1'],cfg['x2'],cfg['y1'],cfg['y2']]
                else:
                    coords=[0, nx, 0, ny] 
                    
                dictionary = {
                    "start": start,
                    "stop": stop,
                    "run_duration": stop - start,
                    "Scorer": DLCscorer,
                    "config file": dlc_cfg,
                    "batch_size": dlc_cfg["batch_size"],
                    "frame_dimensions": (ny, nx),
                    "nframes": nframes,
                    "cropping": cfg['cropping'],
                    "cropping_parameters": coords
                }
                metadata = {'data': dictionary}
        
                print("Saving results in %s..." %(directory))
                
                auxiliaryfunctions.SaveData(PredicteData[:nframes,:], metadata, dataname, pdindex, framelist,save_as_csv)
                print("The folder was analyzed. Now your research can truly start!")
                print("If the tracking is not satisfactory for some frome, consider expanding the training set.")
            else:
                print("No frames were found. Consider changing the path or the frametype.")
    
    os.chdir(str(start_path))
Пример #28
0
def generate_prediction(MAX_PREDICTION_STEPS=1000):
    """
    Generator for predicting image
    MAX_PREDICTION_STEPS : Number of predictions that should be done before re-initializing 

    """

    ##################################################
    # Clone arguments from deeplabcut.evaluate_network
    ##################################################

    config = "/root/DLCROS_ws/Surgical_Tool_Tracking/ForwardPassDeepLabCut/DaVinci-Ambar-2019-10-31/config.yaml"
    Shuffles = [1]
    plotting = None
    show_errors = True
    comparisonbodyparts = "all"
    gputouse = None

    # Suppress scientific notation while printing
    np.set_printoptions(suppress=True)

    ##################################################
    # SETUP everything until image prediction
    ##################################################

    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ[
            'TF_CUDNN_USE_AUTOTUNE']  # was potentially set during training

    vers = tf.__version__.split('.')
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    TF.reset_default_graph()

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    #tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()

    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)
    if gputouse is not None:  # gpu selectinon
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    ##############
    # Cloning for-loop variables
    shuffle = Shuffles[0]
    trainFraction = cfg["TrainingFraction"][0]
    ##############

    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)

    ##################################################
    # Load and setup CNN part detector
    ##################################################

    modelfolder = os.path.join(
        cfg["project_path"],
        str(auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg)))
    path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
    # Load meta data
    # data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
    #     os.path.join(cfg["project_path"], metadatafn))

    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle s and trainFraction %s does not exist."
        )

    dlc_cfg['batch_size'] = 1  # in case this was edited for analysis.

    # Check which snapshots are available and sort them by # iterations
    Snapshots = np.array([
        fn.split('.')[0]
        for fn in os.listdir(os.path.join(str(modelfolder), 'train'))
        if "index" in fn
    ])
    try:  # check if any where found?
        Snapshots[0]
    except IndexError:
        raise FileNotFoundError(
            "Snapshots not found! It seems the dataset for shuffle and "
            "trainFraction is not trained.\nPlease train it before evaluating."
            "\nUse the function 'train_network' to do so.")

    increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots])
    Snapshots = Snapshots[increasing_indices]

    if cfg["snapshotindex"] == -1:
        snapindices = [-1]
    elif cfg["snapshotindex"] == "all":
        snapindices = range(len(Snapshots))
    elif cfg["snapshotindex"] < len(Snapshots):
        snapindices = [cfg["snapshotindex"]]
    else:
        print(
            "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
        )

    ##################################################
    # Compute predictions over image
    ##################################################

    for snapindex in snapindices:
        dlc_cfg['init_weights'] = os.path.join(
            str(modelfolder), 'train',
            Snapshots[snapindex])  # setting weights to corresponding snapshot.
        trainingsiterations = (dlc_cfg['init_weights'].split(
            os.sep)[-1]).split('-')[
                -1]  # read how many training siterations that corresponds to.

