def parse(text_file): with open(text_file, "rb") as f: text = unicode(f.read()) if text_file.endswith(".conll10"): edited = text elif text_file.endswith(".txt"): # Get parse from Spacy from spacy.en import English parser = English(entity=False, load_vectors=False, vectors_package=False) parsed = parser(text) # Transform to conll format parsed_string = "" prev_s_toks = 0 for sent in parsed.sents: toks = 0 for index, token in enumerate(sent): toks += 1 # skip if token is newline. if token.orth_ == "\n": continue if token.head.i + 1 - prev_s_toks == token.i + 1 - prev_s_toks: head_id = 0 else: head_id = token.head.i + 1 - prev_s_toks line = [ str(token.i + 1 - prev_s_toks), token.orth_, token.lemma_, token.tag_, token.pos_, "_", str(head_id), token.dep_, "_", "_" ] parsed_string += "\t".join(line) + "\n" prev_s_toks += toks parsed_string += "\n" # setup config config = "func=/ROOT/\tnone\t#1:func=root\n" config += "func=/relcl/\tnone\t#1:func=rcmod\n" config += "func=/nummod/\tnone\t#1:func=num\n" config += "lemma=/be/&func=/(.*)/;func=/nsubj/;func=/attr/;text=/.*/\t#1>#2;#1>#3;#4>#1\t#4>#3;#3>#1;#3>#2;#1:func=cop;#3:func=$1\n" config += "lemma=/be/&func=/root/;func=/nsubj/;func=/attr/\t#1>#2;#1>#3\t#3>#1;#3>#2;#1:func=cop;#3:func=root\n" # Setup depedit deped = DepEdit(config.split("\n")) # Run depedit edited = deped.run_depedit(parsed_string.split("\n")) else: sys.exit("Unknown input file type") # Get and return Xrenner object xobj = Xrenner(override="GUM") xobj.analyze(edited, "conll") return xobj
def __init__(self, model="eng", override=None): """ Main class for xrenner coreferencer. Invokes the load method to read model data. :param model: model directory in models/ specifying settings and gazetteers for this language (default: eng) :param override: name of a section in models/override.ini if configuration overrides should be applied :return: void """ self.load(model, override) depedit_config = self.lex.model_files["depedit.ini"] self.depedit = DepEdit(depedit_config)
def add_space_after(plain_text, conllu): """Adds the SpaceAfter=No feature to conllu data based on original plain text, ignoring XML""" def chomp(plain_text, token): space_prop = "" token_index = plain_text.find(token) plain_text = plain_text[token_index + len(token):] in_xml = False for c in plain_text: if c in [" ", "\n", "\t", "\r"]: space_prop = "" break elif c == "<": in_xml = True elif c == ">": in_xml = False elif not in_xml: # Non-whitespace character outside of XML, there was no space after the token space_prop = "SpaceAfter=No" break return space_prop, plain_text plain_text = re.sub(r'<[^<>]+>', "", plain_text) # Destroy XML output = [] skip = 0 lines = conllu.split("\n") for line in lines: if "\t" in line: fields = line.split("\t") if "-" in fields[0]: # Supertoken start, end = fields[0].split("-") skip = int(end) - int(start) + 1 space_prop, plain_text = chomp(plain_text, fields[1]) if space_prop != "": fields[-1] = add_feat(fields[-1], space_prop) line = "\t".join(fields) else: if skip > 0: # This is inside a supertoken, no need to add SpaceAfter, just down-tick skip skip -= 1 else: space_prop, plain_text = chomp(plain_text, fields[1]) if space_prop != "": fields[-1] = add_feat(fields[-1], space_prop) line = "\t".join(fields) output.append(line) output = "\n".join(output) #output = move_binyan(output) d = DepEdit(config_file=[]) output = d.run_depedit(output, sent_text=True) return output
