Пример #1
0
 def test_prod_virial(self):
     tvirial, tatom_virial \
         = op_module.prod_virial_se_a(
             self.tnet_deriv,
             self.tem_deriv,
             self.trij,
             self.tnlist,
             self.tnatoms,
             n_a_sel=self.nnei,
             n_r_sel=0)
     self.sess.run(tf.global_variables_initializer())
     dvirial, datom_virial = self.sess.run(
         [tvirial, tatom_virial],
         feed_dict={
             self.tnet_deriv: self.dnet_deriv,
             self.tem_deriv: self.dem_deriv,
             self.trij: self.drij,
             self.tnlist: self.dnlist,
             self.tnatoms: self.dnatoms
         })
     self.assertEqual(dvirial.shape, (self.nframes, 9))
     self.assertEqual(datom_virial.shape, (self.nframes, self.nall * 9))
     for ff in range(self.nframes):
         np.testing.assert_almost_equal(dvirial[ff], self.expected_virial,
                                        5)
         np.testing.assert_almost_equal(datom_virial[ff],
                                        self.expected_atom_virial, 5)
Пример #2
0
    def prod_force_virial(
            self, atom_ener: tf.Tensor,
            natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Compute force and virial

        Parameters
        ----------
        atom_ener
                The atomic energy
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

        Returns
        -------
        force
                The force on atoms
        virial
                The total virial
        atom_virial
                The atomic virial
        """
        [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape)
        tf.summary.histogram('net_derivative', net_deriv)
        net_deriv_reshape = tf.reshape(net_deriv,
                                       [-1, natoms[0] * self.ndescrpt])
        force \
            = op_module.prod_force_se_a (net_deriv_reshape,
                                          self.descrpt_deriv,
                                          self.nlist,
                                          natoms,
                                          n_a_sel = self.nnei_a,
                                          n_r_sel = self.nnei_r)
        virial, atom_virial \
            = op_module.prod_virial_se_a (net_deriv_reshape,
                                           self.descrpt_deriv,
                                           self.rij,
                                           self.nlist,
                                           natoms,
                                           n_a_sel = self.nnei_a,
                                           n_r_sel = self.nnei_r)
        tf.summary.histogram('force', force)
        tf.summary.histogram('virial', virial)
        tf.summary.histogram('atom_virial', atom_virial)

        return force, virial, atom_virial
Пример #3
0
    def comp_ef (self, 
                 dcoord, 
                 dbox, 
                 dtype,
                 tnatoms,
                 name,
                 reuse = None) :
        descrpt, descrpt_deriv, rij, nlist \
            = op_module.descrpt_se_a_ef_para (dcoord, 
                                              dtype,
                                              tnatoms,
                                              dbox, 
                                              tf.constant(self.default_mesh),
                                              self.efield,
                                              self.t_avg,
                                              self.t_std,
                                              rcut_a = self.rcut_a, 
                                              rcut_r = self.rcut_r, 
                                              rcut_r_smth = self.rcut_r_smth,
                                              sel_a = self.sel_a, 
                                              sel_r = self.sel_r)
        inputs_reshape = tf.reshape (descrpt, [-1, self.ndescrpt])
        atom_ener = self._net (inputs_reshape, name, reuse = reuse)
        atom_ener_reshape = tf.reshape(atom_ener, [-1, self.natoms[0]])        
        energy = tf.reduce_sum (atom_ener_reshape, axis = 1)        
        net_deriv_ = tf.gradients (atom_ener, inputs_reshape)
        net_deriv = net_deriv_[0]
        net_deriv_reshape = tf.reshape (net_deriv, [-1, self.natoms[0] * self.ndescrpt]) 