        # name for deeplabcut net (based on its parameters)
        DLCscorer = auxiliaryfunctions.GetScorerName(cfg, shuffle,
                                                     trainFraction,
                                                     trainingsiterations)
        print("Running ", DLCscorer, " with # of trainingiterations:",
              trainingsiterations)

        # Specifying state of model (snapshot / training state)
        sess, inputs, outputs = ptf_predict.setup_pose_prediction(dlc_cfg)

        # Using GPU for prediction
        # Specifying state of model (snapshot / training state)
        # sess, inputs, outputs = ptf_predict.setup_GPUpose_prediction(dlc_cfg)

        print("Analyzing test image ...")
        imagename = "img034.png"
        image = io.imread(imagename, plugin='matplotlib')

        count = 0
        start_time = time.time()
        while count < MAX_PREDICTION_STEPS:

            ##################################################
            # Predict for test image once, and wait for future images to arrive
            ##################################################

            print("Calling predict_single_image")
            pose = predict_single_image(image, sess, inputs, outputs, dlc_cfg)

            ##################################################
            # Yield prediction to caller
            ##################################################

            image = (
                yield pose
            )  # Receive image here ( Refer https://stackabuse.com/python-generators/ for sending/receiving in generators)

            step_time = time.time()
            print(f"time: {step_time-start_time}")
            start_time = step_time
            count += 1

            if count == MAX_PREDICTION_STEPS:
                print(
                    f"Restart prediction system, Steps have exceeded {MAX_PREDICTION_STEPS}"
                )

        sess.close()  # closes the current tf session
        TF.reset_default_graph()
Пример #29
0
def evaluate_multianimal_crossvalidate(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    pbounds=None,
    edgewisecondition=True,
    target="rpck_train",
    inferencecfg=None,
    init_points=20,
    n_iter=50,
    dcorr=10.0,
    leastbpts=1,
    printingintermediatevalues=True,
    modelprefix="",
    plotting=False,
):
    """
    Crossvalidate inference parameters on evaluation data; optimal parametrs will be stored in " inference_cfg.yaml".

    They will then be then used for inference (for analysis of videos). Performs Bayesian Optimization with https://github.com/fmfn/BayesianOptimization

    This is a crucial step. The most important variable (in inferencecfg) to cross-validate is minimalnumberofconnections. Pass
    a reasonable range to optimze (e.g. if you have 5 edges from 1 to 5. If you have 4 bpts and 11 connections from 3 to 9).

    config: string
        Full path of the config.yaml file as a string.

    shuffle: int, optional
        An integer specifying the shuffle index of the training dataset used for training the network. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml).

    pbounds: dictionary of variables with ranges to crossvalidate.
        By default: pbounds = {
                        'pafthreshold': (0.05, 0.7),
                        'detectionthresholdsquare': (0, 0.9),
                        'minimalnumberofconnections': (1, # connections in your skeleton),
                    }

    inferencecfg: dict, OPTIONAL
        For the variables that are *not* crossvalidated the parameters from inference_cfg.yaml are used, or
        you can overwrite them by passing a dictinary with your preferred parameters.

    edgewisecondition: bool, default True
        Estimates Euclidean distances for each skeleton edge and uses those distance for excluding possible connections.
        If false, uses only one distance for all bodyparts (which is obviously suboptimal).

    target: string, default='rpck_train'
        What metric to optimize. Options are pck/rpck/rmse on train/test set.

    init_points: int, optional (default=10)
        Number of random initial explorations. Probing random regions helps diversify the exploration space.
        Parameter from BayesianOptimization.

    n_iter: int, optional (default=20)
        Number of iterations of Bayesian optimization to perform.
        The larger it is, the higher the likelihood of finding a good extremum.
        Parameter from BayesianOptimization.

    dcorr: float,
        Distance thereshold for percent correct keypoints / relative percent correct keypoints (see paper).

    leastbpts: integer (should be a small number)
        If an animals has less or equal as many body parts in an image it will not be used
        for cross validation. Imagine e.g. if only a single bodypart is present, then
        if animals need a certain minimal number of bodyparts for assembly (minimalnumberofconnections),
        this might not be predictable.

    printingintermediatevalues: bool, default True
        If intermediate metrics RMSE/hits/.. per sample should be printed.


    Examples
    --------

    first run evalute:

    deeplabcut.evaluate_network(path_config_file,Shuffles=[shuffle],plotting=True)

    Then e.g. for finding inference parameters to minimize rmse on test set:

    deeplabcut.evaluate_multianimal_crossvalidate(path_config_file,Shuffles=[shuffle],target='rmse_test')
    """
    from deeplabcut.pose_estimation_tensorflow.lib import crossvalutils
    from deeplabcut.utils import auxfun_multianimal, auxiliaryfunctions
    from easydict import EasyDict as edict

    cfg = auxiliaryfunctions.read_config(config)
    trainFraction = cfg["TrainingFraction"][trainingsetindex]
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, "all")
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])

    # wild guesses for a wide range:
    maxconnections = len(cfg["skeleton"])
    minconnections = 1  # len(cfg['multianimalbodyparts'])-1

