def train_Segment_GBM(data_directory): # Define input modalities to load. training_modality_dict = {'input_modalities': ['*FLAIR_pp.*', '*T2_pp.*', '*T1_pp.*', '*T1post_pp.*', '*full_edemamask_pp.*'], 'ground_truth': ['*full_edemamask_pp.*']} # Create a Data Collection training_data_collection = DataCollection(data_directory, training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Add left-right flips flip_augmentation = Flip_Rotate_2D(flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 # Add patch augmentation patch_augmentation = ExtractPatches(patch_shape=(32,32,32), patch_region_conditions=[[brain_region, .3], [roi_region, .7]], data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(patch_augmentation, multiplier=70) # Write the data to hdf5 training_data_collection.write_data_to_file('./test.h5') # Define model parameters model_parameters = {input_shape: (32, 32, 32, 4), downsize_filters_factor: 1, pool_size: (2, 2, 2), filter_shape: (3, 3, 3), dropout: .1, batch_norm: False, initial_learning_rate: 0.00001, output_type: 'binary_label', num_outputs: 1, activation: 'relu', padding: 'same', implementation: 'keras', depth: 4, max_filter=512} # Create U-Net if True: unet_model = UNet(**model_parameters) # Or load an old one else: unet_model = load_old_model('model.h5') # Define training parameters training_parameters = {} # Define training generators training_generator = None
def load_data(inputs, output_folder, input_directory=None, ground_truth=None, input_data=None, verbose=True): """ In the future, this will need to be modified for multiple types of inputs (i.e. data groups). """ if any(data is None for data in inputs): raise ValueError("Cannot run pipeline; required inputs are missing. Please consult this module's documentation, and make sure all required parameters are input.") inputs = [os.path.abspath(input_filename) for input_filename in inputs] output_folder = os.path.abspath(output_folder) input_data = {'input_data': inputs} if ground_truth is not None: input_data['ground_truth'] = [ground_truth] if input_directory is None: if any(data is None for data in input_data): raise ValueError("Cannot run pipeline; required inputs are missing. Please consult this module's documentation, and make sure all required parameters are input.") data_collection = DataCollection(verbose=verbose) data_collection.add_case(input_data, case_name=output_folder) else: data_collection = DataCollection(input_directory, data_group_dict=input_data, verbose=verbose) if not os.path.exists(output_folder): os.makedirs(output_folder) if verbose: print('File loading completed.') return data_collection
def load_data(inputs, output_folder, input_directory=None, ground_truth=None, input_data=None, verbose=True): """ In the future, this will need to be modified for multiple types of inputs (i.e. data groups). """ inputs = [os.path.abspath(input_filename) for input_filename in inputs] output_folder = os.path.abspath(output_folder) input_data = {'input_modalities': inputs} if ground_truth is not None: input_data['ground_truth'] = [ground_truth] if input_directory is None: if any(data is None for data in input_data): raise ValueError( "Cannot segment GBM. Please specify all four modalities.") data_collection = DataCollection(verbose=verbose) data_collection.add_case(input_data, case_name=output_folder) else: data_collection = DataCollection(input_directory, modality_dict=input_data, verbose=verbose) data_collection.fill_data_groups() if not os.path.exists(output_folder): os.makedirs(output_folder) if verbose: print('File loading completed.') return data_collection
def load_data(inputs, output_folder, input_directory=None, ground_truth=None, input_data=None, verbose=True): """ A convenience function when building single-input pipelines. This function quickly builds DataCollections """ if any(data is None for data in inputs): raise ValueError( "Cannot run pipeline; required inputs are missing. Please consult this module's documentation, and make sure all required parameters are input." ) inputs = [os.path.abspath(input_filename) for input_filename in inputs] output_folder = os.path.abspath(output_folder) input_data = {'input_data': inputs} if ground_truth is not None: input_data['ground_truth'] = [ground_truth] if input_directory is None: if any(data is None for data in input_data): raise ValueError( "Cannot run pipeline; required inputs are missing. Please consult this module's documentation, and make sure all required parameters are input." ) data_collection = DataCollection(verbose=verbose) data_collection.add_case(input_data, case_name=output_folder) else: data_collection = DataCollection(input_directory, data_group_dict=input_data, verbose=verbose) if not os.path.exists(output_folder): os.makedirs(output_folder) if verbose: print('File loading completed.') return data_collection