        force = op_module.prod_force_se_a (net_deriv_reshape, 
                                            descrpt_deriv, 
                                            nlist, 
                                            tnatoms,
                                            n_a_sel = self.nnei_a, 
                                            n_r_sel = self.nnei_r)
        virial, atom_vir = op_module.prod_virial_se_a (net_deriv_reshape, 
                                                        descrpt_deriv, 
                                                        rij,
                                                        nlist, 
                                                        tnatoms,
                                                        n_a_sel = self.nnei_a, 
                                                        n_r_sel = self.nnei_r)
        return energy, force, virial
Пример #4
0
 def prod_force_virial(self, atom_ener, natoms):
     [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape)
     net_deriv_reshape = tf.reshape(net_deriv,
                                    [-1, natoms[0] * self.ndescrpt])
     force \
         = op_module.prod_force_se_a (net_deriv_reshape,
                                       self.descrpt_deriv,
                                       self.nlist,
                                       natoms,
                                       n_a_sel = self.nnei_a,
                                       n_r_sel = self.nnei_r)
     virial, atom_virial \
         = op_module.prod_virial_se_a (net_deriv_reshape,
                                        self.descrpt_deriv,
                                        self.rij,
                                        self.nlist,
                                        natoms,
                                        n_a_sel = self.nnei_a,
                                        n_r_sel = self.nnei_r)
     return force, virial, atom_virial
Пример #5
0
    def _build_fv_graph_inner(self):
        self.t_ef = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None],
                                   name='t_ef')
        nf = 10
        nfxnas = 64 * nf
        nfxna = 192 * nf
        nf = -1
        nfxnas = -1
        nfxna = -1
        self.t_box_reshape = tf.reshape(self.t_box, [-1, 9])
        t_nframes = tf.shape(self.t_box_reshape)[0]
        # (nframes x natoms_sel) x 1 x 3
        self.t_ef_reshape = tf.reshape(self.t_ef, [nfxnas, 1, 3])
        # (nframes x natoms) x ndescrpt
        self.descrpt = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_rmat:0'))
        self.descrpt_deriv = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_rmat_deriv:0'))
        self.nlist = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_nlist:0'))
        self.rij = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_rij:0'))
        # self.descrpt_reshape = tf.reshape(self.descrpt, [nf, 192 * self.ndescrpt])
        # self.descrpt_deriv = tf.reshape(self.descrpt_deriv, [nf, 192 * self.ndescrpt * 3])

        # nframes x (natoms_sel x 3)
        self.t_tensor_reshpe = tf.reshape(self.t_tensor, [t_nframes, -1])
        # nframes x (natoms x 3)
        self.t_tensor_reshpe = self._enrich(self.t_tensor_reshpe, dof=3)
        # (nframes x natoms) x 3
        self.t_tensor_reshpe = tf.reshape(self.t_tensor_reshpe, [nfxna, 3])
        # (nframes x natoms) x 1
        self.t_dipole_x = tf.slice(self.t_tensor_reshpe, [0, 0], [nfxna, 1])
        self.t_dipole_y = tf.slice(self.t_tensor_reshpe, [0, 1], [nfxna, 1])
        self.t_dipole_z = tf.slice(self.t_tensor_reshpe, [0, 2], [nfxna, 1])
        self.t_dipole_z = tf.reshape(self.t_dipole_z, [nfxna, 1])
        # (nframes x natoms) x ndescrpt
        [self.t_dipole_x_d] = tf.gradients(self.t_dipole_x, self.descrpt)
        [self.t_dipole_y_d] = tf.gradients(self.t_dipole_y, self.descrpt)
        [self.t_dipole_z_d] = tf.gradients(self.t_dipole_z, self.descrpt)
        # nframes x (natoms x ndescrpt)
        self.t_dipole_x_d = tf.reshape(self.t_dipole_x_d,
                                       [-1, self.t_natoms[0] * self.ndescrpt])
        self.t_dipole_y_d = tf.reshape(self.t_dipole_y_d,
                                       [-1, self.t_natoms[0] * self.ndescrpt])
        self.t_dipole_z_d = tf.reshape(self.t_dipole_z_d,
                                       [-1, self.t_natoms[0] * self.ndescrpt])
        # nframes x (natoms_sel x ndescrpt)
        self.t_dipole_x_d = self._slice_descrpt_deriv(self.t_dipole_x_d)
        self.t_dipole_y_d = self._slice_descrpt_deriv(self.t_dipole_y_d)
        self.t_dipole_z_d = self._slice_descrpt_deriv(self.t_dipole_z_d)
        # (nframes x natoms_sel) x ndescrpt
        self.t_dipole_x_d = tf.reshape(self.t_dipole_x_d,
                                       [nfxnas, self.ndescrpt])
        self.t_dipole_y_d = tf.reshape(self.t_dipole_y_d,
                                       [nfxnas, self.ndescrpt])
        self.t_dipole_z_d = tf.reshape(self.t_dipole_z_d,
                                       [nfxnas, self.ndescrpt])
        # (nframes x natoms_sel) x 3 x ndescrpt
        self.t_dipole_d = tf.concat(
            [self.t_dipole_x_d, self.t_dipole_y_d, self.t_dipole_z_d], axis=1)
        self.t_dipole_d = tf.reshape(self.t_dipole_d,
                                     [nfxnas, 3 * self.ndescrpt])
        # (nframes x natoms_sel) x 3 x ndescrpt
        self.t_dipole_d = tf.reshape(self.t_dipole_d, [-1, 3, self.ndescrpt])
        # (nframes x natoms_sel) x 1 x ndescrpt
        self.t_ef_d = tf.matmul(self.t_ef_reshape, self.t_dipole_d)
        # nframes x (natoms_sel x ndescrpt)
        self.t_ef_d = tf.reshape(self.t_ef_d, [t_nframes, -1])
        # nframes x (natoms x ndescrpt)
        self.t_ef_d = self._enrich(self.t_ef_d, dof=self.ndescrpt)
        self.t_ef_d = tf.reshape(self.t_ef_d,
                                 [nf, self.t_natoms[0] * self.ndescrpt])
        # t_ef_d is force (with -1), prod_forc takes deriv, so we need the opposite
        self.t_ef_d_oppo = -self.t_ef_d