if text in entdict.keys(): # Check if new ent is diff, if so add if type not in entdict[text]: entdict[text] += [type] else: entdict[text] = [type] seen_unknown = set([]) seen_ambig = set([]) freqs_unknown = defaultdict(int) entity_deps = defaultdict(int) if options.config_depedit != "": from depedit import DepEdit d = DepEdit(config_file=options.config_depedit) else: d = None for filename in glob.glob(options.dep_files): # Loops over conll file(s) with io.open(filename, encoding="utf8") as f: myfile = f.read() if d is not None: myfile = d.run_depedit(myfile.split("\n")) conll_tokens = [] for myline in myfile.split("\n"): if myline.find(
from nlp_modules.base import NLPModule, PipelineDep, NLPDependencyException import torch, flair from depedit import DepEdit from flair.data import Sentence from flair.models import SequenceTagger from udapi.core.document import Document as UdapiDocument from udapi.block.ud.fixpunct import FixPunct #flair.device = torch.device('cpu') # Uncomment to use CPU for flair script_dir = os.path.dirname(os.path.realpath(__file__)) + os.sep nlp_modules_dir = script_dir + ".." + os.sep + "nlp_modules" + os.sep parser_dep_dir = nlp_modules_dir + "parser-dependencies" + os.sep gum_root = "GUM" + os.sep depedit1 = DepEdit(config_file=parser_dep_dir + "postprocess_parser.ini") depedit2 = DepEdit(config_file=parser_dep_dir + "upos.ini") depedit3 = DepEdit(config_file=parser_dep_dir + "eng_morph_enhance_no_stype.ini") vocab = set( io.open(parser_dep_dir + "eng_vocab.tab", encoding="utf8").read().strip().split("\n")) def fix_punct(conllu_string): conllu_string = re.sub(r"\t'\t([^\t\n]+\tPART\tPOS)", r'\t&udapi_apos;\t\1', conllu_string, flags=re.MULTILINE) conllu_string = re.sub(
if PY3: from urllib.request import urlretrieve else: from urllib import urlretrieve inp = input if PY3 else raw_input script_dir = os.path.dirname(os.path.realpath(__file__)) lib_dir = script_dir + os.sep + "lib" + os.sep bin_dir = script_dir + os.sep + "bin" + os.sep data_dir = script_dir + os.sep + "data" + os.sep model_dir = script_dir + os.sep + "models" + os.sep marmot_path = bin_dir + "Marmot" + os.sep KNOWN_PUNCT = {'’','“','”'} # Hardwired tokens to tag as punctutation (unicode glyphs not in training data) morph_deped = DepEdit(config_file=lib_dir+"partial_morph.ini") tags = {"NOUN", "VERB", "ADJ", "ADV", "PROPN"} lex_data = open(data_dir + "heb.lemma", encoding="utf8").readlines() lex = {} for l in lex_data: word, tag, lemma = l[:-1].split("\t") if tag in tags: lex["\t".join([word,tag])] = lemma binyan_data = open(data_dir + "heb.binyan", encoding="utf8").readlines() binyan_lookup = {} binyan_lemma_lookup = {} for l in binyan_data: word, lemma, binyan = l[:-1].split("\t") binyan_lookup[(word,lemma)] = binyan binyan_lemma_lookup[lemma] = binyan
class Xrenner: def __init__(self, model="eng", override=None): """ Main class for xrenner coreferencer. Invokes the load method to read model data. :param model: model directory in models/ specifying settings and gazetteers for this language (default: eng) :param override: name of a section in models/override.ini if configuration overrides should be applied :return: void """ self.load(model, override) depedit_config = self.lex.model_files["depedit.ini"] self.depedit = DepEdit(depedit_config) def load(self, model="eng", override=None): """ Method to load model data. Normally invoked by constructor, but can be repeated to change models later. :param model: model directory in models/ specifying settings and gazetteers for this language (default: eng) :param override: name of a section in models/override.ini if configuration overrides should be applied :return: void """ self.model = model self.override = override self.lex = LexData(self.model, self.override) def set_doc_name(self, name): """ Method to manually set the name of the document being processed, rather than deriving it from an input file name. :param name: string, the name to give the document :return: void """ self.docname = name def analyze(self, infile, out_format): """ Method to run coreference