Пример #1
0
 def _pass_filter(self,
                  inputs,
                  natoms,
                  reuse=None,
                  suffix='',
                  trainable=True):
     start_index = 0
     inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
     shape = inputs.get_shape().as_list()
     output = []
     output_qmat = []
     for type_i in range(self.ntypes):
         inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt],
                             [-1, natoms[2 + type_i] * self.ndescrpt])
         inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
         layer, qmat = self._filter(inputs_i,
                                    name='filter_type_' + str(type_i) +
                                    suffix,
                                    natoms=natoms,
                                    reuse=reuse,
                                    seed=self.seed,
                                    trainable=trainable)
         layer = tf.reshape(
             layer,
             [tf.shape(inputs)[0], natoms[2 + type_i] * self.get_dim_out()])
         qmat = tf.reshape(qmat, [
             tf.shape(inputs)[0],
             natoms[2 + type_i] * self.get_dim_rot_mat_1() * 3
         ])
         output.append(layer)
         output_qmat.append(qmat)
         start_index += natoms[2 + type_i]
     output = tf.concat(output, axis=1)
     output_qmat = tf.concat(output_qmat, axis=1)
     return output, output_qmat
Пример #2
0
 def _pass_filter(self,
                  inputs,
                  natoms,
                  reuse=None,
                  suffix='',
                  trainable=True):
     start_index = 0
     inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
     output = []
     output_qmat = []
     if not self.type_one_side:
         for type_i in range(self.ntypes):
             inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt],
                                 [-1, natoms[2 + type_i] * self.ndescrpt])
             inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
             layer, qmat = self._filter(
                 tf.cast(inputs_i, self.filter_precision),
                 type_i,
                 name='filter_type_' + str(type_i) + suffix,
                 natoms=natoms,
                 reuse=reuse,
                 seed=self.seed,
                 trainable=trainable,
                 activation_fn=self.filter_activation_fn)
             layer = tf.reshape(layer, [
                 tf.shape(inputs)[0],
                 natoms[2 + type_i] * self.get_dim_out()
             ])
             qmat = tf.reshape(qmat, [
                 tf.shape(inputs)[0],
                 natoms[2 + type_i] * self.get_dim_rot_mat_1() * 3
             ])
             output.append(layer)
             output_qmat.append(qmat)
             start_index += natoms[2 + type_i]
     else:
         inputs_i = inputs
         inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
         type_i = -1
         layer, qmat = self._filter(tf.cast(inputs_i,
                                            self.filter_precision),
                                    type_i,
                                    name='filter_type_all' + suffix,
                                    natoms=natoms,
                                    reuse=reuse,
                                    seed=self.seed,
                                    trainable=trainable,
                                    activation_fn=self.filter_activation_fn)
         layer = tf.reshape(
             layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()])
         qmat = tf.reshape(qmat, [
             tf.shape(inputs)[0], natoms[0] * self.get_dim_rot_mat_1() * 3
         ])
         output.append(layer)
         output_qmat.append(qmat)
     output = tf.concat(output, axis=1)
     output_qmat = tf.concat(output_qmat, axis=1)
     return output, output_qmat
Пример #3
0
    def _concat_type_embedding(
        self,
        xyz_scatter,
        nframes,
        natoms,
        type_embedding,
    ):
        '''Concatenate `type_embedding` of neighbors and `xyz_scatter`.
        If not self.type_one_side, concatenate `type_embedding` of center atoms as well.

        Parameters
        ----------
        xyz_scatter:
                shape is [nframes*natoms[0]*self.nnei, 1]
        nframes:
                shape is []
        natoms:
                shape is [1+1+self.ntypes]
        type_embedding:
                shape is [self.ntypes, Y] where Y=jdata['type_embedding']['neuron'][-1]

        Returns
        -------
            embedding:
                environment of each atom represented by embedding.
        '''
        te_out_dim = type_embedding.get_shape().as_list()[-1]
        nei_embed = tf.nn.embedding_lookup(
            type_embedding,
            tf.cast(self.nei_type,
                    dtype=tf.int32))  # shape is [self.nnei, 1+te_out_dim]
        nei_embed = tf.tile(
            nei_embed,
            (nframes * natoms[0],
             1))  # shape is [nframes*natoms[0]*self.nnei, te_out_dim]
        nei_embed = tf.reshape(nei_embed, [-1, te_out_dim])
        embedding_input = tf.concat(
            [xyz_scatter, nei_embed],
            1)  # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim]
        if not self.type_one_side:
            atm_embed = embed_atom_type(
                self.ntypes, natoms,
                type_embedding)  # shape is [natoms[0], te_out_dim]
            atm_embed = tf.tile(
                atm_embed,
                (nframes, self.nnei
                 ))  # shape is [nframes*natoms[0], self.nnei*te_out_dim]
            atm_embed = tf.reshape(
                atm_embed,
                [-1, te_out_dim
                 ])  # shape is [nframes*natoms[0]*self.nnei, te_out_dim]
            embedding_input = tf.concat(
                [embedding_input, atm_embed], 1
            )  # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim+te_out_dim]
        return embedding_input
Пример #4
0
 def build(self, coord_, atype_, natoms, box, mesh, suffix='', reuse=None):
     davg = self.davg
     dstd = self.dstd
     if davg is None:
         davg = [
             np.zeros([self.descrpt_a.ntypes, self.descrpt_a.ndescrpt]),
             np.zeros([self.descrpt_r.ntypes, self.descrpt_r.ndescrpt])
         ]
     if dstd is None:
         dstd = [
             np.ones([self.descrpt_a.ntypes, self.descrpt_a.ndescrpt]),
             np.ones([self.descrpt_r.ntypes, self.descrpt_r.ndescrpt])
         ]
     # dout
     self.dout_a = self.descrpt_a.build(coord_,
                                        atype_,
                                        natoms,
                                        box,
                                        mesh,
                                        suffix=suffix + '_a',
                                        reuse=reuse)
     self.dout_r = self.descrpt_r.build(coord_,
                                        atype_,
                                        natoms,
                                        box,
                                        mesh,
                                        suffix=suffix,
                                        reuse=reuse)
     self.dout_a = tf.reshape(self.dout_a,
                              [-1, self.descrpt_a.get_dim_out()])
     self.dout_r = tf.reshape(self.dout_r,
                              [-1, self.descrpt_r.get_dim_out()])
     self.dout = tf.concat([self.dout_a, self.dout_r], axis=1)
     self.dout = tf.reshape(self.dout, [-1, natoms[0] * self.get_dim_out()])
     return self.dout
Пример #5
0
 def _pass_filter(self,
                  inputs,
                  atype,
                  natoms,
                  input_dict,
                  reuse=None,
                  suffix='',
                  trainable=True):
     start_index = 0
     inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
     output = []
     output_qmat = []
     inputs_i = inputs
     inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
     type_i = -1
     layer, qmat = self._filter(inputs_i,
                                type_i,
                                name='filter_type_all' + suffix,
                                natoms=natoms,
                                reuse=reuse,
                                trainable=trainable,
                                activation_fn=self.filter_activation_fn)
     layer = tf.reshape(
         layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()])
     # qmat  = tf.reshape(qmat,  [tf.shape(inputs)[0], natoms[0] * self.get_dim_rot_mat_1() * 3])
     output.append(layer)
     # output_qmat.append(qmat)
     output = tf.concat(output, axis=1)
     # output_qmat = tf.concat(output_qmat, axis = 1)
     return output, None
Пример #6
0
 def _pass_filter(self,
                  inputs,
                  natoms,
                  reuse=None,
                  suffix='',
                  trainable=True):
     start_index = 0
     inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
     output = []
     for type_i in range(self.ntypes):
         inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt],
                             [-1, natoms[2 + type_i] * self.ndescrpt])
         inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
         layer = self._filter_r(tf.cast(inputs_i, self.filter_precision),
                                type_i,
                                name='filter_type_' + str(type_i) + suffix,
                                natoms=natoms,
                                reuse=reuse,
                                seed=self.seed,
                                trainable=trainable,
                                activation_fn=self.filter_activation_fn)
         layer = tf.reshape(
             layer,
             [tf.shape(inputs)[0], natoms[2 + type_i] * self.get_dim_out()])
         output.append(layer)
         start_index += natoms[2 + type_i]
     output = tf.concat(output, axis=1)
     return output
Пример #7
0
    def _filter_r(self,
                  inputs,
                  type_input,
                  natoms,
                  activation_fn=tf.nn.tanh,
                  stddev=1.0,
                  bavg=0.0,
                  name='linear',
                  reuse=None,
                  trainable=True):
        # natom x nei
        outputs_size = [1] + self.filter_neuron
        with tf.variable_scope(name, reuse=reuse):
            start_index = 0
            xyz_scatter_total = []
            for type_i in range(self.ntypes):
                # cut-out inputs
                # with natom x nei_type_i
                inputs_i = tf.slice(inputs, [0, start_index],
                                    [-1, self.sel_r[type_i]])
                start_index += self.sel_r[type_i]
                shape_i = inputs_i.get_shape().as_list()
                # with (natom x nei_type_i) x 1
                xyz_scatter = tf.reshape(inputs_i, [-1, 1])
                if (type_input, type_i) not in self.exclude_types:
                    xyz_scatter = embedding_net(
                        xyz_scatter,
                        self.filter_neuron,
                        self.filter_precision,
                        activation_fn=activation_fn,
                        resnet_dt=self.filter_resnet_dt,
                        name_suffix="_" + str(type_i),
                        stddev=stddev,
                        bavg=bavg,
                        seed=self.seed,
                        trainable=trainable,
                        uniform_seed=self.uniform_seed,
                        initial_variables=self.embedding_net_variables,
                    )
                    if (not self.uniform_seed) and (self.seed is not None):
                        self.seed += self.seed_shift
                    # natom x nei_type_i x out_size
                    xyz_scatter = tf.reshape(
                        xyz_scatter, (-1, shape_i[1], outputs_size[-1]))
                else:
                    natom = tf.shape(inputs)[0]
                    xyz_scatter = tf.cast(
                        tf.fill((natom, shape_i[1], outputs_size[-1]), 0.),
                        GLOBAL_TF_FLOAT_PRECISION)
                xyz_scatter_total.append(xyz_scatter)

