Пример #1
0
    def generate(self, train_loader, test_loader, **kwargs):
        self.parse_params(**kwargs)

        # settings
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        use_cuda = not self.no_cuda and torch.cuda.is_available()
        torch.manual_seed(self.seed)

        loader_kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

        # setup data loader
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=True, download=True,
                        transform=transforms.ToTensor()),
            batch_size=args.batch_size, shuffle=True, **loader_kwargs)

        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=False,
                        transform=transforms.ToTensor()),
                        batch_size=args.test_batch_size, shuffle=True, **loader_kwargs)

        # init model, Net() can be also used here for training
        model = Net().to(device)
        optimizer = optim.SGD(model.parameters(), lr = self.lr, momentum=self.momentum)

        for epoch in range(1, self.epochs + 1):
            # adjust learning rate for SGD
            optimizer = adjust_learning_rate(optimizer, epoch, self.lr)

            # adversarial training
            train(args, model, device, train_loader, optimizer, epoch)

            # evaluation on natural examples
            print('================================================================')
            eval_train(model, device, train_loader)
            eval_test(model, device, test_loader)
            print('================================================================')

            # save checkpoint
            if epoch % self.save_freq == 0:
                torch.save(model.state_dict(),
                        os.path.join(model_dir, 'trade_model-nn-epoch{}.pt'.format(epoch)))
                torch.save(optimizer.state_dict(),
                        os.path.join(model_dir, 'opt-nn-checkpoint_epoch{}.tar'.format(epoch)))
Пример #2
0
def train(model, data, device, maxepoch):

    torch.manual_seed(100)

    train_loader, test_loader = feed_dataset(data, 'deeprobust/image/data')

    if (model == 'CNN'):
        import deeprobust.image.netmodels.CNN as MODEL
        from deeprobust.image.netmodels.CNN import Net
        train_net = Net().to(device)

    elif (model == 'ResNet18'):
        import deeprobust.image.netmodels.resnet as MODEL
        train_net = MODEL.ResNet18().to(device)

    elif (model == 'ResNet34'):
        import deeprobust.image.netmodels.resnet as MODEL
        train_net = MODEL.ResNet34().to(device)

    elif (model == 'ResNet50'):
        import deeprobust.image.netmodels.resnet as MODEL
        train_net = MODEL.ResNet50().to(device)

    optimizer = optim.SGD(train_net.parameters(), lr=0.01, momentum=0.5)

    save_model = True
    for epoch in range(1, maxepoch + 1):  ## 5 batches

        print(epoch)
        MODEL.train(train_net, device, train_loader, optimizer, epoch)
        MODEL.test(train_net, device, test_loader)

        if (save_model and epoch % 10 == 0):
            if os.path.isdir('./trained_models/'):
                print('Save model.')
                torch.save(
                    train_net.state_dict(), './trained_models/' + data + "_" +
                    model + "_epoch_" + str(epoch) + ".pt")
            else:
                os.mkdir('./trained_models/')
                print('Make directory and save model.')
                torch.save(
                    train_net.state_dict(), './trained_models/' + data + "_" +
                    model + "_epoch_" + str(epoch) + ".pt")
Пример #3
0
                                               shuffle=True)

    test_loader = torch.utils.data.DataLoader(datasets.MNIST(
        'deeprobust/image/data',
        train=False,
        transform=transforms.Compose([transforms.ToTensor()])),
                                              batch_size=1000,
                                              shuffle=True)

    #ipdb.set_trace()

    #TODO: change the channel according to the dataset.
    LEVELS = 10
    channel = 1
    model = Net(in_channel1=channel * LEVELS,
                out_channel1=32 * LEVELS,
                out_channel2=64 * LEVELS).to(device)
    optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.2)
    logger.info('Load model.')

    save_model = True
    for epoch in range(1, 50 + 1):  ## 5 batches
        print('Running epoch ', epoch)

        train(model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)

        if (save_model):
            torch.save(model.state_dict(),
                       "deeprobust/image/save_models/thermometer_encoding.pt")