analysis with loaded model :param infile: file name of the parse file in the conll10 format, or the pre-read parse itself :param format: format to determine output type, one of: html, paula, webanno, conll, onto, unittest :return: output based on requested format """ # Check if this is a file name from the main script or a parse delivered in an import or unittest scenario if "\t" in infile or isinstance( infile, list ): # This is a raw parse as string or list, not a file name self.docpath = os.path.dirname(os.path.abspath(".")) self.docname = "untitled" if not isinstance(infile, list): infile = infile.replace("\r", "").split("\n") else: # This is a file name, extract document name and path, then read the file self.docpath = os.path.dirname(os.path.abspath(infile)) self.docname = clean_filename(ntpath.basename(infile)) infile = open(infile) # Empty cached lists of incompatible pairs self.lex.incompatible_mod_pairs = set([]) self.lex.incompatible_isa_pairs = set([]) infile = self.depedit.run_depedit(infile) infile = infile.split("\n") # Lists and dictionaries to hold tokens and markables self.conll_tokens = [] self.conll_tokens.append( ParsedToken(0, "ROOT", "--", "XX", "", -1, "NONE", Sentence(1, 0, ""), [], [], [], self.lex)) self.markables = [] self.markables_by_head = OrderedDict() self.markstart_dict = defaultdict(list) self.markend_dict = defaultdict(list) self.tokoffset = 0 self.sentlength = 0 self.markcounter = 1 self.groupcounter = 1 self.children = defaultdict(list) self.descendants = {} self.child_funcs = defaultdict(list) self.child_strings = defaultdict(list) # Dereference object classes to method globals for convenience lex = self.lex conll_tokens = self.conll_tokens markstart_dict = self.markstart_dict markend_dict = self.markend_dict self.sent_num = 1 quoted = False current_sentence = Sentence(self.sent_num, self.tokoffset, "") lex.coref_rules = lex.non_speaker_rules for myline in infile: if "#speaker" in myline: # speaker current_sentence.speaker = myline.split('"')[1] lex.coref_rules = lex.speaker_rules elif myline.find( "\t" ) > 0: # Only process lines that contain tabs (i.e. conll tokens) current_sentence.token_count += 1 cols = myline.split("\t") if lex.filters["open_quote"].match( cols[1]) is not None and quoted is False: quoted = True elif lex.filters["close_quote"].match( cols[1]) is not None and quoted is True: quoted = False if lex.filters["question_mark"].match(cols[1]) is not None: current_sentence.mood = "question" if cols[3] in lex.func_substitutes_forward and int( cols[6]) > int(cols[0]): tok_func = re.sub(lex.func_substitutes_forward[cols[3]][0], lex.func_substitutes_forward[cols[3]][1], cols[7]) elif cols[3] in lex.func_substitutes_backward and int( cols[6]) < int(cols[0]): tok_func = re.sub( lex.func_substitutes_backward[cols[3]][0], lex.func_substitutes_backward[cols[3]][1], cols[7]) else: tok_func = cols[7] head_id = "0" if cols[6] == "0" else str( int(cols[6]) + self.tokoffset) conll_tokens.append( ParsedToken(str(int(cols[0]) + self.tokoffset), cols[1], cols[2], cols[3], cols[5], head_id, tok_func, current_sentence, [], [], [], lex, quoted, cols[8], cols[9])) self.sentlength += 1 # Check not to add a child if this is a function which discontinues the markable span if not (lex.filters["non_link_func"].match(tok_func) is not None or lex.filters["non_link_tok"].match( cols[1]) is not None): if cols[6] != "0": # Do not add children to the 'zero' token self.children[str( int(cols[6]) + self.tokoffset)].append( str(int(cols[0]) + self.tokoffset)) self.child_funcs[(int(cols[6]) + self.tokoffset)].append(tok_func) self.child_strings[(int(cols[6]) + self.tokoffset)].append( cols[1]) elif self.sentlength > 0: self.process_sentence(self.tokoffset, current_sentence) self.sent_num += 1 if self.sentlength > 0: self.tokoffset += self.sentlength current_sentence = Sentence(self.sent_num, self.tokoffset, "") self.sentlength = 0 # Handle leftover sentence which did not have trailing newline if self.sentlength > 0: self.process_sentence(self.tokoffset, current_sentence) marks_to_add = [] if lex.filters["seek_verb_for_defs"]: for mark in self.markables: if mark.definiteness == "def" and mark.antecedent == "none" and mark.form == "common" and \ (lex.filters["event_def_entity"] == mark.entity or lex.filters["abstract_def_entity"] == mark.entity): for tok in conll_tokens[0:mark.start]: if lex.filters["verb_head_pos"].match(tok.pos): if stems_compatible(tok, mark.head, lex): v_antecedent = make_markable( tok, conll_tokens, {}, tok.sentence.start_offset, tok.sentence, [], lex) mark.antecedent = v_antecedent mark.coref_type = "coref" v_antecedent.entity = mark.entity v_antecedent.subclass = mark.subclass v_antecedent.definiteness = "none" v_antecedent.form = "verbal" v_antecedent.infstat = "new" v_antecedent.group = mark.group v_antecedent.id = "referent_" + v_antecedent.head.id marks_to_add.append(v_antecedent) for mark in marks_to_add: markstart_dict[mark.start].append(mark) markend_dict[mark.end].append(mark) self.markables_by_head[mark.head.id] = mark self.markables.append(mark) postprocess_coref(self.markables, lex, markstart_dict, markend_dict, self.markables_by_head, conll_tokens) if out_format == "paula": try: self.serialize_output(out_format) return True except: return False else: return self.serialize_output(out_format, infile) def analyze_markable(self, mark, lex): """ Find entity, agreement and cardinality information for a markable :param mark: The :class:`.Markable` object to analyze :param lex: the :class:`.LexData` object with gazetteer information and model settings :return: void """ mark.text = mark.text.strip() mark.core_text = mark.core_text.strip() # DEBUG POINT if mark.text == lex.debug["ana"]: pass tok = mark.head if lex.filters["proper_pos"].match(tok.pos) is not None: mark.form = "proper" mark.definiteness = "def" elif lex.filters["pronoun_pos"].match(tok.pos) is not None: mark.form = "pronoun" # Check for explicit indefinite morphology in morph feature of head token if "indef" in mark.head.morph.lower(): mark.definiteness = "indef" else: mark.definiteness = "def" else: mark.form = "common" # Check for explicit definite morphology in morph feature of head token if "def" in mark.head.morph.lower( ) and "indef" not in mark.head.morph.lower(): mark.definiteness = "def" # Chomp definite information not to interfere with agreement mark.head.morph = re.sub("def", "_", mark.head.morph) else: # Check if any children linked via a link function are definite markings children_are_def_articles = ( lex.filters["definite_articles"].match(maybe_article) is not None for maybe_article in [mark.head.text, mark.text.split(" ")[0]] + mark.head.child_strings) if any(children_are_def_articles): mark.definiteness = "def" else: mark.definiteness = "indef" # Find agreement alternatives unless cardinality has set agreement explicitly already (e.g. to 'plural'/'dual' etc.) if mark.cardinality == 0 or mark.agree == '': mark.alt_agree = resolve_mark_agree(mark, lex) if mark.alt_agree is not None and mark.agree == '': mark.agree = mark.alt_agree[0] elif mark.alt_agree is None: mark.alt_agree = [] if mark.agree != mark.head.morph and mark.head.morph != "_" and mark.head.morph != "--" and mark.agree != \ lex.filters["aggregate_agree"]: mark.agree = mark.head.morph mark.agree_certainty = "mark_head_morph" mark.alt_agree.append(mark.head.morph) # cardinality resolve, only resolve here if it hasn't been set before (as in coordination markable) if