Пример #1
0
            cur_stream[i][1] = cur_stream[i][1][how_many:]
            cur_stream[i][2] = cur_stream[i][2][how_many:]

            if pad:
                break

        if no_more_data and np.sum(weights) == 0:
            # There is no more data and this is an empty batch. Done!
            break
        yield inputs, char_inputs, global_word_ids, targets, weights


if __name__ == '__main__':
    data_path = os.path.join(os.getenv("HOME"), "data/datasets/ptb/")

    corpus = PTBReader(path=data_path, mark_eos=True)
    corpus_stats = h5py.File(os.path.join(data_path, "ptb_stats.hdf5"),
                             mode='r')
    vocab = marisa_trie.Trie(corpus_stats["vocabulary"])

    batch_size = 4
    num_steps = 3

    # data = [vocab[word] for word in it.take_it(1000, it.flatten_it(corpus.training_set(1000)))]
    data = [
        word
        for word in it.take_it(it.flatten_it(corpus.training_set(1000)), 1000)
    ]
    data = iter((c for c in it.flatten_it(data)))
    print(next(data))
    # data = np.array(data)
Пример #2
0
                    dest="data_dir",
                    type=str,
                    default=os.getenv("HOME") + "/data/datasets/ptb")
parser.add_argument('-out_dir',
                    dest="out_path",
                    type=str,
                    default=os.getenv("HOME") + "/data/results/")
parser.add_argument('-flatten', dest="flatten", type=bool, default=False)
args = parser.parse_args()

# ======================================================================================
# Build Vocabulary
# the dataset is quite small so we read everything first to build the vocab
# we then use that vocabulary to encode each n-gram
# ======================================================================================
ptb_reader = PTBReader(args.data_dir)

# load vocabulary
word_counter = Counter()
for words in ptb_reader.full():
    word_counter.update(words)

vocab = marisa_trie.Trie(word_counter.keys())
sorted_counts = word_counter.most_common()
word_list, word_freq = zip(*sorted_counts)

# vocabulary = np.array([freq[i][0].encode("utf8") for word in word_list])
# encode strings in array 0 terminated bytes
vocabulary = np.array(word_list, dtype="S")
ids = np.array([vocab[word] for word in word_list])
frequencies = np.array(word_freq)
Пример #3
0
import os
from deepsign.data.corpora.ptb import PTBReader
from collections import Counter
from deepsign.data.iterators import window_it

home = os.getenv("HOME")
ptb_dir = home + "/data/gold_standards/ptb"

reader = PTBReader(ptb_dir)

training_set = reader.training_set()

vocab = Counter()

for sentence in training_set:
    words = sentence
    ngrams = window_it(words, 4)
    for ngram in ngrams:
        print(ngram)
    vocab.update(words)

print("total words:", sum(vocab.values()))
print("total unique words:", len(vocab.keys()))
print("100 most common:")
for w in vocab.most_common(100):
    print(w)
Пример #4
0
def run(**kwargs):
    arg_dict.from_dict(kwargs)
    args = arg_dict.to_namespace()

    # ======================================================================================
    # Load Corpus & Vocab
    # ======================================================================================
    corpus = PTBReader(path=args.corpus, mark_eos=args.mark_eos)
    corpus_stats = h5py.File(os.path.join(args.corpus, "ptb_stats.hdf5"),
                             mode='r')
    ri_generator = Generator(dim=args.k_dim,
                             num_active=args.s_active,
                             symmetric=True)
    # vocab = marisa_trie.Trie(corpus_stats["vocabulary"])

    index = TrieSignIndex(generator=ri_generator,
                          vocabulary=corpus_stats["vocabulary"],
                          pregen_indexes=True)

    # for i in range(1000):
    #    w = index.get_sign(i)
    #    ri: RandomIndex = index.get_ri(w)
    #    print(w)
    #    print(ri)
    #    print(ri)
    #    print(index.get_id(w))

    # pre-gen indices for vocab, we could do this iteratively ... same thing
    # ris = [ri_generator.generate() for _ in range(len(vocab))]
    # print(vocab.keys())

    # index = TrieSignIndex(generator=ri_generator,vocabulary=vocab)

    # TODO could create the NRP model with NCE only and input with random indices could be passed to the model
    # dynamically, also for inference and evaluation, we could either work with a dynamic encoding process
    # or give it the current ri tensor with all the known ris if we know there are no OOV words (words that might not
    # have been seen during training.