        force = op_module.prod_force_se_a(self.t_ef_d_oppo,
                                          self.descrpt_deriv,
                                          self.nlist,
                                          self.t_natoms,
                                          n_a_sel=self.nnei_a,
                                          n_r_sel=self.nnei_r)
        virial, atom_virial \
            = op_module.prod_virial_se_a (self.t_ef_d_oppo,
                                          self.descrpt_deriv,
                                          self.rij,
                                          self.nlist,
                                          self.t_natoms,
                                          n_a_sel = self.nnei_a,
                                          n_r_sel = self.nnei_r)
        force = tf.identity(force, name='o_dm_force')
        virial = tf.identity(virial, name='o_dm_virial')
        atom_virial = tf.identity(atom_virial, name='o_dm_av')
        return force, virial, atom_virial
Пример #6
0
    def comp_ef(self, dcoord, dbox, dtype, tnatoms, name, reuse=None):
        descrpt, descrpt_deriv, rij, nlist \
            = op_module.prod_env_mat_a (dcoord,
                                       dtype,
                                       tnatoms,
                                       dbox,
                                       tf.constant(self.default_mesh),
                                       self.t_avg,
                                       self.t_std,
                                       rcut_a = self.rcut_a,
                                       rcut_r = self.rcut_r,
                                       rcut_r_smth = self.rcut_r_smth,
                                       sel_a = self.sel_a,
                                       sel_r = self.sel_r)
        inputs_reshape = tf.reshape(descrpt, [-1, self.ndescrpt])
        atom_ener = self._net(inputs_reshape, name, reuse=reuse)

        sw_lambda, sw_deriv \
            = op_module.soft_min_switch(dtype,
                                        rij,
                                        nlist,
                                        tnatoms,
                                        sel_a = self.sel_a,
                                        sel_r = self.sel_r,
                                        alpha = self.smin_alpha,
                                        rmin = self.sw_rmin,
                                        rmax = self.sw_rmax)
        inv_sw_lambda = 1.0 - sw_lambda
        tab_atom_ener, tab_force, tab_atom_virial \
            = op_module.pair_tab(
                self.tab_info,
                self.tab_data,
                dtype,
                rij,
                nlist,
                tnatoms,
                sw_lambda,
                sel_a = self.sel_a,
                sel_r = self.sel_r)
        energy_diff = tab_atom_ener - tf.reshape(atom_ener,
                                                 [-1, self.natoms[0]])
        tab_atom_ener = tf.reshape(sw_lambda, [-1]) * tf.reshape(
            tab_atom_ener, [-1])
        atom_ener = tf.reshape(inv_sw_lambda, [-1]) * atom_ener
        energy_raw = tab_atom_ener + atom_ener

        energy_raw = tf.reshape(energy_raw, [-1, self.natoms[0]])
        energy = tf.reduce_sum(energy_raw, axis=1)

        net_deriv_ = tf.gradients(atom_ener, inputs_reshape)
        net_deriv = net_deriv_[0]
        net_deriv_reshape = tf.reshape(net_deriv,
                                       [-1, self.natoms[0] * self.ndescrpt])

        force = op_module.prod_force_se_a(net_deriv_reshape,
                                          descrpt_deriv,
                                          nlist,
                                          tnatoms,
                                          n_a_sel=self.nnei_a,
                                          n_r_sel=self.nnei_r)
        sw_force \
            = op_module.soft_min_force(energy_diff,
                                       sw_deriv,
                                       nlist,
                                       tnatoms,
                                       n_a_sel = self.nnei_a,
                                       n_r_sel = self.nnei_r)
        force = force + sw_force + tab_force
        virial, atom_vir = op_module.prod_virial_se_a(net_deriv_reshape,
                                                      descrpt_deriv,
                                                      rij,
                                                      nlist,
                                                      tnatoms,
                                                      n_a_sel=self.nnei_a,
                                                      n_r_sel=self.nnei_r)
        sw_virial, sw_atom_virial \
            = op_module.soft_min_virial (energy_diff,
                                         sw_deriv,
                                         rij,
                                         nlist,
                                         tnatoms,
                                         n_a_sel = self.nnei_a,
                                         n_r_sel = self.nnei_r)
        # atom_virial = atom_virial + sw_atom_virial + tab_atom_virial
        virial = virial + sw_virial \
                 + tf.reduce_sum(tf.reshape(tab_atom_virial, [-1, self.natoms[1], 9]), axis = 1)

        return energy, force, virial