mark.cardinality == 0: mark.cardinality = resolve_cardinality(mark, lex) resolve_mark_entity(mark, lex) if "ablations" in lex.debug: if "no_subclasses" in lex.debug["ablations"]: mark.subclass = mark.entity mark.alt_subclasses = mark.alt_entities def serialize_output(self, out_format, parse=None): """ Return a string representation of the output in some format, or generate PAULA directory structure as output :param out_format: the format to generate, one of: html, paula, webanno, conll, onto, unittest :param parse: the original parse input fed to xrenner; only needed for unittest output :return: specified output format string, or void for paula """ conll_tokens = self.conll_tokens markables, markstart_dict, markend_dict = self.markables, self.markstart_dict, self.markend_dict if out_format == "html": rtl = True if self.model in ["heb", "ara"] else False return output_HTML(conll_tokens, markstart_dict, markend_dict, rtl) elif out_format == "paula": output_PAULA(conll_tokens, markstart_dict, markend_dict, self.docname, self.docpath) elif out_format == "webanno": return output_webanno(conll_tokens[1:], markables) elif out_format == "conll": return output_conll(conll_tokens, markstart_dict, markend_dict, self.docname, True) elif out_format == "onto": return output_onto(conll_tokens, markstart_dict, markend_dict, self.docname) elif out_format == "unittest": from xrenner_test import generate_test return generate_test(conll_tokens, markables, parse, self.model) elif out_format == "none": return "" else: return output_SGML(conll_tokens, markstart_dict, markend_dict) def process_sentence(self, tokoffset, sentence): """ Function to analyze a single sentence :param tokoffset: the offset in tokens for the beginning of the current sentence within all input tokens :param sentence: the Sentence object containin mood, speaker and other information about this sentence :return: void """ markables = self.markables markables_by_head = self.markables_by_head lex = self.lex conll_tokens = self.conll_tokens child_funcs = self.child_funcs child_strings = self.child_strings children = self.children descendants = self.descendants markstart_dict = self.markstart_dict markend_dict = self.markend_dict # Add list of all dependent funcs and strings to each token add_child_info(conll_tokens, child_funcs, child_strings) mark_candidates_by_head = OrderedDict() stop_ids = {} for tok1 in conll_tokens[tokoffset + 1:]: stop_ids[tok1.id] = False # Assume all tokens are head candidates tok1.sent_position = float( int(tok1.id) - tokoffset ) / sentence.token_count # Add relative token positions at sentence as percentages tok1.head_text = conll_tokens[int( tok1.head )].text # Save parent text for later dependency checks # Post-process parser input based on entity list if desired if lex.filters["postprocess_parser"]: postprocess_parser(conll_tokens, tokoffset, children, stop_ids, lex) # Revert conj token function to parent function replace_conj_func(conll_tokens, tokoffset, lex) # Enrich tokens with modifiers and parent head text for token in conll_tokens[tokoffset:]: for child in children[token.id]: if lex.filters["mod_func"].match( conll_tokens[int(child)].func) is not None: token.modifiers.append(conll_tokens[int(child)]) token.head_text = conll_tokens[int(token.head)].text # Check for lexical possessives to dynamically enhance hasa information if lex.filters["possessive_func"].match(token.func) is not None: # Check that neither possessor nor possessed is a pronoun if lex.filters["pronoun_pos"].match( token.pos ) is None and lex.filters["pronoun_pos"].match( conll_tokens[int(token.head)].pos) is None: lex.hasa[token.text][conll_tokens[int( token.head )].text] += 2 # Increase by 2: 1 for attestation, 1 for pertinence in this