def skull_strip(output_folder, T1POST=None, FLAIR=None, ground_truth=None, input_directory=None, bias_corrected=True, resampled=False, registered=False, normalized=False, preprocessed=False, save_preprocess=False, save_all_steps=False, mask_output='skullstrip_mask.nii.gz', verbose=True): #--------------------------------------------------------------------# # Step 1, Load Data #--------------------------------------------------------------------# input_data = {'input_modalities': [FLAIR, T1POST]} if ground_truth is not None: input_data['ground_truth'] = [ground_truth] if input_directory is None: if any(data is None for data in input_data): raise ValueError("Cannot segment GBM. Please specify all four modalities.") data_collection = DataCollection(verbose=verbose) data_collection.add_case(input_data, case_name=output_folder) else: data_collection = DataCollection(input_directory, modality_dict=input_data, verbose=verbose) data_collection.fill_data_groups() #--------------------------------------------------------------------# # Step 2, Preprocess Data #--------------------------------------------------------------------# if not preprocessed: print 'ABOUT TO PREPROCESS....' # Random hack to save DICOMs to niftis for further processing. preprocessing_steps = [Preprocessor(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder)] if not bias_corrected: preprocessing_steps += [N4BiasCorrection(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder)] if not resampled: preprocessing_steps += [Resample(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder)] if not registered: preprocessing_steps += [Coregister(data_groups=['input_modalities'], save_output=(save_preprocess or save_all_steps), verbose=verbose, output_folder=output_folder, reference_channel=0)] if not normalized: preprocessing_steps += [ZeroMeanNormalization(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder, preprocessor_string='_preprocessed')] data_collection.append_preprocessor(preprocessing_steps) #--------------------------------------------------------------------# # Step 3, Skullstripping #--------------------------------------------------------------------# skullstrip_prediction_parameters = {'inputs': ['input_modalities'], 'output_filename': os.path.join(output_folder, mask_output), 'batch_size': 25, 'patch_overlaps': 8, 'channels_first': True, 'patch_dimensions': [-3, -2, -1], 'output_patch_shape': (1, 64, 64, 32), # 'input_channels': [0, 3], } skull_stripping_model = load_old_model(load('Skull_Strip_T1Post_FLAIR')) skull_stripping_prediction = ModelPatchesInference(**skullstrip_prediction_parameters) label_binarization = BinarizeLabel() largest_component = LargestComponents() hole_filler = FillHoles(postprocessor_string='_label') skull_stripping_prediction.append_postprocessor([label_binarization, largest_component, hole_filler]) skull_stripping_model.append_output([skull_stripping_prediction]) for case in data_collection.cases: print '\nStarting New Case...\n' skull_stripping_prediction.case = case skull_stripping_mask = skull_stripping_model.generate_outputs(data_collection)[0]['filenames'][-1] if not save_preprocess: for index, file in enumerate(data_collection.data_groups['input_modalities'].preprocessed_case): os.remove(file)
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = { 'input_modalities': ['FLAIR_pp.*', 'T2_pp.*', 'T1_pp.*', 'T1post_pp.*'], 'ground_truth': ['enhancingmask_pp.nii.gz'] } load_data = False train_model = False load_test_data = False predict = True training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/BRATS_enhancing_prediction_only_data.h5' model_file = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/BRATS_enhancing_prediction_only_model.h5' testing_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/BRATS_enhancing_prediction_only_data.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 def empty_region(data): return data['input_modalities'] == 0 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(32, 32, 32), patch_region_conditions=[[empty_region, .05], [brain_region, .25], [roi_region, .7]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={ 'ground_truth': [1, 2, 3], 'input_modalities': [1, 2, 3] }) training_data_collection.append_augmentation(patch_augmentation, multiplier=2000) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) # flip_augmentation = Flip_Rotate_3D(data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'regression', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512 } # Create U-Net unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 64, 'num_epochs': 1000, 'training_steps_per_epoch': 20 } unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Define input modalities to load. testing_modality_dict = { 'input_modalities': ['FLAIR_pp.*', 'T2_pp.*', 'T1_pp.*', 'T1post_pp.*'] } if predict: testing_data_collection = DataCollection( val_data_directory, modality_dict=testing_modality_dict, verbose=True) testing_data_collection.fill_data_groups() if load_test_data: # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'brats_enhancing_only_prediction.nii.gz', 'batch_size': 250, 'patch_overlaps': 1, 'output_patch_shape': (26, 26, 26, 4), 'save_all_steps': True } prediction = ModelPatchesInference(**testing_parameters) label_binarization = BinarizeLabel(postprocessor_string='_label') prediction.append_postprocessor([label_binarization, largest_island]) unet_model.append_output([prediction]) unet_model.generate_outputs(testing_data_collection)
