def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = { 'input_modalities': ['FLAIR_pp.*', 'T2_pp.*', 'T1_pp.*', 'T1post_pp.*'], 'ground_truth': ['enhancingmask_pp.nii.gz'] } load_data = False train_model = False load_test_data = False predict = True training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/BRATS_enhancing_prediction_only_data.h5' model_file = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/BRATS_enhancing_prediction_only_model.h5' testing_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/BRATS_enhancing_prediction_only_data.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 def empty_region(data): return data['input_modalities'] == 0 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(32, 32, 32), patch_region_conditions=[[empty_region, .05], [brain_region, .25], [roi_region, .7]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={ 'ground_truth': [1, 2, 3], 'input_modalities': [1, 2, 3] }) training_data_collection.append_augmentation(patch_augmentation, multiplier=2000) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) # flip_augmentation = Flip_Rotate_3D(data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'regression', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512 } # Create U-Net unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 64, 'num_epochs': 1000, 'training_steps_per_epoch': 20 } unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Define input modalities to load. testing_modality_dict = { 'input_modalities': ['FLAIR_pp.*', 'T2_pp.*', 'T1_pp.*', 'T1post_pp.*'] } if predict: testing_data_collection = DataCollection( val_data_directory, modality_dict=testing_modality_dict, verbose=True) testing_data_collection.fill_data_groups() if load_test_data: # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'brats_enhancing_only_prediction.nii.gz', 'batch_size': 250, 'patch_overlaps': 1, 'output_patch_shape': (26, 26, 26, 4), 'save_all_steps': True } prediction = ModelPatchesInference(**testing_parameters) label_binarization = BinarizeLabel(postprocessor_string='_label') prediction.append_postprocessor([label_binarization, largest_island]) unet_model.append_output([prediction]) unet_model.generate_outputs(testing_data_collection)
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. if True: training_modality_dict = { 'input_modalities': ['*FLAIR_pp.*', '*T2_pp.*', '*T1_pp.*', '*T1post_pp.*'], 'ground_truth': ['*full_edemamask_pp.*'] } else: training_modality_dict = { 'input_modalities': [['*FLAIR_pp.*', 'FLAIR_norm2*'], ['*T1post_pp.*', 'T1post_norm2*']], 'ground_truth': ['*full_edemamask_pp.*', 'FLAIRmask-label.nii.gz'] } load_data = True train_model = True load_test_data = True predict = True training_data = './wholetumor_predict_patches_test3.h5' model_file = 'wholetumor_segnet-58-0.38.h5' testing_data = './brats_test_case.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(32, 32, 32), patch_region_conditions=[[brain_region, 1]], data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(patch_augmentation, multiplier=200) # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (3, 3, 3), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'binary_label', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512 } # Create U-Net if train_model: unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': 'wholetumor_segnet-{epoch:02d}-{loss:.2f}.h5', 'training_batch_size': 2, 'num_epochs': 100, 'training_steps_per_epoch': 200, 'save_best_only': False } unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection( val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'deepneuro.nii.gz', 'batch_size': 200, 'patch_overlaps': 1 } prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) unet_model.append_output([prediction]) unet_model.generate_outputs()
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = { 'input_modalities': [ '*FLAIR*', ['*T2SPACE*', '*T2_pp*'], ['*T1_pp.*', '*MPRAGE_Pre*'], ['*T1post_pp.*', '*MPRAGE_POST*'], ['enhancing*'], ['wholetumor*', 'full_edemamask*'] ], 'ground_truth': [['enhancing*'], ['wholetumor*', 'full_edemamask*']] } load_data = False train_model = False load_test_data = True predict = True training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/enhancing_label_upsampling_323232.h5' model_file = 'label_upsampling_323232_model_correct.h5' testing_data = './FLAIR_upsampling_323232_test.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection( data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] == 1 # Add patch augmentation patch_augmentation = ExtractPatches( patch_shape=(32, 32, 32), patch_region_conditions=[[roi_region, 1]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={ 'ground_truth': [0, 1, 2], 'input_modalities': [0, 1, 2] }) training_data_collection.append_augmentation(patch_augmentation, multiplier=70) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Choose a modality choice_augmentation = ChooseData( axis={ 'input_modalities': -1, 'ground_truth': -1 }, choices=[-1, -2], data_groups=['input_modalities', 'ground_truth'], random_sample=False) training_data_collection.append_augmentation(choice_augmentation, multiplier=2) # Add