            # natom x nei x outputs_size
            xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
            # natom x outputs_size
            #
            res_rescale = 1. / 5.
            result = tf.reduce_mean(xyz_scatter, axis=1) * res_rescale

        return result
Пример #8
0
 def _slice_descrpt_deriv(self, deriv):
     coll = []
     start_idx = 0
     for type_i in range(self.ntypes):
         if type_i in self.sel_type:
             di = tf.slice(deriv, [0, start_idx * self.ndescrpt],
                           [-1, self.t_natoms[2 + type_i] * self.ndescrpt])
             coll.append(di)
         start_idx += self.t_natoms[2 + type_i]
     return tf.concat(coll, axis=1)
Пример #9
0
    def build (self, 
               coord_ : tf.Tensor, 
               atype_ : tf.Tensor,
               natoms : tf.Tensor,
               box_ : tf.Tensor, 
               mesh : tf.Tensor,
               input_dict : dict, 
               reuse : bool = None,
               suffix : str = ''
    ) -> tf.Tensor:
        """
        Build the computational graph for the descriptor

        Parameters
        ----------
        coord_
                The coordinate of atoms
        atype_
                The type of atoms
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        mesh
                For historical reasons, only the length of the Tensor matters.
                if size of mesh == 6, pbc is assumed. 
                if size of mesh == 0, no-pbc is assumed. 
        input_dict
                Dictionary for additional inputs
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        descriptor
                The output descriptor
        """
        with tf.variable_scope('descrpt_attr' + suffix, reuse = reuse) :
            t_rcut = tf.constant(self.get_rcut(), 
                                 name = 'rcut', 
                                 dtype = GLOBAL_TF_FLOAT_PRECISION)
            t_ntypes = tf.constant(self.get_ntypes(), 
                                   name = 'ntypes', 
                                   dtype = tf.int32)
        all_dout = []
        for idx,ii in enumerate(self.descrpt_list):
            dout = ii.build(coord_, atype_, natoms, box_, mesh, input_dict, suffix=suffix+f'_{idx}', reuse=reuse)
            dout = tf.reshape(dout, [-1, ii.get_dim_out()])
            all_dout.append(dout)
        dout = tf.concat(all_dout, axis = 1)
        dout = tf.reshape(dout, [-1, natoms[0] * self.get_dim_out()])
        return dout
Пример #10
0
    def build (self, 
               input_d,
               rot_mat,
               natoms,
               reuse = None,
               suffix = '') :
        start_index = 0
        inputs = tf.cast(tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]]), self.fitting_precision)
        rot_mat = tf.reshape(rot_mat, [-1, 9 * natoms[0]])

        count = 0
        outs_list = []
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice (inputs,
                                 [ 0, start_index*      self.dim_descrpt],
                                 [-1, natoms[2+type_i]* self.dim_descrpt] )
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice (rot_mat,
                                  [ 0, start_index*      9],
                                  [-1, natoms[2+type_i]* 9] )
            rot_mat_i = tf.reshape(rot_mat_i, [-1, 3, 3])
            start_index += natoms[2+type_i]
            if not type_i in self.sel_type :
                continue
            layer = inputs_i
            for ii in range(0,len(self.n_neuron)) :
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] :
                    layer+= one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, use_timestep = self.resnet_dt, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision)
                else :
                    layer = one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision)
            # (nframes x natoms) x 9
            final_layer = one_layer(layer, 9, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, precision = self.fitting_precision, final_layer = True)
            # (nframes x natoms) x 3 x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], 3, 3])
            # (nframes x natoms) x 3 x 3
            final_layer = final_layer + tf.transpose(final_layer, perm = [0,2,1])
            # (nframes x natoms) x 3 x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # (nframes x natoms) x 3(coord) x 3(coord)
            final_layer = tf.matmul(rot_mat_i, final_layer, transpose_a = True)
            # nframes x natoms x 3 x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i], 3, 3])

            # concat the results
            outs_list.append(final_layer)
            count += 1
        outs = tf.concat(outs_list, axis = 1)

        tf.summary.histogram('fitting_net_output', outs)
        return tf.cast(tf.reshape(outs, [-1]),  GLOBAL_TF_FLOAT_PRECISION)
Пример #11
0
    def build (self, 
               input_d,
               rot_mat,
               natoms,
               reuse = None,
               suffix = '') :
        start_index = 0
        inputs = tf.cast(tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]]), self.fitting_precision)
        rot_mat = tf.reshape(rot_mat, [-1, 9 * natoms[0]])

        count = 0
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice (inputs,
                                 [ 0, start_index*      self.dim_descrpt],
                                 [-1, natoms[2+type_i]* self.dim_descrpt] )
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice (rot_mat,
                                  [ 0, start_index*      9],
                                  [-1, natoms[2+type_i]* 9] )
            rot_mat_i = tf.reshape(rot_mat_i, [-1, 3, 3])
            start_index += natoms[2+type_i]
            if not type_i in self.sel_type :
                continue
            layer = inputs_i
            for ii in range(0,len(self.n_neuron)) :
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] :
                    layer+= one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, use_timestep = self.resnet_dt, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed)
                else :
                    layer = one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
            # (nframes x natoms) x (nwfc x 3)
            final_layer = one_layer(layer, self.wfc_numb * 3, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, precision = self.fitting_precision, uniform_seed = self.uniform_seed)
            if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
            # (nframes x natoms) x nwfc(wc) x 3(coord_local)
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], self.wfc_numb, 3])
            # (nframes x natoms) x nwfc(wc) x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # nframes x natoms x nwfc(wc) x 3(coord_local)
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i], self.wfc_numb, 3])

            # concat the results
            if count == 0:
                outs = final_layer
            else:
                outs = tf.concat([outs, final_layer], axis = 1)
            count += 1
        
        tf.summary.histogram('fitting_net_output', outs)
        return tf.cast(tf.reshape(outs, [-1]),  GLOBAL_TF_FLOAT_PRECISION)
Пример #12
0
 def _enrich(self, dipole, dof = 3):
     coll = []                
     sel_start_idx = 0
     for type_i in range(self.ntypes):
         if type_i in self.sel_type:
             di = tf.slice(dipole, 
                           [ 0, sel_start_idx           * dof],
                           [-1, self.t_natoms[2+type_i] * dof])
             sel_start_idx += self.t_natoms[2+type_i]
         else:
             di = tf.zeros([tf.shape(dipole)[0], self.t_natoms[2+type_i] * dof],
                           dtype = global_tf_float_precision)
         coll.append(di)
     return tf.concat(coll, axis = 1)
Пример #13
0
 def _embedding_net(self,
                    inputs,
                    natoms,
                    filter_neuron,
                    activation_fn=tf.nn.tanh,
                    stddev=1.0,
                    bavg=0.0,
                    name='linear',
                    reuse=None,
                    seed=None,
                    trainable=True):
     '''
     inputs:  nf x na x (nei x 4)
     outputs: nf x na x nei x output_size
     '''
     # natom x (nei x 4)
     inputs = tf.reshape(inputs, [-1, self.ndescrpt])
     shape = inputs.get_shape().as_list()
     outputs_size = [1] + filter_neuron
     with tf.variable_scope(name, reuse=reuse):
         xyz_scatter_total = []
         # with natom x (nei x 4)
         inputs_i = inputs
         shape_i = inputs_i.get_shape().as_list()
         # with (natom x nei) x 4
         inputs_reshape = tf.reshape(inputs_i, [-1, 4])
         # with (natom x nei) x 1
         xyz_scatter = tf.reshape(tf.slice(inputs_reshape, [0, 0], [-1, 1]),
                                  [-1, 1])
         # with (natom x nei) x out_size
         xyz_scatter = embedding_net(xyz_scatter,
                                     self.filter_neuron,
                                     self.filter_precision,
                                     activation_fn=activation_fn,
                                     resnet_dt=self.filter_resnet_dt,
                                     stddev=stddev,
                                     bavg=bavg,
                                     seed=seed,
                                     trainable=trainable)
         # natom x nei x out_size
         xyz_scatter = tf.reshape(xyz_scatter,
                                  (-1, shape_i[1] // 4, outputs_size[-1]))
         xyz_scatter_total.append(xyz_scatter)
     # natom x nei x outputs_size
     xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
     # nf x natom x nei x outputs_size
     xyz_scatter = tf.reshape(
         xyz_scatter,
         [tf.shape(inputs)[0], natoms[0], self.nnei, outputs_size[-1]])
     return xyz_scatter
Пример #14
0
 def _enrich(self, dipole, dof=3):
     coll = []
     sel_start_idx = 0
     for type_i in range(self.ntypes):
         if type_i in self.sel_type:
             di = tf.slice(dipole, [0, sel_start_idx * dof],
                           [-1, self.t_natoms[2 + type_i] * dof])
             sel_start_idx += self.t_natoms[2 + type_i]
         else:
             di = tf.zeros(
                 [tf.shape(dipole)[0], self.t_natoms[2 + type_i] * dof],
                 dtype=GLOBAL_TF_FLOAT_PRECISION)
         coll.append(di)
     return tf.concat(coll, axis=1)
Пример #15
0
 def _pass_filter(self,
                  inputs,
                  natoms,
                  reuse=None,
                  suffix='',
                  trainable=True):
     start_index = 0
     inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
     output = []
     if not (self.type_one_side and len(self.exclude_types) == 0):
         for type_i in range(self.ntypes):
             inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt],
                                 [-1, natoms[2 + type_i] * self.ndescrpt])
             inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
             if self.type_one_side:
                 # reuse NN parameters for all types to support type_one_side along with exclude_types
                 reuse = tf.AUTO_REUSE
                 filter_name = 'filter_type_all' + suffix
             else:
                 filter_name = 'filter_type_' + str(type_i) + suffix
             layer = self._filter_r(inputs_i,
                                    type_i,
                                    name=filter_name,
                                    natoms=natoms,
                                    reuse=reuse,
                                    trainable=trainable,
                                    activation_fn=self.filter_activation_fn)
             layer = tf.reshape(layer, [
                 tf.shape(inputs)[0],
                 natoms[2 + type_i] * self.get_dim_out()
             ])
             output.append(layer)
             start_index += natoms[2 + type_i]
     else:
         inputs_i = inputs
         inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
         type_i = -1
         layer = self._filter_r(inputs_i,
                                type_i,
                                name='filter_type_all' + suffix,
                                natoms=natoms,
                                reuse=reuse,
                                trainable=trainable,
                                activation_fn=self.filter_activation_fn)
         layer = tf.reshape(
             layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()])
         output.append(layer)
     output = tf.concat(output, axis=1)
     return output
Пример #16
0
 def build (self, 
            coord_, 
            atype_,
            natoms,
            box, 
            mesh,
            davg,
            dstd,
            suffix = '', 
            reuse = None):
     # dout
     self.dout_a = self.descrpt_a.build(coord_, atype_, natoms, box, mesh, davg[0], dstd[0], suffix=suffix+'_a', reuse=reuse)
     self.dout_r = self.descrpt_r.build(coord_, atype_, natoms, box, mesh, davg[1], dstd[1], suffix=suffix+'_r', reuse=reuse)
     self.dout_a = tf.reshape(self.dout_a, [-1, self.descrpt_a.get_dim_out()])
     self.dout_r = tf.reshape(self.dout_r, [-1, self.descrpt_r.get_dim_out()])
     self.dout = tf.concat([self.dout_a, self.dout_r], axis = 1)
     self.dout = tf.reshape(self.dout, [-1, natoms[0] * self.get_dim_out()])
     return self.dout
Пример #17
0
def embed_atom_type(
    ntypes: int,
    natoms: tf.Tensor,
    type_embedding: tf.Tensor,
):
    """
    Make the embedded type for the atoms in system.
    The atoms are assumed to be sorted according to the type, 
    thus their types are described by a `tf.Tensor` natoms, see explanation below.
    