    # table with random indices for all known symbols
    # ri_tensor = RandomIndexTensor.from_ri_list(ris, k=args.k_dim, s=args.s_active)

    def corpus_pipeline(corpus_stream,
                        n_gram_size=args.ngram_size,
                        epochs=1,
                        batch_size=args.batch_size,
                        shuffle=args.shuffle,
                        flatten=False):
        """ Corpus Processing Pipeline.

        Transforms the corpus reader -a stream of sentences or words- into a stream of n-gram batches.

        Args:
            n_gram_size: the size of the n-gram window
            corpus_stream: the stream of sentences of words
            epochs: number of epochs we want to iterate over this corpus
            batch_size: batch size for the n-gram batch
            shuffle: if true, shuffles the n-grams according to a buffer size
            flatten: if true sliding windows are applied over a stream of words rather than within each sentence
            (n-grams can cross sentence boundaries)
        """

        if flatten:
            word_it = flatten_it(corpus_stream)
            n_grams = window_it(word_it, n_gram_size)
        else:
            sentence_n_grams = (window_it(sentence, n_gram_size)
                                for sentence in corpus_stream)
            n_grams = flatten_it(sentence_n_grams)

        # at this point this is an n_gram iterator
        # n_grams = ([vocab[w] for w in ngram] for ngram in n_grams)
        n_grams = ([index.get_id(w) for w in ngram] for ngram in n_grams)

        if epochs > 1:
            n_grams = repeat_it(n_grams, epochs)

        if shuffle:
            n_grams = shuffle_it(n_grams, args.shuffle_buffer_size)

        n_grams = batch_it(n_grams, size=batch_size, padding=False)
        return n_grams

    # print("counting dataset samples...")
    training_len = sum(1 for _ in corpus_pipeline(
        corpus.training_set(), batch_size=1, epochs=1, shuffle=False))
    validation_len = None
    test_len = None
    if args.eval_progress:
        validation_len = sum(1 for _ in corpus_pipeline(
            corpus.validation_set(), batch_size=1, epochs=1, shuffle=False))
        test_len = sum(1 for _ in corpus_pipeline(
            corpus.test_set(), batch_size=1, epochs=1, shuffle=False))
    # print("done")
    # print("dset len ", training_len)

    # ======================================================================================
    # Load Params, Prepare results assets
    # ======================================================================================
    # Experiment parameter summary
    res_param_filename = os.path.join(
        args.out_dir, "params_{id}_{run}.csv".format(id=args.id, run=args.run))
    with open(res_param_filename, "w") as param_file:
        writer = csv.DictWriter(f=param_file, fieldnames=arg_dict.keys())
        writer.writeheader()
        writer.writerow(arg_dict)
        param_file.flush()

    # make dir for model checkpoints
    if args.save_model:
        model_ckpt_dir = os.path.join(
            args.out_dir, "model_{id}_{run}".format(id=args.id, run=args.run))
        os.makedirs(model_ckpt_dir, exist_ok=True)
        model_path = os.path.join(
            model_ckpt_dir, "nnlm_{id}_{run}.ckpt".format(id=args.id,
                                                          run=args.run))

    # start perplexity file
    ppl_header = ["id", "run", "epoch", "step", "lr", "dataset", "perplexity"]
    ppl_fname = os.path.join(
        args.out_dir, "perplexity_{id}_{run}.csv".format(id=args.id,
                                                         run=args.run))

    ppl_file = open(ppl_fname, "w")
    ppl_writer = csv.DictWriter(f=ppl_file, fieldnames=ppl_header)
    ppl_writer.writeheader()

    # ======================================================================================
    # MODEL
    # ======================================================================================
    # Configure weight initializers based on activation functions
    if args.h_act == "relu":
        h_act = tx.relu
        h_init = tx.he_normal_init()
    elif args.h_act == "tanh":
        h_act = tx.tanh
        h_init = tx.glorot_uniform()
    elif args.h_act == "elu":
        h_act = tx.elu
        h_init = tx.he_normal_init()
    elif args.h_act == "selu":
        h_act = tf.nn.selu
        h_init = tx.glorot_uniform()

