Пример #1
0
def main():
    
    # Test GSL
    print "my_sf_bessel_J0(5.0)", demo.my_sf_bessel_J0(5.0)
    
    #
    print demo.test()
Пример #2
0
def segmentation(path, sliced_path):
    test_set = DataSet(4, 0.5, path)
    test_loader = DataLoader(dataset=test_set,
                             batch_size=1,
                             num_workers=1,
                             shuffle=False)
    model = torch.load(
        '/home/sxchongya/unet_pytorch/output/model-625-1.pth').to(device)
    test(model, test_loader, sliced_path)
Пример #3
0
def segmentation(path, sliced_path):
    test_set = DataSet(4, 0.5, path)
    test_loader = DataLoader(dataset=test_set,
                             batch_size=1,
                             num_workers=1,
                             shuffle=False)

    model = UNet(1, [32, 48, 64, 96, 128],
                 4,
                 net_mode='3d',
                 conv_block=ResBlock).to(device)
    model.load_state_dict(
        torch.load('/home/sxchongya/unet_pytorch/output/model-628-3.pth'))
    #model.load_state_dict(torch.load('/home/sxchongya/unet_pytorch/output/model-625-1.pth'))
    #model = torch.load('/home/sxchongya/test_002/demo/static/model-625-1.pth').to(device)
    print('----------------------------')
    test(model, test_loader, sliced_path)
Пример #4
0
def NER(words):
    entity_name, entity_type, entity_loaction = [], [], []
    entities_name, entities_type, entities_location = [], [], []
    result = evaluate_line(words)

    for i in range(len(result['entities'])):
        entity_name = result['entities'][i]['word']
        entity_start_loction = result['entities'][i]['start']
        entity_end_loction = result['entities'][i]['end']
        entity_type = result['entities'][i]['type']
        entities_name.append(entity_name)
        entities_type.append(entity_type)
        entities_location.append({entity_start_loction, entity_end_loction})
        a = ''
        t = 0
        if result['entities'][i]['type'] == 'VER':
            a = result['entities'][i]['word']
            t, eachline = VER(a)
            if t == 1:
                result['entities'][i]['simlity'] = ['Find']
            if t == 2:
                result['entities'][i]['simlity'] = [eachline]
            if t == 0:
                result['entities'][i]['simlity'] = ['Lost']
        #                        print('VER entity:')
        #                        print(ver)

        else:
            simility = []
            a = result['entities'][i]['word']
            #                        print('Normal entity:')
            #                        print(ner)
            t = lookfordict(a)
            if t == 1:
                result['entities'][i]['simlity'] = ['Find']
            if t == 2:
                # print('Looking up Pinyin....'+a)
                word = a
                pyy, t = test(word)
                if t == 3:
                    # print('Lost')
                    result['entities'][i]['simlity'] = ['Lost']
                elif t == 4:
                    simility.append(pyy)
                    result['entities'][i]['simlity'] = [simility]
    return entities_name, entities_type, entities_location
Пример #5
0
##for loops
colors = ["red", "orange", "yellow", "green", "blue", "purple"]
for i in range(0, len(colors)):
    print("my favorite color is %s" % (colors[i]))


##functions
def distance(x1, y1, x2, y2):
    return (x2 - x1)**2 + (y2 - y1)**2


print(distance(1, 3, 6, 8))

##modules
import demo
print(demo.test())
print(demo.test2())

#######################################

###make a function called area that takes arguments x and shape
#where x is either the base of an equilateral triangle,
#diameter of a circle or side of a square
#and shape is either 'triangle', 'square' or 'circle'
#the function should return the area of this shape

#use a for loop with your function to find the area
#of a triangle, square and circle where x = 5
#also try to find the area of a rectangle with this loop

##make a function called sum_of_squares that takes two lists of equal length
Пример #6
0
from demo import test
from demo.disp import display

test()
display()
Пример #7
0
def get_person_pose_(obs, paths, path_to_images):
    count = 0
    output = './PoseEstimation/AlphaPose/AlphaPose-pytorch/examples/demo/'
    #17 2D human joints with confidence score
    #feature_size = 17*3