document # Check if func2 has additional possessor information if token.func2 != "_": if lex.filters["possessive_func"].match( token.func2) is not None: if lex.filters["pronoun_pos"].match( token.pos ) is None and lex.filters["pronoun_pos"].match( conll_tokens[int(token.head2) + tokoffset].pos) is None: lex.hasa[token.text][ conll_tokens[int(token.head2) + tokoffset]. text] += 2 # Increase by 2: 1 for attestation, 1 for pertinence in this document # Find dead areas for tok1 in conll_tokens[tokoffset + 1:]: # Affix tokens can't be markable heads - assume parser error and fix if desired # DEBUG POINT if tok1.text.strip() == lex.debug["ana"]: pass if lex.filters["postprocess_parser"]: if ((lex.filters["mark_head_pos"].match(tok1.pos) is not None and lex.filters["mark_forbidden_func"].match(tok1.func) is None) or pos_func_combo(tok1.pos, tok1.func, lex.filters["pos_func_heads"]) ) and not (stop_ids[tok1.id]): if tok1.text.strip() in lex.affix_tokens: stop_ids[tok1.id] = True for child_id in sorted(children[tok1.id], reverse=True): child = conll_tokens[int(child_id)] if ((lex.filters["mark_head_pos"].match( child.pos) is not None and lex.filters["mark_forbidden_func"].match( child.func) is None) or pos_func_combo( child.pos, child.func, lex.filters["pos_func_heads"]) ) and not (stop_ids[child.id]): child.head = tok1.head tok1.head = child.id # Make the new head be the head of all children of the affix token for child_id2 in children[tok1.id]: if not child_id2 == child_id: conll_tokens[int( child_id2)].head = child.id children[tok1.id].remove(child_id2) children[child.id].append(child_id2) # Assign the function of the affix head to the new head and vice versa temp_func = child.func child.func = tok1.func tok1.func = temp_func children[tok1.id].remove(child.id) children[child.id].append(tok1.id) if child in tok1.modifiers: tok1.modifiers.remove(child) child.modifiers.append(tok1) # Check if any other non-link parents need to be re-routed to the new head for tok_to_rewire in conll_tokens[tokoffset + 1:]: if tok_to_rewire.original_head == tok1.id and tok_to_rewire.head != child.id and tok_to_rewire.id != child.id: tok_to_rewire.head = child.id # Also add the rewired child func if tok_to_rewire.func not in child.child_funcs: child.child_funcs.append( tok_to_rewire.func) # Rewire modifiers if tok_to_rewire not in child.modifiers and lex.filters[ "mod_func"].match( tok_to_rewire.func ) is not None: child.modifiers.append( tok_to_rewire) if child in tok_to_rewire.modifiers: tok_to_rewire.modifiers.remove( child) # Only do this for the first subordinate markable head found by traversing right to left break # Try to construct a longer stop candidate starting with each token in the sentence, max length 5 tokens stop_candidate = "" for tok2 in conll_tokens[int(tok1.id):min(len(conll_tokens), int(tok1.id) + 4)]: stop_candidate += tok2.text + " " if stop_candidate.strip().lower( ) in lex.stop_list: # Stop list matched, flag tokens as impossible markable heads for tok3 in conll_tokens[int(tok1.id):int(tok2.id) + 1]: stop_ids[tok3.id] = True # Find last-first name combinations for tok1 in conll_tokens[tokoffset + 1:-1]: tok2 = conll_tokens[int(tok1.id) + 1] first_name_candidate = tok1.text.title() if tok1.text.isupper( ) else tok1.text last_name_candidate = tok2.text.title() if tok2.text.isupper( ) else tok2.text if first_name_candidate in lex.first_names and last_name_candidate in lex.last_names and tok1.head == tok2.id: stop_ids[tok1.id] = True # Allow one intervening token, e.g. for middle initial for tok1 in conll_tokens[tokoffset + 1:-2]: tok2 = conll_tokens[int(tok1.id) + 2] first_name_candidate = tok1.text.title() if tok1.text.isupper( ) else tok1.text middle_name_candidate = conll_tokens[int(tok1.id) + 1].text.title( ) if tok1.text.isupper() else conll_tokens[int(tok1.id) + 1].text last_name_candidate = tok2.text.title() if tok2.text.isupper( ) else tok2.text if first_name_candidate in lex.first_names and last_name_candidate in lex.last_names and tok1.head == tok2.id and ( re.match(r'^[A-Z]\.