    Parameters
    ----------
    ntypes:
        Number of types.
    natoms:
        The number of atoms. This tensor has the length of Ntypes + 2
        natoms[0]: number of local atoms
        natoms[1]: total number of atoms held by this processor
        natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
    type_embedding:
        The type embedding. 
        It has the shape of [ntypes, embedding_dim]

    Returns
    -------
    atom_embedding
        The embedded type of each atom. 
        It has the shape of [numb_atoms, embedding_dim]
    """
    te_out_dim = type_embedding.get_shape().as_list()[-1]
    atype = []
    for ii in range(ntypes):
        atype.append(tf.tile([ii], [natoms[2 + ii]]))
    atype = tf.concat(atype, axis=0)
    atm_embed = tf.nn.embedding_lookup(
        type_embedding, tf.cast(atype, dtype=tf.int32))  #(nf*natom)*nchnl
    atm_embed = tf.reshape(atm_embed, [-1, te_out_dim])
    return atm_embed
Пример #18
0
    def build(self,
              coord_: tf.Tensor,
              atype_: tf.Tensor,
              natoms: tf.Tensor,
              box_: tf.Tensor,
              mesh: tf.Tensor,
              input_dict: dict,
              reuse: bool = None,
              suffix: str = '') -> tf.Tensor:
        """
        Build the computational graph for the descriptor

        Parameters
        ----------
        coord_
                The coordinate of atoms
        atype_
                The type of atoms
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        mesh
                For historical reasons, only the length of the Tensor matters.
                if size of mesh == 6, pbc is assumed. 
                if size of mesh == 0, no-pbc is assumed. 
        input_dict
                Dictionary for additional inputs. Should have 'efield'.
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        descriptor
                The output descriptor
        """
        self.dout_vert = self.descrpt_vert.build(coord_, atype_, natoms, box_,
                                                 mesh, input_dict)
        self.dout_para = self.descrpt_para.build(coord_,
                                                 atype_,
                                                 natoms,
                                                 box_,
                                                 mesh,
                                                 input_dict,
                                                 reuse=True)
        coord = tf.reshape(coord_, [-1, natoms[1] * 3])
        nframes = tf.shape(coord)[0]
        self.dout_vert = tf.reshape(
            self.dout_vert,
            [nframes * natoms[0],
             self.descrpt_vert.get_dim_out()])
        self.dout_para = tf.reshape(
            self.dout_para,
            [nframes * natoms[0],
             self.descrpt_para.get_dim_out()])
        self.dout = tf.concat([self.dout_vert, self.dout_para], axis=1)
        self.dout = tf.reshape(self.dout,
                               [nframes, natoms[0] * self.get_dim_out()])
        self.qmat = self.descrpt_vert.qmat + self.descrpt_para.qmat

        tf.summary.histogram('embedding_net_output', self.dout)

        return self.dout
Пример #19
0
    def _build_fv_graph_inner(self):
        self.t_ef = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None],
                                   name='t_ef')
        nf = 10
        nfxnas = 64 * nf
        nfxna = 192 * nf
        nf = -1
        nfxnas = -1
        nfxna = -1
        self.t_box_reshape = tf.reshape(self.t_box, [-1, 9])
        t_nframes = tf.shape(self.t_box_reshape)[0]
        # (nframes x natoms_sel) x 1 x 3
        self.t_ef_reshape = tf.reshape(self.t_ef, [nfxnas, 1, 3])
        # (nframes x natoms) x ndescrpt
        self.descrpt = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_rmat:0'))
        self.descrpt_deriv = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_rmat_deriv:0'))
        self.nlist = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_nlist:0'))
        self.rij = self.graph.get_tensor_by_name(
            os.path.join(self.modifier_prefix, 'o_rij:0'))
        # self.descrpt_reshape = tf.reshape(self.descrpt, [nf, 192 * self.ndescrpt])
        # self.descrpt_deriv = tf.reshape(self.descrpt_deriv, [nf, 192 * self.ndescrpt * 3])

        # nframes x (natoms_sel x 3)
        self.t_tensor_reshpe = tf.reshape(self.t_tensor, [t_nframes, -1])
        # nframes x (natoms x 3)
        self.t_tensor_reshpe = self._enrich(self.t_tensor_reshpe, dof=3)
        # (nframes x natoms) x 3
        self.t_tensor_reshpe = tf.reshape(self.t_tensor_reshpe, [nfxna, 3])
        # (nframes x natoms) x 1
        self.t_dipole_x = tf.slice(self.t_tensor_reshpe, [0, 0], [nfxna, 1])
        self.t_dipole_y = tf.slice(self.t_tensor_reshpe, [0, 1], [nfxna, 1])
        self.t_dipole_z = tf.slice(self.t_tensor_reshpe, [0, 2], [nfxna, 1])
        self.t_dipole_z = tf.reshape(self.t_dipole_z, [nfxna, 1])
        # (nframes x natoms) x ndescrpt
        [self.t_dipole_x_d] = tf.gradients(self.t_dipole_x, self.descrpt)
        [self.t_dipole_y_d] = tf.gradients(self.t_dipole_y, self.descrpt)
        [self.t_dipole_z_d] = tf.gradients(self.t_dipole_z, self.descrpt)
        # nframes x (natoms x ndescrpt)
        self.t_dipole_x_d = tf.reshape(self.t_dipole_x_d,
                                       [-1, self.t_natoms[0] * self.ndescrpt])
        self.t_dipole_y_d = tf.reshape(self.t_dipole_y_d,
                                       [-1, self.t_natoms[0] * self.ndescrpt])
        self.t_dipole_z_d = tf.reshape(self.t_dipole_z_d,
                                       [-1, self.t_natoms[0] * self.ndescrpt])
        # nframes x (natoms_sel x ndescrpt)
        self.t_dipole_x_d = self._slice_descrpt_deriv(self.t_dipole_x_d)
        self.t_dipole_y_d = self._slice_descrpt_deriv(self.t_dipole_y_d)
        self.t_dipole_z_d = self._slice_descrpt_deriv(self.t_dipole_z_d)
        # (nframes x natoms_sel) x ndescrpt
        self.t_dipole_x_d = tf.reshape(self.t_dipole_x_d,
                                       [nfxnas, self.ndescrpt])
        self.t_dipole_y_d = tf.reshape(self.t_dipole_y_d,
                                       [nfxnas, self.ndescrpt])
        self.t_dipole_z_d = tf.reshape(self.t_dipole_z_d,
                                       [nfxnas, self.ndescrpt])
        # (nframes x natoms_sel) x 3 x ndescrpt
        self.t_dipole_d = tf.concat(
            [self.t_dipole_x_d, self.t_dipole_y_d, self.t_dipole_z_d], axis=1)
        self.t_dipole_d = tf.reshape(self.t_dipole_d,
                                     [nfxnas, 3 * self.ndescrpt])
        # (nframes x natoms_sel) x 3 x ndescrpt
        self.t_dipole_d = tf.reshape(self.t_dipole_d, [-1, 3, self.ndescrpt])
        # (nframes x natoms_sel) x 1 x ndescrpt
        self.t_ef_d = tf.matmul(self.t_ef_reshape, self.t_dipole_d)
        # nframes x (natoms_sel x ndescrpt)
        self.t_ef_d = tf.reshape(self.t_ef_d, [t_nframes, -1])
        # nframes x (natoms x ndescrpt)
        self.t_ef_d = self._enrich(self.t_ef_d, dof=self.ndescrpt)
        self.t_ef_d = tf.reshape(self.t_ef_d,
                                 [nf, self.t_natoms[0] * self.ndescrpt])
        # t_ef_d is force (with -1), prod_forc takes deriv, so we need the opposite
        self.t_ef_d_oppo = -self.t_ef_d