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = { 'input_modalities': [ '*FLAIR*', ['*T2SPACE*', '*T2_pp*'], ['*T1_pp.*', '*MPRAGE_Pre*'], ['*T1post_pp.*', '*MPRAGE_POST*'], ['enhancing*'], ['wholetumor*', 'full_edemamask*'] ], 'ground_truth': [['enhancing*'], ['wholetumor*', 'full_edemamask*']] } load_data = False train_model = False load_test_data = True predict = True training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/enhancing_label_upsampling_323232.h5' model_file = 'label_upsampling_323232_model_correct.h5' testing_data = './FLAIR_upsampling_323232_test.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(32, 32, 32), patch_region_conditions=[[roi_region, 1]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={ 'ground_truth': [0, 1, 2], 'input_modalities': [0, 1, 2] }) training_data_collection.append_augmentation(patch_augmentation, multiplier=70) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Choose a modality choice_augmentation = ChooseData( axis={ 'input_modalities': -1, 'ground_truth': -1 }, choices=[-1, -2], data_groups=['input_modalities', 'ground_truth'], random_sample=False) training_data_collection.append_augmentation(choice_augmentation, multiplier=2) # Add down-sampling mask_augmentation = Downsample(channel=4, axes={'input_modalities': [-4, -3, -2]}, factor=3, data_groups=['input_modalities']) training_data_collection.append_augmentation(mask_augmentation, multiplier=4) # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 5), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'binary_label', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512 } # Create U-Net unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 64, 'num_epochs': 1000, 'training_steps_per_epoch': 20 } unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection( val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() # Choose a modality choice_augmentation = ChooseData( axis={ 'input_modalities': -1, 'ground_truth': -1 }, choices=[-1, -2], data_groups=['input_modalities', 'ground_truth'], random_sample=False) testing_data_collection.append_augmentation(choice_augmentation, multiplier=2) # Add down-sampling mask_augmentation = Downsample(channel=4, axes={'input_modalities': [-4, -3, -2]}, factor=3, data_groups=['input_modalities'], random_sample=False) testing_data_collection.append_augmentation(mask_augmentation, multiplier=3) testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'deepneuro-label.nii.gz', 'batch_size': 250, 'patch_overlaps': 6, 'output_patch_shape': (26, 26, 26, 4) } prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) unet_model.append_output([prediction]) unet_model.generate_outputs()
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = {'input_modalities': [['T1_pp*']]} load_data = False train_model = True load_test_data = False predict = False training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/GAN_data_corrected.h5' model_file = 'GAN_model.h5' testing_data = './GAN_test.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): # return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) return data['input_modalities'] != 0 def roi_region(data): return data['ground_truth'] == 1 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(64, 64, 8), patch_region_conditions=[[brain_region, 1]], data_groups=['input_modalities'], patch_dimensions={'input_modalities': [0, 1, 2]}) training_data_collection.append_augmentation(patch_augmentation, multiplier=200) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Add left-right flips flip_augmentation = Flip_Rotate_2D(flip=True, rotate=False, data_groups=['input_modalities']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0.5, 'batch_norm': True, 'initial_learning_rate': 0.0001, 'output_type': 'regression', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 256 } # Create U-Net GAN_model = GAN(**model_parameters) # plot_model(GAN_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities'], 'output_model_filepath': model_file, 'training_batch_size': 32, 'num_epochs': 10000, 'training_steps_per_epoch': 20 } GAN_model.train(training_data_collection, **training_parameters) else: GAN_model = load_old_model('DCGAN_150.model.meta', backend='tf') if predict: print GAN_model for i in GAN_model.graph.get_operations(): print i