    # Configure embedding and logit weight initializers
    if args.embed_init == "normal":
        embed_init = tx.random_normal(mean=0., stddev=args.embed_init_val)
    elif args.embed_init == "uniform":
        embed_init = tx.random_uniform(minval=-args.embed_init_val,
                                       maxval=args.embed_init_val)

    if args.logit_init == "normal":
        logit_init = tx.random_normal(mean=0., stddev=args.logit_init_val)
    elif args.logit_init == "uniform":
        logit_init = tx.random_uniform(minval=-args.logit_init_val,
                                       maxval=args.logit_init_val)

    f_init = None
    if args.use_f_predict:
        if args.f_init == "normal":
            f_init = tx.random_normal(mean=0., stddev=args.f_init_val)
        elif args.f_init == "uniform":
            f_init = tx.random_uniform(minval=-args.f_init_val,
                                       maxval=args.f_init_val)

    model = NRP(ctx_size=args.ngram_size - 1,
                sign_index=index,
                k_dim=args.k_dim,
                s_active=args.s_active,
                embed_dim=args.embed_dim,
                h_dim=args.h_dim,
                embed_init=embed_init,
                logit_init=logit_init,
                num_h=args.num_h,
                h_activation=h_act,
                h_init=h_init,
                use_dropout=args.dropout,
                embed_dropout=args.embed_dropout,
                keep_prob=args.keep_prob,
                l2_loss=args.l2_loss,
                l2_loss_coef=args.l2_loss_coef,
                f_init=f_init,
                embed_share=args.embed_share,
                logit_bias=args.logit_bias,
                use_nce=args.nce,
                nce_samples=args.nce_samples,
                nce_noise_amount=0.04)

    model_runner = tx.ModelRunner(model)

    # Input params can be changed during training by setting their value
    # lr_param = tx.InputParam(init_value=args.lr)
    lr_param = tensorx.train.EvalStepDecayParam(
        value=args.lr,
        improvement_threshold=args.eval_threshold,
        less_is_better=True,
        decay_rate=args.lr_decay_rate,
        decay_threshold=args.lr_decay_threshold)
    if args.optimizer == "sgd":
        optimizer = tf.train.GradientDescentOptimizer(
            learning_rate=lr_param.tensor)
    elif args.optimizer == "adam":
        optimizer = tf.train.AdamOptimizer(learning_rate=lr_param.tensor,
                                           beta1=args.optimizer_beta1,
                                           beta2=args.optimizer_beta2,
                                           epsilon=args.optimizer_epsilon)
    elif args.optimizer == "ams":
        optimizer = tx.AMSGrad(learning_rate=lr_param.tensor,
                               beta1=args.optimizer_beta1,
                               beta2=args.optimizer_beta2,
                               epsilon=args.optimizer_epsilon)

    def clip_grad_global(grads):
        grads, _ = tf.clip_by_global_norm(grads, 12)
        return grads

    def clip_grad_local(grad):
        return tf.clip_by_norm(grad, args.clip_value)

    if args.clip_grads:
        if args.clip_local:
            clip_fn = clip_grad_local
        else:
            clip_fn = clip_grad_global

    if args.clip_grads:
        model_runner.config_optimizer(optimizer,
                                      optimizer_params=lr_param,
                                      gradient_op=clip_fn,
                                      global_gradient_op=not args.clip_local)
    else:
        model_runner.config_optimizer(optimizer, optimizer_params=lr_param)

    # ======================================================================================
    # EVALUATION
    # ======================================================================================

    def eval_model(runner,
                   dataset_it,
                   len_dataset=None,
                   display_progress=False):
        if display_progress:
            pb = tqdm(total=len_dataset, ncols=60, position=1)
        batches_processed = 0
        sum_loss = 0
        for batch in dataset_it:
            batch = np.array(batch, dtype=np.int64)
            ctx = batch[:, :-1]
            target = batch[:, -1:]

            mean_loss = runner.eval(ctx, target)
            sum_loss += mean_loss

            if display_progress:
                pb.update(args.batch_size)
            batches_processed += 1

        if display_progress:
            pb.close()

        return np.exp(sum_loss / batches_processed)

    def evaluation(runner: tx.ModelRunner,
                   progress_bar,
                   cur_epoch,
                   step,
                   display_progress=False):