        force = op_module.prod_force_se_a(self.t_ef_d_oppo,
                                          self.descrpt_deriv,
                                          self.nlist,
                                          self.t_natoms,
                                          n_a_sel=self.nnei_a,
                                          n_r_sel=self.nnei_r)
        virial, atom_virial \
            = op_module.prod_virial_se_a (self.t_ef_d_oppo,
                                          self.descrpt_deriv,
                                          self.rij,
                                          self.nlist,
                                          self.t_natoms,
                                          n_a_sel = self.nnei_a,
                                          n_r_sel = self.nnei_r)
        force = tf.identity(force, name='o_dm_force')
        virial = tf.identity(virial, name='o_dm_virial')
        atom_virial = tf.identity(atom_virial, name='o_dm_av')
        return force, virial, atom_virial
Пример #20
0
    def build(
        self,
        inputs: tf.Tensor,
        natoms: tf.Tensor,
        input_dict: dict = None,
        reuse: bool = None,
        suffix: str = '',
    ) -> tf.Tensor:
        """
        Build the computational graph for fitting net

        Parameters
        ----------
        inputs
                The input descriptor
        input_dict
                Additional dict for inputs. 
                if numb_fparam > 0, should have input_dict['fparam']
                if numb_aparam > 0, should have input_dict['aparam']
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        ener
                The system energy
        """
        if input_dict is None:
            input_dict = {}
        bias_atom_e = self.bias_atom_e
        if self.numb_fparam > 0 and (self.fparam_avg is None
                                     or self.fparam_inv_std is None):
            raise RuntimeError(
                'No data stat result. one should do data statisitic, before build'
            )
        if self.numb_aparam > 0 and (self.aparam_avg is None
                                     or self.aparam_inv_std is None):
            raise RuntimeError(
                'No data stat result. one should do data statisitic, before build'
            )

        with tf.variable_scope('fitting_attr' + suffix, reuse=reuse):
            t_dfparam = tf.constant(self.numb_fparam,
                                    name='dfparam',
                                    dtype=tf.int32)
            t_daparam = tf.constant(self.numb_aparam,
                                    name='daparam',
                                    dtype=tf.int32)
            if self.numb_fparam > 0:
                t_fparam_avg = tf.get_variable(
                    't_fparam_avg',
                    self.numb_fparam,
                    dtype=GLOBAL_TF_FLOAT_PRECISION,
                    trainable=False,
                    initializer=tf.constant_initializer(self.fparam_avg))
                t_fparam_istd = tf.get_variable(
                    't_fparam_istd',
                    self.numb_fparam,
                    dtype=GLOBAL_TF_FLOAT_PRECISION,
                    trainable=False,
                    initializer=tf.constant_initializer(self.fparam_inv_std))
            if self.numb_aparam > 0:
                t_aparam_avg = tf.get_variable(
                    't_aparam_avg',
                    self.numb_aparam,
                    dtype=GLOBAL_TF_FLOAT_PRECISION,
                    trainable=False,
                    initializer=tf.constant_initializer(self.aparam_avg))
                t_aparam_istd = tf.get_variable(
                    't_aparam_istd',
                    self.numb_aparam,
                    dtype=GLOBAL_TF_FLOAT_PRECISION,
                    trainable=False,
                    initializer=tf.constant_initializer(self.aparam_inv_std))

        inputs = tf.reshape(inputs, [-1, self.dim_descrpt * natoms[0]])
        if len(self.atom_ener):
            # only for atom_ener
            nframes = input_dict.get('nframes')
            if nframes is not None:
                # like inputs, but we don't want to add a dependency on inputs
                inputs_zero = tf.zeros((nframes, self.dim_descrpt * natoms[0]),
                                       dtype=self.fitting_precision)
            else:
                inputs_zero = tf.zeros_like(inputs,
                                            dtype=self.fitting_precision)

        if bias_atom_e is not None:
            assert (len(bias_atom_e) == self.ntypes)

        fparam = None
        aparam = None
        if self.numb_fparam > 0:
            fparam = input_dict['fparam']
            fparam = tf.reshape(fparam, [-1, self.numb_fparam])
            fparam = (fparam - t_fparam_avg) * t_fparam_istd
        if self.numb_aparam > 0:
            aparam = input_dict['aparam']
            aparam = tf.reshape(aparam, [-1, self.numb_aparam])
            aparam = (aparam - t_aparam_avg) * t_aparam_istd
            aparam = tf.reshape(aparam, [-1, self.numb_aparam * natoms[0]])

        type_embedding = input_dict.get('type_embedding', None)
        if type_embedding is not None:
            atype_embed = embed_atom_type(self.ntypes, natoms, type_embedding)
            atype_embed = tf.tile(atype_embed, [tf.shape(inputs)[0], 1])
        else:
            atype_embed = None

        if atype_embed is None:
            start_index = 0
            outs_list = []
            for type_i in range(self.ntypes):
                if bias_atom_e is None:
                    type_bias_ae = 0.0
                else:
                    type_bias_ae = bias_atom_e[type_i]
                final_layer = self._build_lower(start_index,
                                                natoms[2 + type_i],
                                                inputs,
                                                fparam,
                                                aparam,
                                                bias_atom_e=type_bias_ae,
                                                suffix='_type_' + str(type_i) +
                                                suffix,
                                                reuse=reuse)
                # concat the results
                if type_i < len(
                        self.atom_ener) and self.atom_ener[type_i] is not None:
                    zero_layer = self._build_lower(start_index,
                                                   natoms[2 + type_i],
                                                   inputs_zero,
                                                   fparam,
                                                   aparam,
                                                   bias_atom_e=type_bias_ae,
                                                   suffix='_type_' +
                                                   str(type_i) + suffix,
                                                   reuse=True)
                    final_layer += self.atom_ener[type_i] - zero_layer
                final_layer = tf.reshape(
                    final_layer, [tf.shape(inputs)[0], natoms[2 + type_i]])
                outs_list.append(final_layer)
                start_index += natoms[2 + type_i]
            # concat the results
            # concat once may be faster than multiple concat
            outs = tf.concat(outs_list, axis=1)
        # with type embedding
        else:
            if len(self.atom_ener) > 0:
                raise RuntimeError(
                    "setting atom_ener is not supported by type embedding")
            atype_embed = tf.cast(atype_embed, self.fitting_precision)
            type_shape = atype_embed.get_shape().as_list()
            inputs = tf.concat(
                [tf.reshape(inputs, [-1, self.dim_descrpt]), atype_embed],
                axis=1)
            self.dim_descrpt = self.dim_descrpt + type_shape[1]
            inputs = tf.reshape(inputs, [-1, self.dim_descrpt * natoms[0]])
            final_layer = self._build_lower(0,
                                            natoms[0],
                                            inputs,
                                            fparam,
                                            aparam,
                                            bias_atom_e=0.0,
                                            suffix=suffix,
                                            reuse=reuse)
            outs = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[0]])
            # add atom energy bias; TF will broadcast to all batches
            # tf.repeat is avaiable in TF>=2.1 or TF 1.15
            _TF_VERSION = Version(TF_VERSION)
            if (Version('1.15') <= _TF_VERSION < Version('2') or _TF_VERSION >=
                    Version('2.1')) and self.bias_atom_e is not None:
                outs += tf.repeat(
                    tf.Variable(self.bias_atom_e,
                                dtype=self.fitting_precision,
                                trainable=False,
                                name="bias_atom_ei"), natoms[2:])

        if self.tot_ener_zero:
            force_tot_ener = 0.0
            outs = tf.reshape(outs, [-1, natoms[0]])
            outs_mean = tf.reshape(tf.reduce_mean(outs, axis=1), [-1, 1])
            outs_mean = outs_mean - tf.ones_like(
                outs_mean, dtype=GLOBAL_TF_FLOAT_PRECISION) * (
                    force_tot_ener / global_cvt_2_tf_float(natoms[0]))
            outs = outs - outs_mean
            outs = tf.reshape(outs, [-1])

        tf.summary.histogram('fitting_net_output', outs)
        return tf.reshape(outs, [-1])
Пример #21
0
    def _build_lower(self,
                     start_index,
                     natoms,
                     inputs,
                     fparam=None,
                     aparam=None,
                     bias_atom_e=0.0,
                     suffix='',
                     reuse=None):
        # cut-out inputs
        inputs_i = tf.slice(inputs, [0, start_index * self.dim_descrpt],
                            [-1, natoms * self.dim_descrpt])
        inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
        layer = inputs_i
        if fparam is not None:
            ext_fparam = tf.tile(fparam, [1, natoms])
            ext_fparam = tf.reshape(ext_fparam, [-1, self.numb_fparam])
            ext_fparam = tf.cast(ext_fparam, self.fitting_precision)
            layer = tf.concat([layer, ext_fparam], axis=1)
        if aparam is not None:
            ext_aparam = tf.slice(aparam, [0, start_index * self.numb_aparam],
                                  [-1, natoms * self.numb_aparam])
            ext_aparam = tf.reshape(ext_aparam, [-1, self.numb_aparam])
            ext_aparam = tf.cast(ext_aparam, self.fitting_precision)
            layer = tf.concat([layer, ext_aparam], axis=1)