    #10 angles
    feature_size = 10

    #extract people from data
    for i in range(len(obs)):
        for person in range(obs[i].shape[0]):
            for frame in range(obs[i].shape[1]):
                count += 1
                #image = cv2.imread(path_to_images + os.path.splitext(os.path.basename(paths[i]))[0] + "/" + str(
                #int(obs[i][person][frame][1])) + ".png")

                print(path_to_images +
                      os.path.splitext(os.path.basename(paths[i]))[0] + "/" +
                      str(int(obs[i][person][frame][1])) + ".png")
                #
                #height_, width_, _ = image.shape
                #
                #x1 = int(obs[i][person][frame][2] * width_)
                #y1 = int(obs[i][person][frame][3] * height_)
                #x2 = int(obs[i][person][frame][2] * width_) + int(obs[i][person][frame][4] * width_)
                #y2 = int(obs[i][person][frame][3] * height_) + int(obs[i][person][frame][5] * height_)
                #
                #cropped_person = image[y1:y2, x1:x2]
                #cropped_person = cv2.resize(cropped_person, (64, 128))

                outfile = output + '%s.jpg' % (str(count))

                #cv2.imwrite(outfile, cropped_person)

    #extract poses for each person
    keypoints = demo.test()

    final_pose = np.zeros((count, feature_size))

    #print(range(len(keypoints)))
    for i in range(len(keypoints)):
        img_name = keypoints[i].get('imgname')
        index = int(os.path.splitext(img_name)[0])

        if len(keypoints[i].get('result')) > 0:
            angles = []
            pose = keypoints[i].get('result')[0].get('keypoints')
            #image = cv2.imread(output+img_name)
            #height_, width_, _ = image.shape
            #pose = pose.numpy()
            #normalize pose
            #pose[:,0] = pose[:, 0] / width_
            #pose[:,1] = pose[:, 1] / height_
            #conf =  keypoints[i].get('result')[0].get('kp_score')
            #conf = conf.numpy()
            #conf = conf.flatten()

            #pose = pose.flatten()
            #pose = np.concatenate((pose, conf))

            #final_pose[index-1] = pose

            # {0, "Nose"},
            # {1, "LEye"},
            # {2, "REye"},
            # {3, "LEar"},
            # {4, "REar"},
            # {5, "LShoulder"},
            # {6, "RShoulder"},
            # {7, "LElbow"},
            # {8, "RElbow"},
            # {9, "LWrist"},
            # {10, "RWrist"},
            # {11, "LHip"},
            # {12, "RHip"},
            # {13, "LKnee"},
            # {14, "Rknee"},
            # {15, "LAnkle"},
            # {16, "RAnkle"}

            #calculate angles between body parts

            angle_between_nodes = [(5, 7), (6, 8), (7, 9), (8, 10), (11, 13),
                                   (13, 15), (12, 14), (14, 16)]

            for pair in angle_between_nodes:
                node1_x = pose[pair[0], 0]
                node1_y = pose[pair[0], 1]
                node2_x = pose[pair[1], 0]
                node2_y = pose[pair[1], 1]
                vector = (node2_x - node1_x, node2_y - node1_y)

                dot_product = np.dot(vector, (1, 0))
                norm = np.linalg.norm(vector)
                angle = np.arccos(dot_product / norm)

                if np.isnan(angle):
                    angle = 0

                angles.append(angle)

            angle_between_limbs = [((11, 15), (12, 16)), ((5, 9), (6, 10))]
            for limb_pair in angle_between_limbs:
                node1_x = pose[limb_pair[0][0], 0]
                node1_y = pose[limb_pair[0][0], 1]
                node2_x = pose[limb_pair[0][1], 0]
                node2_y = pose[limb_pair[0][1], 1]
                vector1 = (node2_x - node1_x, node2_y - node1_y)

                node3_x = pose[limb_pair[1][0], 0]
                node3_y = pose[limb_pair[1][0], 1]
                node4_x = pose[limb_pair[1][1], 0]
                node4_y = pose[limb_pair[1][1], 1]
                vector2 = (node4_x - node3_x, node4_y - node3_y)