        ppl_validation = eval_model(
            runner,
            corpus_pipeline(corpus.validation_set(), epochs=1, shuffle=False),
            validation_len, display_progress)
        res_row = {
            "id": args.id,
            "run": args.run,
            "epoch": cur_epoch,
            "step": step,
            "lr": lr_param.value,
            "dataset": "validation",
            "perplexity": ppl_validation
        }
        ppl_writer.writerow(res_row)

        if args.eval_test:
            # pb.write("[Eval Test Set]")

            ppl_test = eval_model(
                runner,
                corpus_pipeline(corpus.test_set(), epochs=1, shuffle=False),
                test_len, display_progress)

            res_row = {
                "id": args.id,
                "run": args.run,
                "epoch": cur_epoch,
                "step": step,
                "lr": lr_param.value,
                "dataset": "test",
                "perplexity": ppl_test
            }
            ppl_writer.writerow(res_row)

        ppl_file.flush()

        if args.eval_test:
            progress_bar.set_postfix({"test PPL ": ppl_test})

        # pb.write("valid. ppl = {}".format(ppl_validation))
        return ppl_validation

    # ======================================================================================
    # TRAINING LOOP
    # ======================================================================================
    # print("Starting TensorFlow Session")

    # preparing evaluation steps
    # I use ceil because I make sure we have padded batches at the end

    epoch_step = 0
    global_step = 0
    current_epoch = 0
    patience = 0

    cfg = tf.ConfigProto()
    cfg.gpu_options.allow_growth = True
    sess = tf.Session(config=cfg)
    model_runner.set_session(sess)
    model_runner.init_vars()

    progress = tqdm(total=training_len * args.epochs,
                    position=args.pid + 1,
                    disable=not args.display_progress)
    training_data = corpus_pipeline(corpus.training_set(),
                                    batch_size=args.batch_size,
                                    epochs=args.epochs,
                                    shuffle=args.shuffle)

    evaluations = []

    try:

        for ngram_batch in training_data:
            epoch = progress.n // training_len + 1
            # Start New Epoch
            if epoch != current_epoch:
                current_epoch = epoch
                epoch_step = 0
                if args.display_progress:
                    progress.set_postfix({"epoch": current_epoch})

            # ================================================
            # EVALUATION
            # ================================================
            if epoch_step == 0:
                current_eval = evaluation(model_runner,
                                          progress,
                                          epoch,
                                          global_step,
                                          display_progress=args.eval_progress)

                evaluations.append(current_eval)
                lr_param.update(current_eval)
                # print(lr_param.eval_history)
                # print("improvement ", lr_param.eval_improvement())

                if global_step > 0:
                    if args.early_stop and epoch > 1:
                        if lr_param.eval_improvement(
                        ) < lr_param.improvement_threshold:
                            if patience >= 3:
                                break
                            patience += 1
                        else:
                            patience = 0

            # ================================================
            # TRAIN MODEL
            # ================================================
            ngram_batch = np.array(ngram_batch, dtype=np.int64)
            ctx_ids = ngram_batch[:, :-1]
            word_ids = ngram_batch[:, -1:]

            model_runner.train(ctx_ids, word_ids)
            progress.update(args.batch_size)

            epoch_step += 1
            global_step += 1

        # if not early stop, evaluate last state of the model
        if not args.early_stop or patience < 3:
            current_eval = evaluation(model_runner, progress, epoch,
                                      epoch_step)
            evaluations.append(current_eval)
        ppl_file.close()

        if args.save_model:
            model_runner.save_model(model_name=model_path,
                                    step=global_step,
                                    write_state=False)

        model_runner.close_session()
        progress.close()
        tf.reset_default_graph()

        # return the best validation evaluation
        return min(evaluations)

    except Exception as e:
        traceback.print_exc()
        os.remove(ppl_file.name)
        os.remove(param_file.name)
        raise e
Пример #5
0
from deepsign.data.corpora.ptb import PTBReader
from deepsign.data.iterators import window_it, flatten_it

parser = argparse.ArgumentParser(description="PTB to hdf5 vocab and frequencies")
parser.add_argument('-mark_eos', dest="mark_eos", type=bool, default=True)
parser.add_argument('-data_dir', dest="data_dir", type=str, default=os.getenv("HOME") + "/data/datasets/ptb")
parser.add_argument('-out_dir', dest="out_path", type=str, default=os.getenv("HOME") + "/data/results/")
parser.add_argument('-flatten', dest="flatten", type=bool, default=False)
args = parser.parse_args()