        for ii in range(0, len(self.n_neuron)):
            if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]:
                layer += one_layer(
                    layer,
                    self.n_neuron[ii],
                    name='layer_' + str(ii) + suffix,
                    reuse=reuse,
                    seed=self.seed,
                    use_timestep=self.resnet_dt,
                    activation_fn=self.fitting_activation_fn,
                    precision=self.fitting_precision,
                    trainable=self.trainable[ii],
                    uniform_seed=self.uniform_seed,
                    initial_variables=self.fitting_net_variables,
                    mixed_prec=self.mixed_prec)
            else:
                layer = one_layer(layer,
                                  self.n_neuron[ii],
                                  name='layer_' + str(ii) + suffix,
                                  reuse=reuse,
                                  seed=self.seed,
                                  activation_fn=self.fitting_activation_fn,
                                  precision=self.fitting_precision,
                                  trainable=self.trainable[ii],
                                  uniform_seed=self.uniform_seed,
                                  initial_variables=self.fitting_net_variables,
                                  mixed_prec=self.mixed_prec)
            if (not self.uniform_seed) and (self.seed is not None):
                self.seed += self.seed_shift
        final_layer = one_layer(layer,
                                1,
                                activation_fn=None,
                                bavg=bias_atom_e,
                                name='final_layer' + suffix,
                                reuse=reuse,
                                seed=self.seed,
                                precision=self.fitting_precision,
                                trainable=self.trainable[-1],
                                uniform_seed=self.uniform_seed,
                                initial_variables=self.fitting_net_variables,
                                mixed_prec=self.mixed_prec,
                                final_layer=True)
        if (not self.uniform_seed) and (self.seed is not None):
            self.seed += self.seed_shift

        return final_layer
Пример #22
0
def embedding_net(xx,
                  network_size,
                  precision,
                  activation_fn=tf.nn.tanh,
                  resnet_dt=False,
                  name_suffix='',
                  stddev=1.0,
                  bavg=0.0,
                  seed=None,
                  trainable=True,
                  uniform_seed=False,
                  initial_variables=None,
                  mixed_prec=None):
    r"""The embedding network.

    The embedding network function :math:`\mathcal{N}` is constructed by is the
    composition of multiple layers :math:`\mathcal{L}^{(i)}`:

    .. math::
        \mathcal{N} = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)}
        \circ \cdots \circ \mathcal{L}^{(1)}

    A layer :math:`\mathcal{L}` is given by one of the following forms,
    depending on the number of nodes: [1]_

    .. math::
        \mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})=
        \begin{cases}
            \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b}) + \mathbf{x}, & N_2=N_1 \\
            \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b}) + (\mathbf{x}, \mathbf{x}), & N_2 = 2N_1\\
            \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b}), & \text{otherwise} \\
        \end{cases}

    where :math:`\mathbf{x} \in \mathbb{R}^{N_1}`$` is the input vector and :math:`\mathbf{y} \in \mathbb{R}^{N_2}`
    is the output vector. :math:`\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}` and
    :math:`\mathbf{b} \in \mathbb{R}^{N_2}`$` are weights and biases, respectively,
    both of which are trainable if `trainable` is `True`. :math:`\boldsymbol{\phi}`
    is the activation function.

    Parameters
    ----------
    xx : Tensor   
        Input tensor :math:`\mathbf{x}` of shape [-1,1]
    network_size: list of int
        Size of the embedding network. For example [16,32,64]
    precision: 
        Precision of network weights. For example, tf.float64
    activation_fn:
        Activation function :math:`\boldsymbol{\phi}`
    resnet_dt: boolean
        Using time-step in the ResNet construction
    name_suffix: str
        The name suffix append to each variable. 
    stddev: float
        Standard deviation of initializing network parameters
    bavg: float
        Mean of network intial bias
    seed: int
        Random seed for initializing network parameters
    trainable: boolean
        If the network is trainable
    uniform_seed : boolean
        Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    initial_variables : dict
        The input dict which stores the embedding net variables
    mixed_prec
        The input dict which stores the mixed precision setting for the embedding net


    References
    ----------
    .. [1] Kaiming  He,  Xiangyu  Zhang,  Shaoqing  Ren,  and  Jian  Sun. Identitymappings
       in deep residual networks. InComputer Vision – ECCV 2016,pages 630–645. Springer
       International Publishing, 2016.
    """
    input_shape = xx.get_shape().as_list()
    outputs_size = [input_shape[1]] + network_size

    for ii in range(1, len(outputs_size)):
        w_initializer = tf.random_normal_initializer(
            stddev=stddev / np.sqrt(outputs_size[ii] + outputs_size[ii - 1]),
            seed=seed if (seed is None or uniform_seed) else seed + ii * 3 + 0)
        b_initializer = tf.random_normal_initializer(
            stddev=stddev,
            mean=bavg,
            seed=seed if (seed is None or uniform_seed) else seed + 3 * ii + 1)
        if initial_variables is not None:
            scope = tf.get_variable_scope().name
            w_initializer = tf.constant_initializer(
                initial_variables[scope + '/matrix_' + str(ii) + name_suffix])
            b_initializer = tf.constant_initializer(
                initial_variables[scope + '/bias_' + str(ii) + name_suffix])
        w = tf.get_variable('matrix_' + str(ii) + name_suffix,
                            [outputs_size[ii - 1], outputs_size[ii]],
                            precision,
                            w_initializer,
                            trainable=trainable)
        variable_summaries(w, 'matrix_' + str(ii) + name_suffix)

        b = tf.get_variable('bias_' + str(ii) + name_suffix,
                            [outputs_size[ii]],
                            precision,
                            b_initializer,
                            trainable=trainable)
        variable_summaries(b, 'bias_' + str(ii) + name_suffix)

        if mixed_prec is not None:
            xx = tf.cast(xx, get_precision(mixed_prec['compute_prec']))
            w = tf.cast(w, get_precision(mixed_prec['compute_prec']))
            b = tf.cast(b, get_precision(mixed_prec['compute_prec']))
        hidden = tf.reshape(activation_fn(tf.nn.bias_add(tf.matmul(xx, w), b)),
                            [-1, outputs_size[ii]])
        if resnet_dt:
            idt_initializer = tf.random_normal_initializer(
                stddev=0.001,
                mean=1.0,
                seed=seed if
                (seed is None or uniform_seed) else seed + 3 * ii + 2)
            if initial_variables is not None:
                scope = tf.get_variable_scope().name
                idt_initializer = tf.constant_initializer(
                    initial_variables[scope + '/idt_' + str(ii) + name_suffix])
            idt = tf.get_variable('idt_' + str(ii) + name_suffix,
                                  [1, outputs_size[ii]],
                                  precision,
                                  idt_initializer,
                                  trainable=trainable)
            variable_summaries(idt, 'idt_' + str(ii) + name_suffix)
            if mixed_prec is not None:
                idt = tf.cast(idt, get_precision(mixed_prec['compute_prec']))

        if outputs_size[ii] == outputs_size[ii - 1]:
            if resnet_dt:
                xx += hidden * idt
            else:
                xx += hidden
        elif outputs_size[ii] == outputs_size[ii - 1] * 2:
            if resnet_dt:
                xx = tf.concat([xx, xx], 1) + hidden * idt
            else:
                xx = tf.concat([xx, xx], 1) + hidden
        else:
            xx = hidden
    if mixed_prec is not None:
        xx = tf.cast(xx, get_precision(mixed_prec['output_prec']))
    return xx
Пример #23
0
    def build(self, inputs, input_dict, natoms, reuse=None, suffix=''):
        bias_atom_e = self.bias_atom_e
        if self.numb_fparam > 0 and (self.fparam_avg is None
                                     or self.fparam_inv_std is None):
            raise RuntimeError(
                'No data stat result. one should do data statisitic, before build'
            )
        if self.numb_aparam > 0 and (self.aparam_avg is None
                                     or self.aparam_inv_std is None):
            raise RuntimeError(
                'No data stat result. one should do data statisitic, before build'
            )

        with tf.variable_scope('fitting_attr' + suffix, reuse=reuse):
            t_dfparam = tf.constant(self.numb_fparam,
                                    name='dfparam',
                                    dtype=tf.int32)
            t_daparam = tf.constant(self.numb_aparam,
                                    name='daparam',
                                    dtype=tf.int32)
            if self.numb_fparam > 0:
                t_fparam_avg = tf.get_variable(
                    't_fparam_avg',
                    self.numb_fparam,
                    dtype=global_tf_float_precision,
                    trainable=False,
                    initializer=tf.constant_initializer(self.fparam_avg))
                t_fparam_istd = tf.get_variable(
                    't_fparam_istd',
                    self.numb_fparam,
                    dtype=global_tf_float_precision,
                    trainable=False,
                    initializer=tf.constant_initializer(self.fparam_inv_std))
            if self.numb_aparam > 0:
                t_aparam_avg = tf.get_variable(
                    't_aparam_avg',
                    self.numb_aparam,
                    dtype=global_tf_float_precision,
                    trainable=False,
                    initializer=tf.constant_initializer(self.aparam_avg))
                t_aparam_istd = tf.get_variable(
                    't_aparam_istd',
                    self.numb_aparam,
                    dtype=global_tf_float_precision,
                    trainable=False,
                    initializer=tf.constant_initializer(self.aparam_inv_std))

        start_index = 0
        inputs = tf.cast(
            tf.reshape(inputs, [-1, self.dim_descrpt * natoms[0]]),
            self.fitting_precision)

        if bias_atom_e is not None:
            assert (len(bias_atom_e) == self.ntypes)

        if self.numb_fparam > 0:
            fparam = input_dict['fparam']
            fparam = tf.reshape(fparam, [-1, self.numb_fparam])
            fparam = (fparam - t_fparam_avg) * t_fparam_istd
        if self.numb_aparam > 0:
            aparam = input_dict['aparam']
            aparam = tf.reshape(aparam, [-1, self.numb_aparam])
            aparam = (aparam - t_aparam_avg) * t_aparam_istd
            aparam = tf.reshape(aparam, [-1, self.numb_aparam * natoms[0]])

