Пример #1
0
def multi_test_evasion():
    # test on 40 nodes on evasion attack
    target_gcn = GCN(nfeat=features.shape[1],
              nhid=16,
              nclass=labels.max().item() + 1,
              dropout=0.5, device=device)

    target_gcn = target_gcn.to(device)

    target_gcn.fit(features, adj, labels, idx_train)

    cnt = 0
    degrees = adj.sum(0).A1
    node_list = select_nodes(target_gcn)
    num = len(node_list)

    print('=== [Evasion] Attacking %s nodes respectively ===' % num)
    for target_node in tqdm(node_list):
        n_perturbations = int(degrees[target_node])
        model = Nettack(surrogate, nnodes=adj.shape[0], attack_structure=True, attack_features=True, device=device)
        model = model.to(device)
        model.attack(features, adj, labels, target_node, n_perturbations, verbose=False)
        modified_adj = model.modified_adj
        modified_features = model.modified_features

        acc = single_test(modified_adj, modified_features, target_node, gcn=target_gcn)
        if acc == 0:
            cnt += 1
    print('misclassification rate : %s' % (cnt/num))
Пример #2
0
def multi_test():
    cnt = 0
    degrees = adj.sum(0).A1
    node_list = select_nodes(num_target=10)
    # node_list = [439, 1797]
    print(node_list)

    num = len(node_list)
    print('=== Attacking %s nodes respectively ===' % num)
    num_tar = 0
    for target_node in tqdm(node_list):
        # """for test"""
        # target_node = 419
        n_perturbations = int(degrees[target_node])
        if n_perturbations <1:  # at least one perturbation
            continue

        model = Nettack(surrogate, nnodes=adj.shape[0], attack_structure=True, attack_features=False, device=device)
        model = model.to(device)
        model.attack(features, adj, labels, target_node, n_perturbations, direct=False, n_influencers=5, verbose=False)
        modified_adj = model.modified_adj
        modified_features = model.modified_features
        acc = single_test(modified_adj, modified_features, target_node)
        if acc == 0:
            cnt += 1
        num_tar += 1
        print('classification rate : %s' % (1-cnt/num_tar), '# of targets:', num_tar)
Пример #3
0
def multi_test_poison():
    # test on 40 nodes on poisoining attack
    cnt = 0
    degrees = adj.sum(0).A1
    node_list = select_nodes()
    num = len(node_list)
    print('=== [Poisoning] Attacking %s nodes respectively ===' % num)
    for target_node in tqdm(node_list):
        n_perturbations = int(degrees[target_node])
        model = Nettack(surrogate,
                        nnodes=adj.shape[0],
                        attack_structure=True,
                        attack_features=True,
                        device=device)
        model = model.to(device)
        model.attack(features,
                     adj,
                     labels,
                     target_node,
                     n_perturbations,
                     verbose=False)
        modified_adj = model.modified_adj
        modified_features = model.modified_features
        acc = single_test(modified_adj, modified_features, target_node)
        if acc == 0:
            cnt += 1
    print('misclassification rate : %s' % (cnt / num))
Пример #4
0
def multi_test():
    # Setup Surrogate model
    surrogate = GCN(nfeat=features.shape[1], nclass=labels.max().item()+1,
                nhid=16, dropout=0, with_relu=False, with_bias=False, device=device)

    surrogate = surrogate.to(device)
    surrogate.fit(features, adj, labels, idx_train)
    
    attack_cnt = 0
    defense_cnt = 0
    degrees = adj.sum(0).A1
    node_list = select_nodes()
    num = len(node_list)
    print('=== Attacking %s nodes one after another ===' % num)
    for target_node in node_list:
        #n_perturbations = min(15, int(degrees[target_node]))
        n_perturbations = int(degrees[target_node])
        model = Nettack(surrogate, nnodes=adj.shape[0], attack_structure=True, attack_features=True, device=device)
        model = model.to(device)
        model.attack(features, adj, labels, target_node, n_perturbations, verbose=False)
        modified_adj = model.modified_adj
        modified_features = model.modified_features
        attack_acc = test_attack(modified_adj, modified_features, target_node)
        if attack_acc == 0:
            attack_cnt += 1
        defense_acc = test_defense(modified_adj, modified_features, target_node)
        if defense_acc == 1:
            defense_cnt += 1
        print("Attacking node :", target_node, "Details :", degrees[target_node], modified_adj.sum(0).A1[target_node], attack_acc, defense_acc)
    print('Pure attack accuracy rate : %s' % ((num - attack_cnt)/num), flush=True)
    print('With Jaccard defense accuracy rate : %s' % (defense_cnt/num), flush=True)
    print("GCNJaccard threshold used :", args.threshold)
Пример #5
0
def multi_test_poison():
    # test nodes on poisoning attack
    cnt = 0
    data_load = dataset.c_dataset_loader(opt.dataset,
                                         ".{}".format(opt.data_path))
    adj, features, label, _, _, _ = data_load.process_data()
    labels = F_Info.F_one_hot_to_label(label)
    degrees = adj.sum(0)
    adj = sp.csr_matrix(adj)
    features = sp.csr_matrix(features)
    total_att_node = 2000  # 攻击的节点数目

    # node_list = np.random.choice(np.arange(adj.shape[0]), 10, False)
    node_list = np.random.choice(np.arange(adj.shape[0]),
                                 total_att_node,
                                 replace=False)

    # 每100个节点记录一次平均asr
    adj_pert_record = {}
    acc_pert_record = {}

    num = len(node_list)
    print('=== [Poisoning] Attacking %s nodes respectively ===' % num)
    acc = 0
    target_node_id = 1
    for target_node_idx in tqdm(node_list):

        model = Nettack(surrogate,
                        nnodes=adj.shape[0],
                        attack_structure=True,
                        attack_features=False,
                        device='cuda:0')
        model = model.to('cuda:0')
        model.attack(features,
                     adj,
                     labels,
                     target_node_idx,
                     n_perturbations,
                     verbose=False)
        modified_adj = model.modified_adj
        if target_node_id % 50 == 0:
            print("\ntarget_node_idx : {}".format(target_node_idx))
            acc = test_acc(modified_adj, features, target_node_idx)
        if target_node_id % 100 == 0 or target_node_id == 1:
            print("-------------Recoding---------\n")
            adj_pert_record[target_node_id / 100] = sp.csr_matrix(modified_adj)
            acc_pert_record[target_node_id / 100] = acc
            pass
        adj = modified_adj
        target_node_id = target_node_id + 1
    info_collect = {}
    info_collect['adj_per'] = adj_pert_record
    info_collect['surrogate'] = surrogate
    info_collect['idx_train'] = idx_train
    info_collect['idx_val'] = idx_val
    info_collect['idx_test'] = idx_test
    info_collect['acc_after_att'] = acc_pert_record
    info_collect['total_att_node'] = total_att_node
    info_collect['random_seed'] = rand_seed
    info_collect['pert_node_list'] = node_list
    return info_collect