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. if True: training_modality_dict = { 'input_modalities': ['*FLAIR_pp.*', '*T2_pp.*', '*T1_pp.*', '*T1post_pp.*'], 'ground_truth': ['*full_edemamask_pp.*'] } else: training_modality_dict = { 'input_modalities': [['*FLAIR_pp.*', 'FLAIR_norm2*'], ['*T1post_pp.*', 'T1post_norm2*']], 'ground_truth': ['*full_edemamask_pp.*', 'FLAIRmask-label.nii.gz'] } load_data = True train_model = True load_test_data = True predict = True training_data = './wholetumor_predict_patches_test3.h5' model_file = 'wholetumor_segnet-58-0.38.h5' testing_data = './brats_test_case.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(32, 32, 32), patch_region_conditions=[[brain_region, 1]], data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(patch_augmentation, multiplier=200) # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (3, 3, 3), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'binary_label', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512 } # Create U-Net if train_model: unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': 'wholetumor_segnet-{epoch:02d}-{loss:.2f}.h5', 'training_batch_size': 2, 'num_epochs': 100, 'training_steps_per_epoch': 200, 'save_best_only': False } unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection( val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'deepneuro.nii.gz', 'batch_size': 200, 'patch_overlaps': 1 } prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) unet_model.append_output([prediction]) unet_model.generate_outputs()
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = {'input_modalities': ['*FLAIR*nii.gz', ['*T2SPACE*nii.gz'], ['*MPRAGE_POST*nii.gz'], ['*MPRAGE_Pre*nii.gz']], 'ground_truth': ['*SUV_r_T2_raw.nii.gz*']} load_data = False train_model = False load_test_data = True predict = True training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/TMZ_4_323232.h5' model_file = 'TMZ_4_323232_model.h5' testing_data = './TMZ_4_323232_test.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection(data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] >= 1.5 # Add patch augmentation patch_augmentation = ExtractPatches(patch_shape=(32, 32, 32), patch_region_conditions=[[brain_region, .5], [roi_region, .5]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={'ground_truth': [0,1,2], 'input_modalities': [0,1,2]}) training_data_collection.append_augmentation(patch_augmentation, multiplier=2000) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Add left-right flips flip_augmentation = Flip_Rotate_2D(flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = {'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'regression', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512} # Create U-Net unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = {'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 64, 'num_epochs': 1000, 'training_steps_per_epoch': 20} unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection(val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() flip_augmentation = Copy(data_groups=['input_modalities', 'ground_truth']) testing_data_collection.append_augmentation(flip_augmentation, multiplier=1) testing_parameters = {'inputs': ['input_modalities'], 'output_filename': 'deepneuro_suv_4.nii.gz', 'batch_size': 50, 'patch_overlaps': 6, 'output_patch_shape': (26,26,26,4)} prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) unet_model.append_output([prediction]) unet_model.generate_outputs()
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = '3' from deepneuro.data.data_collection import DataCollection from deepneuro.augmentation.augment import ExtractPatches from deepneuro.postprocessing.label import BinarizeLabel from deepneuro.preprocessing.signal import ZeroMeanNormalization from deepneuro.models.weighted_cat_cross_entropy import WeightedCategoricalCrossEntropy TrainingDataCollection = DataCollection(data_sources={'csv': 'Metastases_Data_Train.csv'}) TestingDataCollection = DataCollection(data_sources={'csv': 'Metastases_Data_Test.csv'}) Normalization = ZeroMeanNormalization(data_groups=['input_data']) TrainingDataCollection.append_preprocessor(Normalization) def BrainRegion(data): return data['input_data'] != 0 def TumorRegion(data): return data['ground_truth'] == 1 PatchAugmentation = ExtractPatches(patch_shape=(32, 32, 32), patch_region_conditions=[[BrainRegion, 0.70], [TumorRegion, 0.30]]) TrainingDataCollection.append_augmentation(PatchAugmentation, multiplier=20) TrainingDataCollection.write_data_to_file('training_data.hdf5') ModelParameters = {'input_shape': (32, 32, 32, 1), 'cost_function': 'weighted_categorical_label', ''} UNETModel = UNet(**ModelParameters)
def predict_GBM(output_folder, T2=None, T1=None, T1POST=None, FLAIR=None, ground_truth=None, input_directory=None, bias_corrected=True, resampled=False, registered=False, skullstripped=False, normalized=False, preprocessed=False, save_preprocess=False, save_all_steps=False, output_wholetumor_filename='wholetumor_segmentation.nii.gz', output_enhancing_filename='enhancing_segmentation.nii.gz', verbose=True): #--------------------------------------------------------------------# # Step 1, Load Data #--------------------------------------------------------------------# input_data = {'input_modalities': [FLAIR, T2, T1, T1POST]} if ground_truth is not None: input_data['ground_truth'] = [ground_truth] if input_directory is None: if any(data is None for data in input_data): raise ValueError( "Cannot