        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice(inputs, [0, start_index * self.dim_descrpt],
                                [-1, natoms[2 + type_i] * self.dim_descrpt])
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            layer = inputs_i
            if self.numb_fparam > 0:
                ext_fparam = tf.tile(fparam, [1, natoms[2 + type_i]])
                ext_fparam = tf.reshape(ext_fparam, [-1, self.numb_fparam])
                layer = tf.concat([layer, ext_fparam], axis=1)
            if self.numb_aparam > 0:
                ext_aparam = tf.slice(
                    aparam, [0, start_index * self.numb_aparam],
                    [-1, natoms[2 + type_i] * self.numb_aparam])
                ext_aparam = tf.reshape(ext_aparam, [-1, self.numb_aparam])
                layer = tf.concat([layer, ext_aparam], axis=1)
            start_index += natoms[2 + type_i]

            if bias_atom_e is None:
                type_bias_ae = 0.0
            else:
                type_bias_ae = bias_atom_e[type_i]

            for ii in range(0, len(self.n_neuron)):
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]:
                    layer += one_layer(
                        layer,
                        self.n_neuron[ii],
                        name='layer_' + str(ii) + '_type_' + str(type_i) +
                        suffix,
                        reuse=reuse,
                        seed=self.seed,
                        use_timestep=self.resnet_dt,
                        activation_fn=self.fitting_activation_fn,
                        precision=self.fitting_precision,
                        trainable=self.trainable[ii])
                else:
                    layer = one_layer(layer,
                                      self.n_neuron[ii],
                                      name='layer_' + str(ii) + '_type_' +
                                      str(type_i) + suffix,
                                      reuse=reuse,
                                      seed=self.seed,
                                      activation_fn=self.fitting_activation_fn,
                                      precision=self.fitting_precision,
                                      trainable=self.trainable[ii])
            final_layer = one_layer(layer,
                                    1,
                                    activation_fn=None,
                                    bavg=type_bias_ae,
                                    name='final_layer_type_' + str(type_i) +
                                    suffix,
                                    reuse=reuse,
                                    seed=self.seed,
                                    precision=self.fitting_precision,
                                    trainable=self.trainable[-1])

            if type_i < len(
                    self.atom_ener) and self.atom_ener[type_i] is not None:
                inputs_zero = tf.zeros_like(inputs_i,
                                            dtype=global_tf_float_precision)
                layer = inputs_zero
                if self.numb_fparam > 0:
                    layer = tf.concat([layer, ext_fparam], axis=1)
                if self.numb_aparam > 0:
                    layer = tf.concat([layer, ext_aparam], axis=1)
                for ii in range(0, len(self.n_neuron)):
                    if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]:
                        layer += one_layer(
                            layer,
                            self.n_neuron[ii],
                            name='layer_' + str(ii) + '_type_' + str(type_i) +
                            suffix,
                            reuse=True,
                            seed=self.seed,
                            use_timestep=self.resnet_dt,
                            activation_fn=self.fitting_activation_fn,
                            precision=self.fitting_precision,
                            trainable=self.trainable[ii])
                    else:
                        layer = one_layer(
                            layer,
                            self.n_neuron[ii],
                            name='layer_' + str(ii) + '_type_' + str(type_i) +
                            suffix,
                            reuse=True,
                            seed=self.seed,
                            activation_fn=self.fitting_activation_fn,
                            precision=self.fitting_precision,
                            trainable=self.trainable[ii])
                zero_layer = one_layer(layer,
                                       1,
                                       activation_fn=None,
                                       bavg=type_bias_ae,
                                       name='final_layer_type_' + str(type_i) +
                                       suffix,
                                       reuse=True,
                                       seed=self.seed,
                                       precision=self.fitting_precision,
                                       trainable=self.trainable[-1])
                final_layer += self.atom_ener[type_i] - zero_layer

            final_layer = tf.reshape(final_layer,
                                     [tf.shape(inputs)[0], natoms[2 + type_i]])

            # concat the results
            if type_i == 0:
                outs = final_layer
            else:
                outs = tf.concat([outs, final_layer], axis=1)

        return tf.cast(tf.reshape(outs, [-1]), global_tf_float_precision)
Пример #24
0
    def _filter(self,
                inputs,
                type_input,
                natoms,
                activation_fn=tf.nn.tanh,
                stddev=1.0,
                bavg=0.0,
                name='linear',
                reuse=None,
                seed=None,
                trainable=True):
        # natom x (nei x 4)
        shape = inputs.get_shape().as_list()
        outputs_size = [1] + self.filter_neuron
        outputs_size_2 = self.n_axis_neuron
        with tf.variable_scope(name, reuse=reuse):
            start_index = 0
            xyz_scatter_total = []
            for type_i in range(self.ntypes):
                # cut-out inputs
                # with natom x (nei_type_i x 4)
                inputs_i = tf.slice(inputs, [0, start_index * 4],
                                    [-1, self.sel_a[type_i] * 4])
                start_index += self.sel_a[type_i]
                shape_i = inputs_i.get_shape().as_list()
                # with (natom x nei_type_i) x 4
                inputs_reshape = tf.reshape(inputs_i, [-1, 4])
                xyz_scatter = tf.reshape(
                    tf.slice(inputs_reshape, [0, 0], [-1, 1]), [-1, 1])
                if (type_input, type_i) not in self.exclude_types:
                    for ii in range(1, len(outputs_size)):
                        w = tf.get_variable(
                            'matrix_' + str(ii) + '_' + str(type_i),
                            [outputs_size[ii - 1], outputs_size[ii]],
                            self.filter_precision,
                            tf.random_normal_initializer(
                                stddev=stddev / np.sqrt(outputs_size[ii] +
                                                        outputs_size[ii - 1]),
                                seed=seed),
                            trainable=trainable)
                        b = tf.get_variable(
                            'bias_' + str(ii) + '_' + str(type_i),
                            [1, outputs_size[ii]],
                            self.filter_precision,
                            tf.random_normal_initializer(stddev=stddev,
                                                         mean=bavg,
                                                         seed=seed),
                            trainable=trainable)
                        if self.filter_resnet_dt:
                            idt = tf.get_variable(
                                'idt_' + str(ii) + '_' + str(type_i),
                                [1, outputs_size[ii]],
                                self.filter_precision,
                                tf.random_normal_initializer(stddev=0.001,
                                                             mean=1.0,
                                                             seed=seed),
                                trainable=trainable)
                        if outputs_size[ii] == outputs_size[ii - 1]:
                            if self.filter_resnet_dt:
                                xyz_scatter += activation_fn(
                                    tf.matmul(xyz_scatter, w) + b) * idt
                            else:
                                xyz_scatter += activation_fn(
                                    tf.matmul(xyz_scatter, w) + b)
                        elif outputs_size[ii] == outputs_size[ii - 1] * 2:
                            if self.filter_resnet_dt:
                                xyz_scatter = tf.concat(
                                    [xyz_scatter, xyz_scatter],
                                    1) + activation_fn(
                                        tf.matmul(xyz_scatter, w) + b) * idt
                            else:
                                xyz_scatter = tf.concat(
                                    [xyz_scatter, xyz_scatter],
                                    1) + activation_fn(
                                        tf.matmul(xyz_scatter, w) + b)
                        else:
                            xyz_scatter = activation_fn(
                                tf.matmul(xyz_scatter, w) + b)
                else:
                    w = tf.zeros((outputs_size[0], outputs_size[-1]),
                                 dtype=global_tf_float_precision)
                    xyz_scatter = tf.matmul(xyz_scatter, w)
                # natom x nei_type_i x out_size
                xyz_scatter = tf.reshape(
                    xyz_scatter, (-1, shape_i[1] // 4, outputs_size[-1]))
                xyz_scatter_total.append(xyz_scatter)

            # natom x nei x outputs_size
            xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
            # natom x nei x 4
            inputs_reshape = tf.reshape(inputs, [-1, shape[1] // 4, 4])
            # natom x 4 x outputs_size
            xyz_scatter_1 = tf.matmul(inputs_reshape,
                                      xyz_scatter,
                                      transpose_a=True)
            xyz_scatter_1 = xyz_scatter_1 * (4.0 / shape[1])
            # natom x 4 x outputs_size_2
            xyz_scatter_2 = tf.slice(xyz_scatter_1, [0, 0, 0],
                                     [-1, -1, outputs_size_2])
            # # natom x 3 x outputs_size_2
            # qmat = tf.slice(xyz_scatter_2, [0,1,0], [-1, 3, -1])
            # natom x 3 x outputs_size_1
            qmat = tf.slice(xyz_scatter_1, [0, 1, 0], [-1, 3, -1])
            # natom x outputs_size_2 x 3
            qmat = tf.transpose(qmat, perm=[0, 2, 1])
            # natom x outputs_size x outputs_size_2
            result = tf.matmul(xyz_scatter_1, xyz_scatter_2, transpose_a=True)
            # natom x (outputs_size x outputs_size_2)
            result = tf.reshape(result,
                                [-1, outputs_size_2 * outputs_size[-1]])

        return result, qmat
Пример #25
0
    def build(self, input_d, rot_mat, natoms, reuse=None, suffix=''):
        start_index = 0
        inputs = tf.cast(
            tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]]),
            self.fitting_precision)
        rot_mat = tf.reshape(rot_mat, [-1, self.dim_rot_mat * natoms[0]])