# ======================================================================================
# Build Vocabulary
# the dataset is quite small so we read everything first to build the vocab
# we then use that vocabulary to encode each n-gram
# ======================================================================================
ptb_reader = PTBReader(args.data_dir,args.mark_eos)

# load vocabulary
word_counter = Counter()
for words in ptb_reader.full():
    word_counter.update(words)

vocab = marisa_trie.Trie(word_counter.keys())
sorted_counts = word_counter.most_common()
word_list, word_freq = zip(*sorted_counts)

# vocabulary = np.array([freq[i][0].encode("utf8") for word in word_list])
# encode strings in array 0 terminated bytes
vocabulary = np.array(word_list, dtype="S")
ids = np.array([vocab[word] for word in word_list])
frequencies = np.array(word_freq)
Пример #6
0
def run(**kwargs):
    arg_dict.from_dict(kwargs)
    args = arg_dict.to_namespace()

    # ======================================================================================
    # Load Corpus & Vocab
    # ======================================================================================
    corpus = PTBReader(path=args.corpus, mark_eos=args.mark_eos)
    corpus_stats = h5py.File(os.path.join(args.corpus, "ptb_stats.hdf5"), mode='r')
    vocab = marisa_trie.Trie(corpus_stats["vocabulary"])

    to_ngrams_batch = partial(to_ngrams,
                              vocab=vocab,
                              ngram_size=args.ngram_size,
                              batch_size=args.batch_size,
                              epochs=1,
                              shuffle=False,
                              shuffle_buffer_size=args.shuffle_buffer_size,
                              enum_epoch=False)

    training_len = sum(1 for _ in to_ngrams_batch(corpus.training_set, batch_size=1))

    validation_len = None
    test_len = None
    if args.eval_progress:
        validation_len = sum(1 for _ in to_ngrams_batch(corpus.validation_set, batch_size=1))
        test_len = sum(1 for _ in to_ngrams_batch(corpus.test_set, batch_size=1))

    # ======================================================================================
    # Load Params, Prepare results assets
    # ======================================================================================
    # Experiment parameter summary
    res_param_filename = os.path.join(args.out_dir, "params_{id}_{run}.csv".format(id=args.id, run=args.run))
    with open(res_param_filename, "w") as param_file:
        writer = csv.DictWriter(f=param_file, fieldnames=arg_dict.keys())
        writer.writeheader()
        writer.writerow(arg_dict)
        param_file.flush()

    # make dir for model checkpoints
    if args.save_model:
        model_ckpt_dir = os.path.join(args.out_dir, "model_{id}_{run}".format(id=args.id, run=args.run))
        os.makedirs(model_ckpt_dir, exist_ok=True)
        model_path = os.path.join(model_ckpt_dir, "nnlm_{id}_{run}.ckpt".format(id=args.id, run=args.run))

    # start perplexity file
    ppl_header = ["id", "run", "epoch", "step", "lr", "dataset", "perplexity"]
    ppl_filename = os.path.join(args.out_dir, "perplexity_{id}_{run}.csv".format(id=args.id, run=args.run))

    ppl_file = open(ppl_filename, "w")
    ppl_writer = csv.DictWriter(f=ppl_file, fieldnames=ppl_header)
    ppl_writer.writeheader()

    # ======================================================================================
    # MODEL
    # ======================================================================================
    # Configure weight initializers based on activation functions
    if args.h_act == "relu":
        h_act = tx.relu
        h_init = tx.he_normal_init()
    elif args.h_act == "tanh":
        h_act = tx.tanh
        h_init = tx.glorot_uniform()
    elif args.h_act == "elu":
        h_act = tx.elu
        h_init = tx.he_normal_init()
    elif args.h_act == "selu":
        h_act = tf.nn.selu
        h_init = tx.glorot_uniform()