segment GBM. Please specify all four modalities.") data_collection = DataCollection(verbose=verbose) data_collection.add_case(input_data, case_name=output_folder) else: data_collection = DataCollection(input_directory, modality_dict=input_data, verbose=verbose) data_collection.fill_data_groups() #--------------------------------------------------------------------# # Step 2, Preprocess Data #--------------------------------------------------------------------# if not preprocessed or True: # Random hack to save DICOMs to niftis for further processing. preprocessing_steps = [ DICOMConverter(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder) ] if not bias_corrected: preprocessing_steps += [ N4BiasCorrection(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder) ] if not resampled: preprocessing_steps += [ Resample(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder) ] if not registered: preprocessing_steps += [ Coregister(data_groups=['input_modalities'], save_output=(save_preprocess or save_all_steps), verbose=verbose, output_folder=output_folder, reference_channel=1) ] if not skullstripped: preprocessing_steps += [ SkullStrip(data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, output_folder=output_folder, reference_channel=1) ] if not normalized: preprocessing_steps += [ ZeroMeanNormalization( data_groups=['input_modalities'], save_output=save_all_steps, verbose=verbose, mask_preprocessor=preprocessing_steps[-1], preprocessor_string='_preprocessed') ] data_collection.append_preprocessor(preprocessing_steps) #--------------------------------------------------------------------# # Step 3, Segmentation #--------------------------------------------------------------------# wholetumor_prediction_parameters = { 'inputs': ['input_modalities'], 'output_filename': os.path.join(output_folder, output_wholetumor_filename), 'batch_size': 75, 'patch_overlaps': 1, 'channels_first': True, 'patch_dimensions': [-3, -2, -1], 'output_patch_shape': (1, 26, 26, 26), # 'input_channels': [0, 3], } enhancing_prediction_parameters = { 'inputs': ['input_modalities'], 'output_filename': os.path.join(output_folder, output_enhancing_filename), 'batch_size': 75, 'patch_overlaps': 1, 'channels_first': True, 'output_patch_shape': (1, 26, 26, 26), 'patch_dimensions': [-3, -2, -1] } wholetumor_model = load_old_model(load('Segment_GBM_wholetumor')) enhancing_model = load_old_model(load('Segment_GBM_enhancing')) wholetumor_prediction = ModelPatchesInference( **wholetumor_prediction_parameters) wholetumor_model.append_output([wholetumor_prediction]) enhancing_prediction = ModelPatchesInference( **enhancing_prediction_parameters) enhancing_model.append_output([enhancing_prediction]) label_binarization = BinarizeLabel(postprocessor_string='_label') wholetumor_prediction.append_postprocessor([label_binarization]) enhancing_prediction.append_postprocessor([label_binarization]) for case in data_collection.cases: print '\nStarting New Case...\n' wholetumor_file = wholetumor_model.generate_outputs( data_collection, case)[0]['filenames'][-1] data_collection.add_channel(case, wholetumor_file) enhancing_file = enhancing_model.generate_outputs( data_collection, case)[0]['filenames'][-1] data_collection.clear_outputs()
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = { 'input_modalities': ['*phantom*'], 'ground_truth': ['*ktrans*'] } load_data = False train_model = False load_test_data = False predict = True training_data = './dce_mri_ktrans_training_884_1.h5' model_file = 'ktrans_net_884_1_3layer_conv_separated_sym.h5' testing_data = './dce_mri_ktrans_testing_884_1.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] >= .1) # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(8, 8, 4), patch_region_conditions=[[brain_region, 1]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={ 'ground_truth': [0, 1, 2], 'input_modalities': [1, 2, 3] }) training_data_collection.append_augmentation(patch_augmentation, multiplier=5000) # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Define model parameters model_parameters = { 'input_shape': (65, 8, 8, 4, 1), 'downsize_filters_factor': 4, 'pool_size': (2, 2, 2), 'filter_shape': (3, 3, 3), 'dropout': .1, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'regression', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 1, 'max_filter': 32 } # Create U-Net if train_model: timenet_model = TimeNet(**model_parameters) plot_model(timenet_model.model, to_file='timenet_model.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 32, 'num_epochs': 100, 'training_steps_per_epoch': 200, 'save_best_only': True } timenet_model.train(training_data_collection, **training_parameters) else: timenet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection( val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'deepneuro.nii.gz', 'batch_size': 200, 'patch_overlaps': 8, 'output_patch_shape': (6, 6, 2, 1) } prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) timenet_model.append_output([prediction]) timenet_model.generate_outputs()