        count = 0
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice(inputs, [0, start_index * self.dim_descrpt],
                                [-1, natoms[2 + type_i] * self.dim_descrpt])
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice(rot_mat, [0, start_index * self.dim_rot_mat],
                                 [-1, natoms[2 + type_i] * self.dim_rot_mat])
            rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3])
            start_index += natoms[2 + type_i]
            if not type_i in self.sel_type:
                continue
            layer = inputs_i
            for ii in range(0, len(self.n_neuron)):
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]:
                    layer += one_layer(
                        layer,
                        self.n_neuron[ii],
                        name='layer_' + str(ii) + '_type_' + str(type_i) +
                        suffix,
                        reuse=reuse,
                        seed=self.seed,
                        use_timestep=self.resnet_dt,
                        activation_fn=self.fitting_activation_fn,
                        precision=self.fitting_precision)
                else:
                    layer = one_layer(layer,
                                      self.n_neuron[ii],
                                      name='layer_' + str(ii) + '_type_' +
                                      str(type_i) + suffix,
                                      reuse=reuse,
                                      seed=self.seed,
                                      activation_fn=self.fitting_activation_fn,
                                      precision=self.fitting_precision)
            if self.fit_diag:
                bavg = np.zeros(self.dim_rot_mat_1)
                # bavg[0] = self.avgeig[0]
                # bavg[1] = self.avgeig[1]
                # bavg[2] = self.avgeig[2]
                # (nframes x natoms) x naxis
                final_layer = one_layer(layer,
                                        self.dim_rot_mat_1,
                                        activation_fn=None,
                                        name='final_layer_type_' +
                                        str(type_i) + suffix,
                                        reuse=reuse,
                                        seed=self.seed,
                                        bavg=bavg,
                                        precision=self.fitting_precision)
                # (nframes x natoms) x naxis
                final_layer = tf.reshape(final_layer, [
                    tf.shape(inputs)[0] * natoms[2 + type_i],
                    self.dim_rot_mat_1
                ])
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.matrix_diag(final_layer)
            else:
                bavg = np.zeros(self.dim_rot_mat_1 * self.dim_rot_mat_1)
                # bavg[0*self.dim_rot_mat_1+0] = self.avgeig[0]
                # bavg[1*self.dim_rot_mat_1+1] = self.avgeig[1]
                # bavg[2*self.dim_rot_mat_1+2] = self.avgeig[2]
                # (nframes x natoms) x (naxis x naxis)
                final_layer = one_layer(
                    layer,
                    self.dim_rot_mat_1 * self.dim_rot_mat_1,
                    activation_fn=None,
                    name='final_layer_type_' + str(type_i) + suffix,
                    reuse=reuse,
                    seed=self.seed,
                    bavg=bavg,
                    precision=self.fitting_precision)
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.reshape(final_layer, [
                    tf.shape(inputs)[0] * natoms[2 + type_i],
                    self.dim_rot_mat_1, self.dim_rot_mat_1
                ])
                # (nframes x natoms) x naxis x naxis
                final_layer = final_layer + tf.transpose(final_layer,
                                                         perm=[0, 2, 1])
            # (nframes x natoms) x naxis x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # (nframes x natoms) x 3(coord) x 3(coord)
            final_layer = tf.matmul(rot_mat_i, final_layer, transpose_a=True)
            # nframes x natoms x 3 x 3
            final_layer = tf.reshape(
                final_layer, [tf.shape(inputs)[0], natoms[2 + type_i], 3, 3])
            # shift and scale
            sel_type_idx = self.sel_type.index(type_i)
            final_layer = final_layer * self.scale[sel_type_idx]
            final_layer = final_layer + self.diag_shift[sel_type_idx] * tf.eye(
                3,
                batch_shape=[tf.shape(inputs)[0], natoms[2 + type_i]],
                dtype=global_tf_float_precision)

            # concat the results
            if count == 0:
                outs = final_layer
            else:
                outs = tf.concat([outs, final_layer], axis=1)
            count += 1

        return tf.cast(tf.reshape(outs, [-1]), global_tf_float_precision)
Пример #26
0
    def build(self, input_d, rot_mat, natoms, reuse=None, suffix=''):
        start_index = 0
        inputs = tf.cast(
            tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]]),
            self.fitting_precision)
        rot_mat = tf.reshape(rot_mat, [-1, self.dim_rot_mat * natoms[0]])

        count = 0
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice(inputs, [0, start_index * self.dim_descrpt],
                                [-1, natoms[2 + type_i] * self.dim_descrpt])
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice(rot_mat, [0, start_index * self.dim_rot_mat],
                                 [-1, natoms[2 + type_i] * self.dim_rot_mat])
            rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3])
            start_index += natoms[2 + type_i]
            if not type_i in self.sel_type:
                continue
            layer = inputs_i
            for ii in range(0, len(self.n_neuron)):
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]:
                    layer += one_layer(
                        layer,
                        self.n_neuron[ii],
                        name='layer_' + str(ii) + '_type_' + str(type_i) +
                        suffix,
                        reuse=reuse,
                        seed=self.seed,
                        use_timestep=self.resnet_dt,
                        activation_fn=self.fitting_activation_fn,
                        precision=self.fitting_precision)
                else:
                    layer = one_layer(layer,
                                      self.n_neuron[ii],
                                      name='layer_' + str(ii) + '_type_' +
                                      str(type_i) + suffix,
                                      reuse=reuse,
                                      seed=self.seed,
                                      activation_fn=self.fitting_activation_fn,
                                      precision=self.fitting_precision)
            # (nframes x natoms) x naxis
            final_layer = one_layer(layer,
                                    self.dim_rot_mat_1,
                                    activation_fn=None,
                                    name='final_layer_type_' + str(type_i) +
                                    suffix,
                                    reuse=reuse,
                                    seed=self.seed,
                                    precision=self.fitting_precision)
            # (nframes x natoms) x 1 * naxis
            final_layer = tf.reshape(final_layer, [
                tf.shape(inputs)[0] * natoms[2 + type_i], 1, self.dim_rot_mat_1
            ])
            # (nframes x natoms) x 1 x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # nframes x natoms x 3
            final_layer = tf.reshape(
                final_layer, [tf.shape(inputs)[0], natoms[2 + type_i], 3])

            # concat the results
            if count == 0:
                outs = final_layer
            else:
                outs = tf.concat([outs, final_layer], axis=1)
            count += 1

        return tf.cast(tf.reshape(outs, [-1]), global_tf_float_precision)
Пример #27
0
    def _filter_r(self,
                  inputs,
                  type_input,
                  natoms,
                  activation_fn=tf.nn.tanh,
                  stddev=1.0,
                  bavg=0.0,
                  name='linear',
                  reuse=None,
                  seed=None,
                  trainable=True):
        # natom x nei
        outputs_size = [1] + self.filter_neuron
        with tf.variable_scope(name, reuse=reuse):
            start_index = 0
            xyz_scatter_total = []
            for type_i in range(self.ntypes):
                # cut-out inputs
                # with natom x nei_type_i
                inputs_i = tf.slice(inputs, [0, start_index],
                                    [-1, self.sel_r[type_i]])
                start_index += self.sel_r[type_i]
                shape_i = inputs_i.get_shape().as_list()
                # with (natom x nei_type_i) x 1
                xyz_scatter = tf.reshape(inputs_i, [-1, 1])
                if (type_input, type_i) not in self.exclude_types:
                    for ii in range(1, len(outputs_size)):
                        w = tf.get_variable(
                            'matrix_' + str(ii) + '_' + str(type_i),
                            [outputs_size[ii - 1], outputs_size[ii]],
                            self.filter_precision,
                            tf.random_normal_initializer(
                                stddev=stddev / np.sqrt(outputs_size[ii] +
                                                        outputs_size[ii - 1]),
                                seed=seed),
                            trainable=trainable)
                        b = tf.get_variable(
                            'bias_' + str(ii) + '_' + str(type_i),
                            [1, outputs_size[ii]],
                            self.filter_precision,
                            tf.random_normal_initializer(stddev=stddev,
                                                         mean=bavg,
                                                         seed=seed),
                            trainable=trainable)
                        if self.filter_resnet_dt:
                            idt = tf.get_variable(
                                'idt_' + str(ii) + '_' + str(type_i),
                                [1, outputs_size[ii]],
                                self.filter_precision,
                                tf.random_normal_initializer(stddev=0.001,
                                                             mean=1.0,
                                                             seed=seed),
                                trainable=trainable)
                        if outputs_size[ii] == outputs_size[ii - 1]:
                            if self.filter_resnet_dt:
                                xyz_scatter += activation_fn(
                                    tf.matmul(xyz_scatter, w) + b) * idt
                            else:
                                xyz_scatter += activation_fn(
                                    tf.matmul(xyz_scatter, w) + b)
                        elif outputs_size[ii] == outputs_size[ii - 1] * 2:
                            if self.filter_resnet_dt:
                                xyz_scatter = tf.concat(
                                    [xyz_scatter, xyz_scatter],
                                    1) + activation_fn(
                                        tf.matmul(xyz_scatter, w) + b) * idt
                            else:
                                xyz_scatter = tf.concat(
                                    [xyz_scatter, xyz_scatter],
                                    1) + activation_fn(
                                        tf.matmul(xyz_scatter, w) + b)
                        else:
                            xyz_scatter = activation_fn(
                                tf.matmul(xyz_scatter, w) + b)
                else:
                    w = tf.zeros((outputs_size[0], outputs_size[-1]),
                                 dtype=global_tf_float_precision)
                    xyz_scatter = tf.matmul(xyz_scatter, w)
                # natom x nei_type_i x out_size
                xyz_scatter = tf.reshape(xyz_scatter,
                                         (-1, shape_i[1], outputs_size[-1]))
                xyz_scatter_total.append(xyz_scatter)