$', middle_name_candidate) or middle_name_candidate in lex.first_names): stop_ids[tok1.id] = True # Expand children list recursively into descendants for parent_key in children: if int(parent_key) > tokoffset: descendants[parent_key] = get_descendants( parent_key, children, [], self.sent_num, conll_tokens) keys_to_pop = [] # Find markables for tok in conll_tokens[tokoffset + 1:]: # Markable heads should match specified pos or pos+func combinations, # ruling out stop list items with appropriate functions if tok.text.strip() == lex.debug["ana"]: pass # TODO: consider switch for lex.filters["stop_func"].match(tok.func) if ((lex.filters["mark_head_pos"].match(tok.pos) is not None and lex.filters["mark_forbidden_func"].match(tok.func) is None) or pos_func_combo(tok.pos, tok.func, lex.filters["pos_func_heads"]) ) and not (stop_ids[tok.id]): this_markable = make_markable(tok, conll_tokens, descendants, tokoffset, sentence, keys_to_pop, lex) if this_markable is not None: mark_candidates_by_head[tok.id] = this_markable # Check whether this head is the beginning of a coordination and needs its own sub-markable too make_submark = False submark_id = "" submarks = [] cardi = 0 for child_id in children[tok.id]: child = conll_tokens[int(child_id)] if child.coordinate: # Coordination found - make a small markable for just this first head without coordinates make_submark = True # Remove the coordinate children from descendants of small markable head if child.id in descendants: for sub_descendant in descendants[child.id]: if tok.id in descendants: if sub_descendant in descendants[tok.id]: descendants[tok.id].remove( sub_descendant) if tok.id in descendants: if child.id in descendants[tok.id]: descendants[tok.id].remove(child.id) # Build a composite id for the large head from coordinate children IDs separated by underscore submark_id += "_" + child.id cardi += 1 submarks.append(child.id) if make_submark: submarks.append(tok.id) # Assign aggregate/coordinate agreement class to large markable if desired # Remove coordination tokens, such as 'and', 'or' based on coord_func setting for child_id in children[tok.id]: child = conll_tokens[int(child_id)] if lex.filters["coord_func"].match(child.func): if child.id in descendants[tok.id]: descendants[tok.id].remove(child.id) # Make the small markable and recall the big markable mark_candidates_by_head[tok.id].cardinality = cardi + 1 big_markable = mark_candidates_by_head[tok.id] small_markable = make_markable(tok, conll_tokens, descendants, tokoffset, sentence, keys_to_pop, lex) big_markable.submarks = submarks[:] if lex.filters["aggregate_agree"] != "_": big_markable.agree = lex.filters["aggregate_agree"] big_markable.agree_certainty = "coordinate_aggregate_plural" big_markable.coordinate = True # Switch the id's so that the big markable has the 1_2_3 style id, and the small has just the head id mark_candidates_by_head[tok.id + submark_id] = big_markable mark_candidates_by_head[tok.id] = small_markable big_markable = None small_markable = None # Check for atomicity and remove any subsumed markables if atomic for mark_id in mark_candidates_by_head: mark = mark_candidates_by_head[mark_id] if mark.end > mark.start: # No atomicity check if single token # Check if the markable has a modifier based entity guess modifier_based_entity = recognize_entity_by_mod( mark, lex, True) # Consider for atomicity if in atoms or has @ modifier, but not if it's a single token or a coordinate markable if (is_atomic(mark, lex.atoms, lex) or ("@" in modifier_based_entity and "_" not in mark_id)) and mark.end > mark.start: for index in enumerate(mark_candidates_by_head): key = index[1] # Note that the key may contain underscores if it's a composite, but those can't be atomic if key != mark.head.id and mark.start <= int( re.sub('_.