down-sampling mask_augmentation = Downsample(channel=4, axes={'input_modalities': [-4, -3, -2]}, factor=3, data_groups=['input_modalities']) training_data_collection.append_augmentation(mask_augmentation, multiplier=4) # Add left-right flips flip_augmentation = Flip_Rotate_2D( flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = { 'input_shape': (32, 32, 32, 5), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'binary_label', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512 } # Create U-Net unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = { 'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 64, 'num_epochs': 1000, 'training_steps_per_epoch': 20 } unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection( val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() # Choose a modality choice_augmentation = ChooseData( axis={ 'input_modalities': -1, 'ground_truth': -1 }, choices=[-1, -2], data_groups=['input_modalities', 'ground_truth'], random_sample=False) testing_data_collection.append_augmentation(choice_augmentation, multiplier=2) # Add down-sampling mask_augmentation = Downsample(channel=4, axes={'input_modalities': [-4, -3, -2]}, factor=3, data_groups=['input_modalities'], random_sample=False) testing_data_collection.append_augmentation(mask_augmentation, multiplier=3) testing_parameters = { 'inputs': ['input_modalities'], 'output_filename': 'deepneuro-label.nii.gz', 'batch_size': 250, 'patch_overlaps': 6, 'output_patch_shape': (26, 26, 26, 4) } prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) unet_model.append_output([prediction]) unet_model.generate_outputs()
def train_Segment_GBM(data_directory, val_data_directory): # Define input modalities to load. training_modality_dict = {'input_modalities': ['*FLAIR*nii.gz', ['*T2SPACE*nii.gz'], ['*MPRAGE_POST*nii.gz'], ['*MPRAGE_Pre*nii.gz']], 'ground_truth': ['*SUV_r_T2_raw.nii.gz*']} load_data = False train_model = False load_test_data = True predict = True training_data = '/mnt/jk489/QTIM_Databank/DeepNeuro_Datasets/TMZ_4_323232.h5' model_file = 'TMZ_4_323232_model.h5' testing_data = './TMZ_4_323232_test.h5' # Write the data to hdf5 if (not os.path.exists(training_data) and train_model) or load_data: # Create a Data Collection training_data_collection = DataCollection(data_directory, modality_dict=training_modality_dict, verbose=True) training_data_collection.fill_data_groups() # Define patch sampling regions def brain_region(data): return (data['ground_truth'] != 1) & (data['input_modalities'] != 0) def roi_region(data): return data['ground_truth'] >= 1.5 # Add patch augmentation patch_augmentation = ExtractPatches(patch_shape=(32, 32, 32), patch_region_conditions=[[brain_region, .5], [roi_region, .5]], data_groups=['input_modalities', 'ground_truth'], patch_dimensions={'ground_truth': [0,1,2], 'input_modalities': [0,1,2]}) training_data_collection.append_augmentation(patch_augmentation, multiplier=2000) # Write data to hdf5 training_data_collection.write_data_to_file(training_data) if train_model: # Or load pre-loaded data. training_data_collection = DataCollection(data_storage=training_data, verbose=True) training_data_collection.fill_data_groups() # Add left-right flips flip_augmentation = Flip_Rotate_2D(flip=True, rotate=False, data_groups=['input_modalities', 'ground_truth']) training_data_collection.append_augmentation(flip_augmentation, multiplier=2) # Define model parameters model_parameters = {'input_shape': (32, 32, 32, 4), 'downsize_filters_factor': 1, 'pool_size': (2, 2, 2), 'filter_shape': (5, 5, 5), 'dropout': 0, 'batch_norm': True, 'initial_learning_rate': 0.000001, 'output_type': 'regression', 'num_outputs': 1, 'activation': 'relu', 'padding': 'same', 'implementation': 'keras', 'depth': 4, 'max_filter': 512} # Create U-Net unet_model = UNet(**model_parameters) plot_model(unet_model.model, to_file='model_image_dn.png', show_shapes=True) training_parameters = {'input_groups': ['input_modalities', 'ground_truth'], 'output_model_filepath': model_file, 'training_batch_size': 64, 'num_epochs': 1000, 'training_steps_per_epoch': 20} unet_model.train(training_data_collection, **training_parameters) else: unet_model = load_old_model(model_file) # Load testing data.. if not os.path.exists(testing_data) or load_test_data: # Create a Data Collection testing_data_collection = DataCollection(val_data_directory, modality_dict=training_modality_dict, verbose=True) testing_data_collection.fill_data_groups() # Write data to hdf5 testing_data_collection.write_data_to_file(testing_data) if predict: testing_data_collection = DataCollection(data_storage=testing_data, verbose=True) testing_data_collection.fill_data_groups() flip_augmentation = Copy(data_groups=['input_modalities', 'ground_truth']) testing_data_collection.append_augmentation(flip_augmentation, multiplier=1) testing_parameters = {'inputs': ['input_modalities'], 'output_filename': 'deepneuro_suv_4.nii.gz', 'batch_size': 50, 'patch_overlaps': 6, 'output_patch_shape': (26,26,26,4)} prediction = ModelPatchesInference(testing_data_collection, **testing_parameters) unet_model.append_output([prediction]) unet_model.generate_outputs()