from deeplkt.config import * params = dotdict({ 'mode' : MODE, 'max_iterations' : MAX_LK_ITERATIONS, 'epsilon' : EPSILON, 'num_classes': NUM_CLASSES, 'num_channels': 3, 'info': "LearnedLKTALOV" }) # lr = 0.0005 # momentum = 0.5 net = PureLKTNet(device, params) tracker = LKTTracker(net) train_params = dotdict({ 'batch_size' : BATCH_SIZE, 'val_split' : VALIDATION_SPLIT, 'train_examples':TRAIN_EXAMPLES, 'shuffle_train': SHUFFLE_TRAIN, 'lr': LR, 'momentum': MOMENTUM, 'l2': L2, 'random_seed': RANDOM_SEED }) model = BaseModel(tracker, 'checkpoint', 'logs', train_params) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) print(count_parameters(net))
params = dotdict({ 'mode' : MODE, 'max_iterations' : MAX_LK_ITERATIONS, 'epsilon' : EPSILON, 'info': "Pure LKT" }) # lr = 0.0005 # momentum = 0.5 nn = PureLKTNet(device, params) tracker = LKTTracker(nn) video_name = "../red_square.mp4" dir_name = "../red_square" outdir_name = "../red_square_results" window_name = "ABC" make_dir(dir_name) make_dir(outdir_name) # convertVideoToDir(video_name, dir_name) frames = readDir(dir_name) first_frame = True cnt = 0 for frame in frames: frame = np.expand_dims(frame, 0)