CLIP_DELTA = 1.0 EPSILON_START = 1.0 EPSILON_MIN = .3 EPSILON_DECAY = 500000 UPDATE_FREQUENCY = 1 REPLAY_MEMORY_SIZE = 1000000 BATCH_SIZE = 32 FREEZE_INTERVAL = 1000 DETERMINISTIC = True if __name__ == "__main__": logging.basicConfig(level=logging.INFO) # --- Parse parameters --- parameters = process_args(sys.argv[1:], Defaults) if parameters.deterministic: rng = np.random.RandomState(123456) else: rng = np.random.RandomState() # --- Instantiate environment --- env = MG_two_storages_env(rng) # --- Instantiate qnetwork --- qnetwork = MyQNetwork(env, parameters.rms_decay, parameters.rms_epsilon, parameters.momentum, parameters.clip_delta, parameters.freeze_interval, parameters.batch_size, parameters.update_rule, rng) # --- Instantiate agent ---
CLIP_DELTA = 1.0 EPSILON_START = 1.0 EPSILON_MIN = 0.2 EPSILON_DECAY = 10000 UPDATE_FREQUENCY = 1 REPLAY_MEMORY_SIZE = 1000000 BATCH_SIZE = 32 NETWORK_TYPE = "General_DQN_0" FREEZE_INTERVAL = 100 DETERMINISTIC = True if __name__ == "__main__": logging.basicConfig(level=logging.INFO) # --- Parse parameters --- parameters = process_args(sys.argv[1:], Defaults) if parameters.deterministic: rng = np.random.RandomState(12345) else: rng = np.random.RandomState() # --- Instantiate environment --- env = mountain_car_env(rng) # --- Instantiate qnetwork --- qnetwork = MyQNetwork( env, parameters.rms_decay, parameters.rms_epsilon, parameters.momentum, parameters.clip_delta,