*', '', key)) <= mark.end and '_' not in key: if lex.filters["pronoun_pos"].match( conll_tokens[int(re.sub('_.*', '', key))].pos ) is None: # Make sure we're not removing a pronoun keys_to_pop.append(key) elif len(modifier_based_entity) > 1: stoplist_prefix_tokens(mark, lex.entity_mods, keys_to_pop) # Check for whole markable only exclusion if mark.text + "@" in lex.stop_list: keys_to_pop.append(mark_id) for key in keys_to_pop: mark_candidates_by_head.pop(key, None) processed_marks = len(markables) for mark_id in mark_candidates_by_head: mark = mark_candidates_by_head[mark_id] self.analyze_markable(mark, lex) self.markcounter += 1 self.groupcounter += 1 this_markable = Markable( "referent_" + str(self.markcounter), mark.head, mark.form, mark.definiteness, mark.start, mark.end, mark.text, mark.core_text, mark.entity, mark.entity_certainty, mark.subclass, "new", mark.agree, mark.sentence, "none", "none", self.groupcounter, mark.alt_entities, mark.alt_subclasses, mark.alt_agree, mark.cardinality, mark.submarks, mark.coordinate) markables.append(this_markable) markables_by_head[mark_id] = this_markable markstart_dict[this_markable.start].append(this_markable) markend_dict[this_markable.end].append(this_markable) for current_markable in markables[processed_marks:]: # DEBUG POINT if current_markable.text == lex.debug["ana"]: a = 5 if current_markable.text == lex.debug["ante"]: pass # Revise coordinate markable entities now that we have resolved all of their constituents if len(current_markable.submarks) > 0: assign_coordinate_entity(current_markable, markables_by_head) if antecedent_prohibited( current_markable, conll_tokens, lex) or (current_markable.definiteness == "indef" and lex.filters["apposition_func"].match( current_markable.head.func) is None and not lex.filters["allow_indef_anaphor"]): antecedent = None elif (current_markable.definiteness == "indef" and lex.filters["apposition_func"].match( current_markable.head.func) is not None and not lex.filters["allow_indef_anaphor"]): antecedent, propagation = find_antecedent( current_markable, markables, lex, "appos") else: antecedent, propagation = find_antecedent( current_markable, markables, lex) if antecedent is not None: if int(antecedent.head.id) < int( current_markable.head.id) or 'invert' in propagation: # If the rule specifies to invert if 'invert' in propagation: temp = antecedent antecedent = current_markable current_markable = temp current_markable.antecedent = antecedent current_markable.group = antecedent.group # Check for apposition function if both markables are in the same sentence if lex.filters["apposition_func"].match(current_markable.head.func) is not None and \ current_markable.sentence.sent_num == antecedent.sentence.sent_num: current_markable.coref_type = "appos" elif current_markable.form == "pronoun": current_markable.coref_type = "ana" elif current_markable.coref_type == "none": current_markable.coref_type = "coref" current_markable.infstat = "giv" else: # Cataphoric match current_markable.antecedent = antecedent antecedent.group = current_markable.group current_markable.coref_type = "cata" current_markable.infstat = "new" elif current_markable.form == "pronoun": current_markable.infstat = "acc" else: current_markable.infstat = "new" if current_markable.agree is not None and current_markable.agree != '': lex.last[current_markable.agree] = current_markable else: pass