def main(): global args set_random_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() and not args.use_cpu log_name = 'test.log' if args.evaluate else 'train.log' log_name += time.strftime('-%Y-%m-%d-%H-%M-%S') sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('** Arguments **') arg_keys = list(args.__dict__.keys()) arg_keys.sort() for key in arg_keys: print('{}: {}'.format(key, args.__dict__[key])) print('\n') print('Collecting env info ...') print('** System info **\n{}\n'.format(collect_env_info())) if use_gpu: torch.backends.cudnn.benchmark = True else: warnings.warn( 'Currently using CPU, however, GPU is highly recommended') datamanager = build_datamanager(args) print('Building model: {}'.format(args.arch)) model = torchreid.models.build_model( name=args.arch, num_classes=datamanager.num_train_pids, loss=args.loss.lower(), pretrained=(not args.no_pretrained), use_gpu=use_gpu) num_params, flops = compute_model_complexity( model, (1, 3, args.height, args.width)) print('Model complexity: params={:,} flops={:,}'.format(num_params, flops)) if args.load_weights and check_isfile(args.load_weights): load_pretrained_weights(model, args.load_weights) if use_gpu: model = nn.DataParallel(model).cuda() optimizer = torchreid.optim.build_optimizer(model, **optimizer_kwargs(args)) scheduler = torchreid.optim.build_lr_scheduler(optimizer, **lr_scheduler_kwargs(args)) if args.resume and check_isfile(args.resume): args.start_epoch = resume_from_checkpoint(args.resume, model, optimizer=optimizer) print('Building {}-engine for {}-reid'.format(args.loss, args.app)) engine = build_engine(args, datamanager, model, optimizer, scheduler) engine.run(**engine_run_kwargs(args))
def main(): global args set_random_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = (torch.cuda.is_available() and not args.use_cpu) log_name = 'test.log' if args.evaluate else 'train.log' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('==========\nArgs:{}\n=========='.format(args)) if use_gpu: print('Currently using GPU {}'.format(args.gpu_devices)) torch.backends.cudnn.benchmark = True else: warnings.warn( 'Currently using CPU, however, GPU is highly recommended') datamanager = build_datamanager(args) print('Building model: {}'.format(args.arch)) model = torchreid.models.build_model( name=args.arch, num_classes=datamanager.num_train_pids, loss=args.loss.lower(), pretrained=(not args.no_pretrained), use_gpu=use_gpu) num_params, flops = compute_model_complexity( model, (1, 3, args.height, args.width)) print('Model complexity: params={:,} flops={:,}'.format(num_params, flops)) if args.load_weights and check_isfile(args.load_weights): load_pretrained_weights(model, args.load_weights) if use_gpu: model = nn.DataParallel(model).cuda() optimizer = torchreid.optim.build_optimizer(model, **optimizer_kwargs(args)) scheduler = torchreid.optim.build_lr_scheduler(optimizer, **lr_scheduler_kwargs(args)) if args.resume and check_isfile(args.resume): args.start_epoch = resume_from_checkpoint(args.resume, model, optimizer=optimizer) print('Building {}-engine for {}-reid'.format(args.loss, args.app)) engine = build_engine(args, datamanager, model, optimizer, scheduler) engine.run(**engine_run_kwargs(args))
def main(): global args set_random_seed(args.seed) use_gpu = torch.cuda.is_available() and not args.use_cpu log_name = 'test.log' if args.evaluate else 'train.log' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('** Arguments **') arg_keys = list(args.__dict__.keys()) arg_keys.sort() for key in arg_keys: print('{}: {}'.format(key, args.__dict__[key])) print('\n') print('Collecting env info ...') print('** System info **\n{}\n'.format(collect_env_info())) if use_gpu: torch.backends.cudnn.benchmark = True else: warnings.warn( 'Currently using CPU, however, GPU is highly recommended') dataset_vars = init_dataset(use_gpu) trainloader, valloader, testloader, num_attrs, attr_dict = dataset_vars if args.weighted_bce: print('Use weighted binary cross entropy') print('Computing the weights ...') bce_weights = torch.zeros(num_attrs, dtype=torch.float) for _, attrs, _ in trainloader: bce_weights += attrs.sum(0) # sum along the batch dim bce_weights /= len(trainloader) * args.batch_size print('Sample ratio for each attribute: {}'.format(bce_weights)) bce_weights = torch.exp(-1 * bce_weights) print('BCE weights: {}'.format(bce_weights)) bce_weights = bce_weights.expand(args.batch_size, num_attrs) criterion = nn.BCEWithLogitsLoss(weight=bce_weights) else: print('Use plain binary cross entropy') criterion = nn.BCEWithLogitsLoss() print('Building model: {}'.format(args.arch)) model = models.build_model(args.arch, num_attrs, pretrained=not args.no_pretrained, use_gpu=use_gpu) num_params, flops = compute_model_complexity( model, (1, 3, args.height, args.width)) print('Model complexity: params={:,} flops={:,}'.format(num_params, flops)) if args.load_weights and check_isfile(args.load_weights): load_pretrained_weights(model, args.load_weights) if use_gpu: model = nn.DataParallel(model).cuda() criterion = criterion.cuda() if args.evaluate: test(model, testloader, attr_dict, use_gpu) return optimizer = torchreid.optim.build_optimizer(model, **optimizer_kwargs(args)) scheduler = torchreid.optim.build_lr_scheduler(optimizer, **lr_scheduler_kwargs(args)) start_epoch = args.start_epoch best_result = -np.inf if args.resume and check_isfile(args.resume): checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] best_result = checkpoint['label_mA'] print('Loaded checkpoint from "{}"'.format(args.resume)) print('- start epoch: {}'.format(start_epoch)) print('- label_mA: {}'.format(best_result)) time_start = time.time() for epoch in range(start_epoch, args.max_epoch): train(epoch, model, criterion, optimizer, scheduler, trainloader, use_gpu) test_outputs = test(model, testloader, attr_dict, use_gpu) label_mA = test_outputs[0] is_best = label_mA > best_result if is_best: best_result = label_mA save_checkpoint( { 'state_dict': model.state_dict(), 'epoch': epoch + 1, 'label_mA': label_mA, 'optimizer': optimizer.state_dict(), }, args.save_dir, is_best=is_best) elapsed = round(time.time() - time_start) elapsed = str(datetime.timedelta(seconds=elapsed)) print('Elapsed {}'.format(elapsed))