    # Configure embedding and logit weight initializers
    if args.embed_init == "normal":
        embed_init = tx.random_normal(mean=0.,
                                      stddev=args.embed_init_val)
    elif args.embed_init == "uniform":
        embed_init = tx.random_uniform(minval=-args.embed_init_val,
                                       maxval=args.embed_init_val)

    if args.logit_init == "normal":
        logit_init = tx.random_normal(mean=0.,
                                      stddev=args.logit_init_val)
    elif args.logit_init == "uniform":
        logit_init = tx.random_uniform(minval=-args.logit_init_val,
                                       maxval=args.logit_init_val)

    f_init = None
    if args.use_f_predict:
        if args.f_init == "normal":
            f_init = tx.random_normal(mean=0., stddev=args.f_init_val)
        elif args.f_init == "uniform":
            f_init = tx.random_uniform(minval=-args.f_init_val, maxval=args.f_init_val)

    inputs = tx.Input(args.ngram_size - 1, dtype=tf.int64, name="ctx_inputs")
    labels = tx.Input(1, dtype=tf.int64, name="ctx_inputs")
    model = NNLM(inputs=inputs,
                 label_inputs=labels,
                 vocab_size=len(vocab),
                 embed_dim=args.embed_dim,
                 embed_init=embed_init,
                 embed_share=args.embed_share,
                 logit_init=logit_init,
                 h_dim=args.h_dim,
                 num_h=args.num_h,
                 h_activation=h_act,
                 h_init=h_init,
                 use_dropout=args.dropout,
                 drop_probability=args.drop_probability,
                 embed_dropout=args.embed_dropout,
                 l2_loss=args.l2_loss,
                 l2_weight=args.l2_loss_coef,
                 use_f_predict=args.use_f_predict,
                 f_init=f_init,
                 logit_bias=args.logit_bias,
                 use_nce=False)

    # Input params can be changed during training by setting their value
    # lr_param = tx.InputParam(init_value=args.lr)
    lr_param = tensorx.train.EvalStepDecayParam(value=args.lr,
                                                improvement_threshold=args.eval_threshold,
                                                less_is_better=True,
                                                decay_rate=args.lr_decay_rate,
                                                decay_threshold=args.lr_decay_threshold)
    if args.optimizer == "sgd":
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr_param.tensor)
    elif args.optimizer == "adam":
        optimizer = tf.train.AdamOptimizer(learning_rate=lr_param.tensor,
                                           beta1=args.optimizer_beta1,
                                           beta2=args.optimizer_beta2,
                                           epsilon=args.optimizer_epsilon)
    elif args.optimizer == "ams":
        optimizer = tx.AMSGrad(learning_rate=lr_param.tensor,
                               beta1=args.optimizer_beta1,
                               beta2=args.optimizer_beta2,
                               epsilon=args.optimizer_epsilon)

    def clip_grad_global(grads):
        grads, _ = tf.clip_by_global_norm(grads, 12)
        return grads

    def clip_grad_local(grad):
        return tf.clip_by_norm(grad, args.clip_value)

    if args.clip_grads:
        if args.clip_local:
            clip_fn = clip_grad_local
        else:
            clip_fn = clip_grad_global

    if args.clip_grads:
        model.config_optimizer(optimizer, optimizer_params=lr_param,
                               gradient_op=clip_fn,
                               global_gradient_op=not args.clip_local)
    else:
        model.config_optimizer(optimizer, optimizer_params=lr_param)

    # ======================================================================================
    # EVALUATION
    # ======================================================================================

    def eval_model(model, dataset_it, len_dataset=None, display_progress=False):
        if display_progress:
            pb = tqdm(total=len_dataset, ncols=60, position=1)
        batches_processed = 0
        sum_loss = 0
        for batch in dataset_it:
            batch = np.array(batch, dtype=np.int64)
            ctx = batch[:, :-1]
            target = batch[:, -1:]

            mean_loss = model.eval({inputs: ctx, labels: target})
            sum_loss += mean_loss

            if display_progress:
                pb.update(args.batch_size)
            batches_processed += 1

        if display_progress:
            pb.close()

        return np.exp(sum_loss / batches_processed)

    def evaluation(model: tx.Model, progress_bar, cur_epoch, step, display_progress=False):

        ppl_validation = eval_model(model,
                                    to_ngrams_batch(corpus.validation_set),
                                    validation_len,
                                    display_progress)
        res_row = {"id": args.id, "run": args.run, "epoch": cur_epoch, "step": step, "lr": lr_param.value,
                   "dataset": "validation",
                   "perplexity": ppl_validation}
        ppl_writer.writerow(res_row)

        if args.eval_test:
            # pb.write("[Eval Test Set]")
            ppl_test = eval_model(model, to_ngrams(corpus.test_set), test_len, display_progress)

            res_row = {"id": args.id, "run": args.run, "epoch": cur_epoch, "step": step, "lr": lr_param.value,
                       "dataset": "test",
                       "perplexity": ppl_test}
            ppl_writer.writerow(res_row)

        ppl_file.flush()

        if args.eval_test:
            progress_bar.set_postfix({"test PPL ": ppl_test})