                dot_product = np.dot(vector1, vector2)
                norm1 = np.linalg.norm(vector1)
                norm2 = np.linalg.norm(vector2)
                angle = np.arccos(dot_product / norm1 / norm2)

                if np.isnan(angle):
                    angle = 0

                angles.append(angle)

            final_pose[index - 1] = angles

    final_pose = np.reshape(
        final_pose,
        [int(count / obs[0].shape[1]), obs[0].shape[1], feature_size])

    return final_pose
Пример #8
0
    def mousePressEvent(self, ev):
        if QT5:
            pos = self.transformPos(ev.pos())
        else:
            pos = self.transformPos(ev.posF())
        if ev.button() == QtCore.Qt.LeftButton:
            if self.drawing():
                if self.current:
                    # Add point to existing shape.
                    if self.createMode == 'polygon':
                        self.current.addPoint(self.line[1])
                        self.line[0] = self.current[-1]
                        if self.current.isClosed():
                            self.finalise()
                    elif self.createMode in ['rectangle', 'line']:
                        assert len(self.current.points) == 1
                        self.current.points = self.line.points
                        self.finalise()
                    elif self.createMode == 'auto':
                        assert len(self.current.points) == 1
                        self.current.points = self.line.points
                        roi = self.line.auto_segment()
                        img = io.imread(self.filename)
                        row = np.arange(roi[1], roi[3])
                        col = np.arange(roi[0], roi[2])
                        roi_image = img[row]
                        roi_image = roi_image[:, col]
                        io.imsave('/devdata/Label2/labelme/output.png', roi_image)
                        # demo.main()
                        det = demo.test()

                        j_det = 0
                        for i in row:
                            self.pre_mask[i, col] = det[j_det, :]
                            j_det += 1
                        np.save('/devdata/Label2/labelme/mask.npy', self.pre_mask)

                        assert self.current
                        self.current.close()
                        self.shapes.append(self.current)
                        self.storeShapes()
                        self.current = None
                        self.setHiding(False)
                        self.newautoShape.emit()
                        self.update()

                elif not self.outOfPixmap(pos):
                    # Create new shape.
                    self.current = Shape()
                    self.current.addPoint(pos)
                    if self.createMode == 'point':
                        self.finalise()
                    else:
                        self.line.points = [pos, pos]
                        self.setHiding()
                        self.drawingPolygon.emit(True)
                        self.update()
            else:
                self.selectShapePoint(pos)
                self.prevPoint = pos
                self.repaint()
        elif ev.button() == QtCore.Qt.RightButton and self.editing():
            self.selectShapePoint(pos)
            self.prevPoint = pos
            self.repaint()
Пример #9
0
d_lstm = data
#reshape for cnn
data = data.reshape((data.shape[0], data.shape[1], 64, 64, 1))

if MODEL_FILE == '':
    print('insert model..')
    exit()

print('Data Shape...', data.shape)
##predict data...
import demo
# model=demo.stacked_lstm_ae(8,4096,'relu',32,'sgd',0.2)

# model = demo.mode_cnnlstm3() ## cnn_lstm_dense
# model = demo.model_cnnlstm(256) ##cnn_lstm ##exw valei k encoding
model = demo.test()  ##cnn_lstm ##exw valei k encoding
print(model.summary())
model.load_weights(MODEL_FILE)
from tensorflow.python.keras.models import Model
model = Model(inputs=model.inputs,
              outputs=model.get_layer("bottleneck").output)
data = model.predict(data)

print('data shape...', data.shape)
# data=data.reshape(data.shape[0],data.shape[1]*data.shape[2])
# Reshape
data = data.reshape(data.shape[1], data.shape[0])
ds = Dataset_transformations(data.T, 1000, data.shape)
if os.path.exists(PREFIX + CONFIG_NAME + '.zip'):
    clust_obj = dataset_utils.load_single(PREFIX + CONFIG_NAME + '.zip')
else:
Пример #10
0
def test_hello():
    ret = demo.test()
    assert(ret == 42)
Пример #11
0
def dete1(request):
    import demo
    files = File.objects.all().order_by('create_time').last()
    a = files.file_name
    demo.test(a)
    return HttpResponseRedirect('/result')
Пример #12
0
import wasmtime
import demo

demo.test()