            # natom x nei x outputs_size
            xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
            # natom x outputs_size
            #
            res_rescale = 1. / 5.
            result = tf.reduce_mean(xyz_scatter, axis=1) * res_rescale

        return result
Пример #28
0
 def _layer_1(self, x, w, b):
     t = tf.concat([x, x], axis=1)
     return t, self.activation_fn(tf.matmul(x, w) + b) + t
Пример #29
0
    def _filter_type_ext(self,
                         inputs,
                         natoms,
                         activation_fn=tf.nn.tanh,
                         stddev=1.0,
                         bavg=0.0,
                         name='linear',
                         reuse=None,
                         seed=None,
                         trainable=True):
        # natom x (nei x 4)
        outputs_size = [1] + self.filter_neuron
        outputs_size_2 = self.n_axis_neuron
        with tf.variable_scope(name, reuse=reuse):
            start_index = 0
            result_all = []
            xyz_scatter_1_all = []
            xyz_scatter_2_all = []
            for type_i in range(self.ntypes):
                # cut-out inputs
                # with natom x (nei_type_i x 4)
                inputs_i = tf.slice(inputs, [0, start_index * 4],
                                    [-1, self.sel_a[type_i] * 4])
                start_index += self.sel_a[type_i]
                shape_i = inputs_i.get_shape().as_list()
                # with (natom x nei_type_i) x 4
                inputs_reshape = tf.reshape(inputs_i, [-1, 4])
                xyz_scatter = tf.reshape(
                    tf.slice(inputs_reshape, [0, 0], [-1, 1]), [-1, 1])
                for ii in range(1, len(outputs_size)):
                    w = tf.get_variable(
                        'matrix_' + str(ii) + '_' + str(type_i),
                        [outputs_size[ii - 1], outputs_size[ii]],
                        self.filter_precision,
                        tf.random_normal_initializer(
                            stddev=stddev /
                            np.sqrt(outputs_size[ii] + outputs_size[ii - 1]),
                            seed=seed),
                        trainable=trainable)
                    b = tf.get_variable('bias_' + str(ii) + '_' + str(type_i),
                                        [1, outputs_size[ii]],
                                        self.filter_precision,
                                        tf.random_normal_initializer(
                                            stddev=stddev,
                                            mean=bavg,
                                            seed=seed),
                                        trainable=trainable)
                    if self.filter_resnet_dt:
                        idt = tf.get_variable(
                            'idt_' + str(ii) + '_' + str(type_i),
                            [1, outputs_size[ii]],
                            self.filter_precision,
                            tf.random_normal_initializer(stddev=0.001,
                                                         mean=1.0,
                                                         seed=seed),
                            trainable=trainable)
                    if outputs_size[ii] == outputs_size[ii - 1]:
                        if self.filter_resnet_dt:
                            xyz_scatter += activation_fn(
                                tf.matmul(xyz_scatter, w) + b) * idt
                        else:
                            xyz_scatter += activation_fn(
                                tf.matmul(xyz_scatter, w) + b)
                    elif outputs_size[ii] == outputs_size[ii - 1] * 2:
                        if self.filter_resnet_dt:
                            xyz_scatter = tf.concat(
                                [xyz_scatter, xyz_scatter], 1) + activation_fn(
                                    tf.matmul(xyz_scatter, w) + b) * idt
                        else:
                            xyz_scatter = tf.concat(
                                [xyz_scatter, xyz_scatter], 1) + activation_fn(
                                    tf.matmul(xyz_scatter, w) + b)
                    else:
                        xyz_scatter = activation_fn(
                            tf.matmul(xyz_scatter, w) + b)
                # natom x nei_type_i x out_size
                xyz_scatter = tf.reshape(
                    xyz_scatter, (-1, shape_i[1] // 4, outputs_size[-1]))
                # natom x nei_type_i x 4
                inputs_i_reshape = tf.reshape(inputs_i,
                                              [-1, shape_i[1] // 4, 4])
                # natom x 4 x outputs_size
                xyz_scatter_1 = tf.matmul(inputs_i_reshape,
                                          xyz_scatter,
                                          transpose_a=True)
                xyz_scatter_1 = xyz_scatter_1 * (4.0 / shape_i[1])
                # natom x 4 x outputs_size_2
                xyz_scatter_2 = tf.slice(xyz_scatter_1, [0, 0, 0],
                                         [-1, -1, outputs_size_2])
                xyz_scatter_1_all.append(xyz_scatter_1)
                xyz_scatter_2_all.append(xyz_scatter_2)

            # for type_i in range(self.ntypes):
            #   for type_j in range(type_i, self.ntypes):
            #     # natom x outputs_size x outputs_size_2
            #     result = tf.matmul(xyz_scatter_1_all[type_i], xyz_scatter_2_all[type_j], transpose_a = True)
            #     # natom x (outputs_size x outputs_size_2)
            #     result = tf.reshape(result, [-1, outputs_size_2 * outputs_size[-1]])
            #     result_all.append(tf.identity(result))
            xyz_scatter_2_coll = tf.concat(xyz_scatter_2_all, axis=2)
            for type_i in range(self.ntypes):
                # natom x outputs_size x (outputs_size_2 x ntypes)
                result = tf.matmul(xyz_scatter_1_all[type_i],
                                   xyz_scatter_2_coll,
                                   transpose_a=True)
                # natom x (outputs_size x outputs_size_2 x ntypes)
                result = tf.reshape(
                    result,
                    [-1, outputs_size_2 * self.ntypes * outputs_size[-1]])
                result_all.append(tf.identity(result))

            # natom x (ntypes x outputs_size x outputs_size_2 x ntypes)
            result_all = tf.concat(result_all, axis=1)

        return result_all
Пример #30
0
    def build (self, 
               coord_, 
               atype_,
               natoms,
               box, 
               mesh,
               input_dict,
               frz_model = None,         
               suffix = '', 
               reuse = None):
        with tf.variable_scope('model_attr' + suffix, reuse = reuse) :
            t_tmap = tf.constant(' '.join(self.type_map), 
                                 name = 'tmap', 
                                 dtype = tf.string)
            t_st = tf.constant(self.get_sel_type(), 
                               name = 'sel_type',
                               dtype = tf.int32)
            t_mt = tf.constant(self.model_type, 
                               name = 'model_type', 
                               dtype = tf.string)
            t_ver = tf.constant(MODEL_VERSION,
                                name = 'model_version',
                                dtype = tf.string)
            t_od = tf.constant(self.get_out_size(), 
                               name = 'output_dim', 
                               dtype = tf.int32)

        natomsel = sum(natoms[2+type_i] for type_i in self.get_sel_type())
        nout = self.get_out_size()

        if frz_model == None:
            dout \
                = self.descrpt.build(coord_,
                                     atype_,
                                     natoms,
                                     box,
                                     mesh,
                                     input_dict,
                                     suffix = suffix,
                                     reuse = reuse)
            dout = tf.identity(dout, name='o_descriptor')
        else:
            tf.constant(self.rcut,
                name = 'descrpt_attr/rcut',
                dtype = GLOBAL_TF_FLOAT_PRECISION)
            tf.constant(self.ntypes,
                name = 'descrpt_attr/ntypes',
                dtype = tf.int32)
            feed_dict = self.descrpt.get_feed_dict(coord_, atype_, natoms, box, mesh)
            return_elements = [*self.descrpt.get_tensor_names(), 'o_descriptor:0']
            imported_tensors \
                = self._import_graph_def_from_frz_model(frz_model, feed_dict, return_elements)
            dout = imported_tensors[-1]
            self.descrpt.pass_tensors_from_frz_model(*imported_tensors[:-1])

        rot_mat = self.descrpt.get_rot_mat()
        rot_mat = tf.identity(rot_mat, name = 'o_rot_mat'+suffix)

        output = self.fitting.build (dout, 
                                     rot_mat,
                                     natoms, 
                                     reuse = reuse, 
                                     suffix = suffix)
        framesize = nout if "global" in self.model_type else natomsel * nout
        output = tf.reshape(output, [-1, framesize], name = 'o_' + self.model_type + suffix)

        model_dict = {self.model_type: output}

        if "global" not in self.model_type:
            gname = "global_"+self.model_type
            atom_out = tf.reshape(output, [-1, natomsel, nout])
            global_out = tf.reduce_sum(atom_out, axis=1)
            global_out = tf.reshape(global_out, [-1, nout], name="o_" + gname + suffix)
            
            out_cpnts = tf.split(atom_out, nout, axis=-1)
            force_cpnts = []
            virial_cpnts = []
            atom_virial_cpnts = []

            for out_i in out_cpnts:
                force_i, virial_i, atom_virial_i \
                    = self.descrpt.prod_force_virial(out_i, natoms)
                force_cpnts.append      (tf.reshape(force_i,       [-1, 3*natoms[1]]))
                virial_cpnts.append     (tf.reshape(virial_i,      [-1, 9]))
                atom_virial_cpnts.append(tf.reshape(atom_virial_i, [-1, 9*natoms[1]]))

            # [nframe x nout x (natom x 3)]
            force = tf.concat(force_cpnts, axis=1, name="o_force" + suffix)
            # [nframe x nout x 9]
            virial = tf.concat(virial_cpnts, axis=1, name="o_virial" + suffix)
            # [nframe x nout x (natom x 9)]
            atom_virial = tf.concat(atom_virial_cpnts, axis=1, name="o_atom_virial" + suffix)

            model_dict[gname] = global_out
            model_dict["force"] = force
            model_dict["virial"] = virial
            model_dict["atom_virial"] = atom_virial

        return model_dict