        # pb.write("valid. ppl = {}".format(ppl_validation))
        return ppl_validation

    # ======================================================================================
    # TRAINING LOOP
    # ======================================================================================
    # print("Starting TensorFlow Session")

    # preparing evaluation steps
    # I use ceil because I make sure we have padded batches at the end

    epoch_step = 0
    global_step = 0
    current_epoch = 0
    patience = 0

    cfg = tf.ConfigProto()
    cfg.gpu_options.allow_growth = True
    sess = tf.Session(config=cfg)
    model.set_session(sess)
    model.init_vars()

    progress = tqdm(total=training_len * args.epochs, position=args.pid + 1, disable=not args.display_progress)

    training_data = to_ngrams_batch(corpus.training_set,
                                    epochs=args.epochs,
                                    shuffle=args.shuffle,
                                    enum_epoch=True)

    evaluations = []

    try:

        for i, ngram_batch in training_data:
            epoch = i + 1
            # Start New Epoch
            if epoch != current_epoch:
                current_epoch = epoch
                epoch_step = 0
                if args.display_progress:
                    progress.set_postfix({"epoch": current_epoch})

            # ================================================
            # EVALUATION
            # ================================================
            if epoch_step == 0:
                current_eval = evaluation(model, progress, epoch, global_step,
                                          display_progress=args.eval_progress)

                evaluations.append(current_eval)
                lr_param.update(current_eval)
                # print(lr_param.eval_history)
                # print("improvement ", lr_param.eval_improvement())

                if global_step > 0:
                    if args.early_stop and epoch > 1:
                        if lr_param.eval_improvement() < lr_param.improvement_threshold:
                            if patience >= 3:
                                break
                            patience += 1
                        else:
                            patience = 0

            # ================================================
            # TRAIN MODEL
            # ================================================
            ngram_batch = np.array(ngram_batch, dtype=np.int64)
            ctx_ids = ngram_batch[:, :-1]
            word_ids = ngram_batch[:, -1:]

            model.train({inputs: ctx_ids, labels: word_ids})
            progress.update(args.batch_size)

            epoch_step += 1
            global_step += 1

        # if not early stop, evaluate last state of the model
        if not args.early_stop or patience < 3:
            current_eval = evaluation(model, progress, epoch, epoch_step)
            evaluations.append(current_eval)
        ppl_file.close()

        if args.save_model:
            model.save_model(model_name=model_path, step=global_step, write_state=False)

        model.close_session()
        progress.close()
        tf.reset_default_graph()

        # return the best validation evaluation
        return min(evaluations)

    except Exception as e:
        traceback.print_exc()
        os.remove(ppl_file.name)
        os.remove(param_file.name)
        raise e
Пример #7
0
from deepsign.data.corpora.ptb import PTBReader
from tensorx.data import itertools as itx
import marisa_trie
import os
import h5py
import numpy as np

home = os.getenv("HOME")
corpus_path = os.path.join(home, 'data/datasets/ptb')

WINDOW_SIZE = 5
BATCH_SIZE = 2

ptb = PTBReader(corpus_path)

corpus_stats = h5py.File(os.path.join(corpus_path, "ptb_stats.hdf5"), mode='r')
vocab = marisa_trie.Trie(corpus_stats["vocabulary"])


def pipeline(corpus_stream,
             n_gram_size=WINDOW_SIZE,
             batch_size=BATCH_SIZE,
             shuffle=True,
             flatten=True):
    """ Corpus Pipeline.

    Args:
        n_gram_size: the size of the n-gram window
        corpus_stream: the stream of sentences of words
        batch_size: batch size for the n-gram batch
        shuffle: if true, shuffles the n-grams according to a buffer size