    _pbounds = {
        "pafthreshold": (0.05, 0.7),
        "detectionthresholdsquare": (
            0,
            0.9,
        ),  # TODO: set to minimum (from pose_cfg.yaml)
        "minimalnumberofconnections": (minconnections, maxconnections),
    }
    if pbounds is not None:
        _pbounds.update(pbounds)

    if "rpck" in target or "pck" in target:
        maximize = True

    if "rmse" in target:
        maximize = False  # i.e. minimize

    for shuffle in Shuffles:
        evaluationfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetEvaluationFolder(
                    trainFraction, shuffle, cfg, modelprefix=modelprefix)),
        )
        auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                               recursive=True)

        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)
        _, trainIndices, testIndices, _ = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )
        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        try:
            dlc_cfg = load_config(str(path_test_config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction))

        # Check which snapshots are available and sort them by # iterations
        Snapshots = np.array([
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ])
        snapindex = -1
        dlc_cfg["init_weights"] = os.path.join(
            str(modelfolder), "train",
            Snapshots[snapindex])  # setting weights to corresponding snapshot.
        trainingsiterations = (dlc_cfg["init_weights"].split(
            os.sep)[-1]).split("-")[
                -1]  # read how many training siterations that corresponds to.

        DLCscorer, _ = auxiliaryfunctions.GetScorerName(
            cfg,
            shuffle,
            trainFraction,
            trainingsiterations,
            modelprefix=modelprefix)

        path_inference_config = Path(
            modelfolder) / "test" / "inference_cfg.yaml"
        if inferencecfg is None:  # then load or initialize
            inferencecfg = auxfun_multianimal.read_inferencecfg(
                path_inference_config, cfg)
        else:
            inferencecfg = edict(inferencecfg)
            auxfun_multianimal.check_inferencecfg_sanity(cfg, inferencecfg)

        inferencecfg.topktoretain = np.inf
        inferencecfg, opt = crossvalutils.bayesian_search(
            config,
            inferencecfg,
            _pbounds,
            edgewisecondition=edgewisecondition,
            shuffle=shuffle,
            trainingsetindex=trainingsetindex,
            target=target,
            maximize=maximize,
            init_points=init_points,
            n_iter=n_iter,
            acq="ei",
            dcorr=dcorr,
            leastbpts=leastbpts,
            modelprefix=modelprefix,
        )

        # update number of individuals to retain.
        inferencecfg.topktoretain = len(
            cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0)

        # calculating result at best best solution
        DataOptParams, poses_gt, poses = crossvalutils.compute_crossval_metrics(
            config, inferencecfg, shuffle, trainingsetindex, modelprefix)

        path_inference_config = str(path_inference_config)
        # print("Quantification:", DataOptParams.head())
        DataOptParams.to_hdf(
            path_inference_config.split(".yaml")[0] + ".h5",
            "df_with_missing",
            format="table",
            mode="w",
        )
        DataOptParams.to_csv(path_inference_config.split(".yaml")[0] + ".csv")
        print("Saving optimal inference parameters...")
        print(DataOptParams.to_string())
        auxiliaryfunctions.write_plainconfig(path_inference_config,
                                             dict(inferencecfg))

        # Store best predictions
        max_indivs = max(pose.shape[0] for pose in poses)
        bpts = dlc_cfg["all_joints_names"]
        container = np.full((len(poses), max_indivs * len(bpts) * 3), np.nan)
        for n, pose in enumerate(poses):
            temp = pose.flatten()
            container[n, :len(temp)] = temp

        header = pd.MultiIndex.from_product(
            [
                [DLCscorer],
                [f"individual{i}" for i in range(1, max_indivs + 1)],
                bpts,
                ["x", "y", "likelihood"],
            ],
            names=["scorer", "individuals", "bodyparts", "coords"],
        )

        df = pd.DataFrame(container, columns=header)
        df.to_hdf(os.path.join(evaluationfolder, f"{DLCscorer}.h5"),
                  key="df_with_missing")

        if plotting:
            foldername = os.path.join(
                str(evaluationfolder),
                "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex],
            )
            auxiliaryfunctions.attempttomakefolder(foldername)
            for imageindex, imagename in tqdm(enumerate(Data.index)):
                image_path = os.path.join(cfg["project_path"], imagename)
                image = io.imread(image_path)
                frame = img_as_ubyte(skimage.color.gray2rgb(image))
                groundtruthcoordinates = poses_gt[imageindex]
                coords_pred = poses[imageindex][:, :, :2]
                probs_pred = poses[imageindex][:, :, -1:]
                fig = visualization.make_multianimal_labeled_image(
                    frame,
                    groundtruthcoordinates,
                    coords_pred,
                    probs_pred,
                    colors,
                    cfg["dotsize"],
                    cfg["alphavalue"],
                    cfg["pcutoff"],
                )
                visualization.save_labeled_frame(fig, image_path, foldername,
                                                 imageindex in trainIndices)
Пример #30
0
def extract_maps(
    config,
    shuffle=0,
    trainingsetindex=0,
    gputouse=None,
    rescale=False,
    Indices=None,
    modelprefix="",
):
    """
    Extracts the scoremap, locref, partaffinityfields (if available).

    Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex
    for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset)
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0.
    >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103])

    """
    from deeplabcut.utils.auxfun_videos import imread, imresize
    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions
    from tqdm import tqdm
    import tensorflow as tf

    vers = (tf.__version__).split(".")
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    import pandas as pd
    from pathlib import Path
    import numpy as np

    TF.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        if trainingsetindex < len(
                cfg["TrainingFraction"]) and trainingsetindex >= 0:
            TrainingFractions = [
                cfg["TrainingFraction"][int(trainingsetindex)]
            ]
        else:
            raise Exception(
                "Please check the trainingsetindex! ",
                trainingsetindex,
                " should be an integer from 0 .. ",
                int(len(cfg["TrainingFraction"]) - 1),
            )

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )

    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))

    Maps = {}
    for trainFraction in TrainingFractions:
        Maps[trainFraction] = {}
        ##################################################
        # Load and setup CNN part detector
        ##################################################
        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)

        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )
        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        # Load meta data
        (
            data,
            trainIndices,
            testIndices,
            trainFraction,
        ) = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        try:
            dlc_cfg = load_config(str(path_test_config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction))

        # change batch size, if it was edited during analysis!
        dlc_cfg["batch_size"] = 1  # in case this was edited for analysis.

        # Create folder structure to store results.
        evaluationfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetEvaluationFolder(
                    trainFraction, shuffle, cfg, modelprefix=modelprefix)),
        )
        auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                               recursive=True)
        # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

        # Check which snapshots are available and sort them by # iterations
        Snapshots = np.array([
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ])
        try:  # check if any where found?
            Snapshots[0]
        except IndexError:
            raise FileNotFoundError(
                "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                % (shuffle, trainFraction))

        increasing_indices = np.argsort(
            [int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]

        if cfg["snapshotindex"] == -1:
            snapindices = [-1]
        elif cfg["snapshotindex"] == "all":
            snapindices = range(len(Snapshots))
        elif cfg["snapshotindex"] < len(Snapshots):
            snapindices = [cfg["snapshotindex"]]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

        ########################### RESCALING (to global scale)
        scale = dlc_cfg["global_scale"] if rescale else 1
        Data *= scale

        bptnames = [
            dlc_cfg["all_joints_names"][i]
            for i in range(len(dlc_cfg["all_joints"]))
        ]

        for snapindex in snapindices:
            dlc_cfg["init_weights"] = os.path.join(
                str(modelfolder), "train", Snapshots[snapindex]
            )  # setting weights to corresponding snapshot.
            trainingsiterations = (
                dlc_cfg["init_weights"].split(os.sep)[-1]
            ).split("-")[
                -1]  # read how many training siterations that corresponds to.

            # Name for deeplabcut net (based on its parameters)
            # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations)
            # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex])
            # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations)
            # if notanalyzed: #this only applies to ask if h5 exists...

            # Specifying state of model (snapshot / training state)
            sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
            Numimages = len(Data.index)
            PredicteData = np.zeros(
                (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
            print("Analyzing data...")
            if Indices is None:
                Indices = enumerate(Data.index)
            else:
                Ind = [Data.index[j] for j in Indices]
                Indices = enumerate(Ind)

            DATA = {}
            for imageindex, imagename in tqdm(Indices):
                image = imread(os.path.join(cfg["project_path"], imagename),
                               mode="RGB")
                if scale != 1:
                    image = imresize(image, scale)

                image_batch = data_to_input(image)
                # Compute prediction with the CNN
                outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})

                if cfg.get("multianimalproject", False):
                    scmap, locref, paf = predictma.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    pagraph = dlc_cfg["partaffinityfield_graph"]
                else:
                    scmap, locref = predict.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    paf = None
                    pagraph = []

                if imageindex in testIndices:
                    trainingfram = False
                else:
                    trainingfram = True

                DATA[imageindex] = [
                    image,
                    scmap,
                    locref,
                    paf,
                    bptnames,
                    pagraph,
                    imagename,
                    trainingfram,
                ]
            Maps[trainFraction][Snapshots[snapindex]] = DATA
    os.chdir(str(start_path))
    return Maps