def run(): # Prepare data dataset = dp.datasets.MNIST() x, y = dataset.data(flat=True) x = x.astype(dp.float_) y = y.astype(dp.int_) train_idx, test_idx = dataset.split() x_train = x[train_idx] y_train = y[train_idx] x_test = x[test_idx] y_test = y[test_idx] scaler = dp.UniformScaler(high=255.) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) batch_size = 128 train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size) test_input = dp.SupervisedInput(x_test, y_test) # Setup neural network net = dp.NeuralNetwork( layers=[ dp.FullyConnected( n_output=800, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001), ), dp.Activation('relu'), dp.FullyConnected( n_output=800, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001), ), dp.Activation('relu'), dp.FullyConnected( n_output=dataset.n_classes, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001), ), dp.MultinomialLogReg(), ], ) # Train neural network def val_error(): return net.error(test_input) trainer = dp.StochasticGradientDescent( max_epochs=25, learn_rule=dp.Momentum(learn_rate=0.1, momentum=0.9), ) trainer.train(net, train_input, val_error) # Visualize weights from first layer W = next(np.array(layer.params()[0].array) for layer in net.layers if isinstance(layer, dp.FullyConnected)) W = np.reshape(W.T, (-1, 28, 28)) filepath = os.path.join('mnist', 'mlp_weights.png') dp.misc.img_save(dp.misc.img_tile(dp.misc.img_stretch(W)), filepath) # Evaluate on test data error = net.error(test_input) print('Test error rate: %.4f' % error)
def run(): # Prepare data dataset = dp.datasets.MNIST() x, y = dataset.data() x = x.astype(dp.float_)[:, np.newaxis, :, :] y = y.astype(dp.int_) train_idx, test_idx = dataset.split() x_train = x[train_idx] y_train = y[train_idx] x_test = x[test_idx] y_test = y[test_idx] scaler = dp.UniformScaler(high=255.) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) batch_size = 128 train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size) test_input = dp.SupervisedInput(x_test, y_test) # Setup neural network net = dp.NeuralNetwork(layers=[ dp.Convolutional( n_filters=32, filter_shape=(5, 5), weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001), ), dp.Activation('relu'), dp.Pool( win_shape=(3, 3), strides=(2, 2), method='max', ), dp.Convolutional( n_filters=64, filter_shape=(5, 5), weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001), ), dp.Activation('relu'), dp.Pool( win_shape=(3, 3), strides=(2, 2), method='max', ), dp.Flatten(), dp.FullyConnected( n_output=128, weights=dp.Parameter(dp.AutoFiller()), ), dp.FullyConnected( n_output=dataset.n_classes, weights=dp.Parameter(dp.AutoFiller()), ), dp.MultinomialLogReg(), ], ) # Train neural network def val_error(): return net.error(test_input) trainer = dp.StochasticGradientDescent( max_epochs=15, learn_rule=dp.Momentum(learn_rate=0.01, momentum=0.9), ) trainer.train(net, train_input, val_error) # Visualize convolutional filters to disk for l, layer in enumerate(net.layers): if not isinstance(layer, dp.Convolutional): continue W = np.array(layer.params()[0].array) filepath = os.path.join('mnist', 'conv_layer_%i.png' % l) dp.misc.img_save(dp.misc.conv_filter_tile(W), filepath) # Evaluate on test data error = net.error(test_input) print('Test error rate: %.4f' % error)
def run(): # Prepare MNIST data dataset = dp.datasets.MNIST() x, y = dataset.data(flat=True) x = x.astype(dp.float_) y = y.astype(dp.int_) train_idx, test_idx = dataset.split() x_train = x[train_idx] y_train = y[train_idx] x_test = x[test_idx] y_test = y[test_idx] scaler = dp.UniformScaler(high=255.) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) # Generate image pairs n_pairs = 100000 x1 = np.empty((n_pairs, 28 * 28), dtype=dp.float_) x2 = np.empty_like(x1, dtype=dp.float_) y = np.empty(n_pairs, dtype=dp.int_) n_imgs = x_train.shape[0] n = 0 while n < n_pairs: i = random.randint(0, n_imgs - 1) j = random.randint(0, n_imgs - 1) if i == j: continue x1[n, ...] = x_train[i] x2[n, ...] = x_train[j] if y_train[i] == y_train[j]: y[n] = 1 else: y[n] = 0 n += 1 # Input to network train_input = dp.SupervisedSiameseInput(x1, x2, y, batch_size=128) test_input = dp.SupervisedInput(x_test, y_test) # Setup network net = dp.SiameseNetwork( siamese_layers=[ dp.Dropout(), dp.FullyConnected( n_output=800, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001), ), dp.Activation('relu'), dp.FullyConnected( n_output=800, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001), ), dp.Activation('relu'), dp.FullyConnected( n_output=2, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001), ), ], loss_layer=dp.ContrastiveLoss(margin=0.5), ) # Train network trainer = dp.StochasticGradientDescent( max_epochs=10, learn_rule=dp.RMSProp(learn_rate=0.001), ) trainer.train(net, train_input) # Visualize feature space feat = net.features(test_input) colors = [ 'tomato', 'lawngreen', 'royalblue', 'gold', 'saddlebrown', 'violet', 'turquoise', 'mediumpurple', 'darkorange', 'darkgray' ] plt.figure() for i in range(10): plt.scatter(feat[y_test == i, 0], feat[y_test == i, 1], s=3, c=colors[i], linewidths=0) plt.legend([str(i) for i in range(10)], scatterpoints=1, markerscale=4) if not os.path.exists('mnist'): os.mkdirs('mnist') plt.savefig(os.path.join('mnist', 'siamese_dists.png'), dpi=200)
numberOfAugmentation = 100 for i in range(numberOfAugmentation): for j in range(len(test_index)): features[i * 864 + test_index[j], :] = np.NAN targets[0, i * 864 + test_index[j]] = np.NAN x_train = np.delete(features, test_index, axis=0) y_train = np.delete(targets, test_index) x_train = features[~np.all(np.isnan(features), axis=1)] y_train = targets[~np.isnan(targets)] y_train = y_train.astype('int') # Normalize pixel intensities scaler = dp.UniformScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) # Shufflinig ind = range(len(y_train)) np.random.shuffle(ind) y_train = y_train[ind] x_train = x_train[ind, :] # Prepare autoencoder input batch_size = 50 train_input = dp.Input(x_train, batch_size=batch_size) # Setup autoencoders sae = dp.StackedAutoencoder(layers=[
def run(): # Prepare data dataset = dp.datasets.CIFAR10() x, y = dataset.data() x = x.astype(dp.float_) y = y.astype(dp.int_) train_idx, test_idx = dataset.split() x_train = x[train_idx] y_train = y[train_idx] x_test = x[test_idx] y_test = y[test_idx] scaler = dp.UniformScaler(feature_wise=True) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) batch_size = 128 train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size) test_input = dp.SupervisedInput(x_test, y_test, batch_size=batch_size) # Setup neural network pool_kwargs = { 'win_shape': (3, 3), 'strides': (2, 2), 'border_mode': 'same', 'method': 'max', } net = dp.NeuralNetwork( layers=[ dp.Convolutional( n_filters=32, filter_shape=(5, 5), border_mode='same', weights=dp.Parameter(dp.NormalFiller(sigma=0.0001), weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.Pool(**pool_kwargs), dp.Convolutional( n_filters=32, filter_shape=(5, 5), border_mode='same', weights=dp.Parameter(dp.NormalFiller(sigma=0.01), weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.Pool(**pool_kwargs), dp.Convolutional( n_filters=64, filter_shape=(5, 5), border_mode='same', weights=dp.Parameter(dp.NormalFiller(sigma=0.01), weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.Pool(**pool_kwargs), dp.Flatten(), dp.FullyConnected( n_output=64, weights=dp.Parameter(dp.NormalFiller(sigma=0.1), weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.FullyConnected( n_output=dataset.n_classes, weights=dp.Parameter(dp.NormalFiller(sigma=0.1), weight_decay=0.004, monitor=True), ), dp.MultinomialLogReg(), ], ) # Train neural network def val_error(): return net.error(test_input) n_epochs = [8, 8] learn_rate = 0.001 for i, max_epochs in enumerate(n_epochs): lr = learn_rate/10**i trainer = dp.StochasticGradientDescent( max_epochs=max_epochs, learn_rule=dp.Momentum(learn_rate=lr, momentum=0.9), ) trainer.train(net, train_input, val_error) # Visualize convolutional filters to disk for l, layer in enumerate(net.layers): if not isinstance(layer, dp.Convolutional): continue W = np.array(layer.params()[0].array) filepath = os.path.join('cifar10', 'conv_layer_%i.png' % l) dp.misc.img_save(dp.misc.conv_filter_tile(W), filepath) # Evaluate on test data error = net.error(test_input) print('Test error rate: %.4f' % error)