Пример #1
0
def test_high_polyphony():
    pol_dir = osp.join(absolute_dir_path, "generated", "polyphony")
    if osp.exists(pol_dir):
        shutil.rmtree(pol_dir)
    shutil.copytree(osp.join(absolute_dir_path, "material", "post_processing"),
                    pol_dir)
    ll = glob.glob(osp.join(pol_dir, "*.jams"))
    assert len(ll) == 2

    save_name = os.path.join(absolute_dir_path, "generated", "final.tsv")
    rm_high_polyphony(pol_dir, 1, save_name)

    ll = glob.glob(osp.join(pol_dir, "*.jams"))
    assert len(ll) == 1, f"Problem rm_high_polyphony {len(ll)} != 1"
Пример #2
0
        events_start=(
            event_time_dist,
            event_time_mean,
            event_time_std,
            event_time_min,
            event_time_max,
        ),
        events_duration=(event_duration_dist, event_duration_min,
                         event_duration_max),
        snrs=(snr_dist, snr_min, snr_max),
        pitch_shifts=(pitch_dist, pitch_min, pitch_max),
        time_stretches=(time_stretch_dist, time_stretch_min, time_stretch_max),
        txt_file=True,
    )

    rm_high_polyphony(out_folder_500, 2)
    out_tsv = osp.join(out_tsv_folder, "500ms.tsv")
    post_process_txt_labels(out_folder_500,
                            output_folder=out_folder_500,
                            output_tsv=out_tsv)

    # Generate 2 variants of this dataset
    jams_to_modify = glob.glob(osp.join(out_folder_500, "*.jams"))
    # Be careful, if changing the values of the added onset value,
    # you maybe want to rerun the post_processing_annotations to be sure there is no inconsistency

    # 5.5s onset files
    out_folder_5500 = osp.join(base_out_folder, "5500ms")
    add_onset = 5.0
    modif_onset_5s = functools.partial(modify_fg_onset,
                                       slice_seconds=add_onset)
Пример #3
0
    pitch_max = 3.0

    time_stretch_dist = 'uniform'
    time_stretch_min = 1
    time_stretch_max = 1

    out_folder_ls_30 = osp.join(out_folder, "ls_30dB")
    create_folder(out_folder_ls_30)
    sg.generate(n_soundscapes, out_folder_ls_30, min_events, max_events, labels=('choose', []),
                source_files=('choose', []), sources_time=(source_time_dist, source_time),
                events_start=(evt_time_dist, evt_time_mean, evt_time_std, evt_time_min, evt_time_max),
                events_duration=(event_duration_dist, event_duration_min, event_duration_max),
                snrs=('const', 30), pitch_shifts=('uniform', -3.0, 3.0), time_stretches=('uniform', 1, 1),
                txt_file=True)

    rm_high_polyphony(out_folder_ls_30, 3)
    post_process_txt_labels(out_folder_ls_30, output_folder=out_folder_ls_30, output_tsv=args.out_tsv,
                            background_label=True)

    list_jams = glob.glob(osp.join(out_folder_ls_30, "*.jams"))
    # We create the same dataset with different background SNR
    # Be careful, 15 means the background SNR is 15,
    # so the foreground background snr ratio is between -9dB and 15dB
    out_folder_ls_15 = osp.join(out_folder, "ls_15dB")
    modify_jams(list_jams, change_snr, out_folder_ls_15, db_change=-15)

    # Same for 0dB FBSNR, from original fbsnr [6;30]dB, we go to [-24;0]dB FBSNR
    out_folder_ls_0 = osp.join(out_folder, "ls_0dB")
    modify_jams(list_jams, change_snr, out_folder_ls_15, db_change=-30)

Пример #4
0
    sg = SoundscapesGenerator(duration, fg_folder, bg_folder, ref_db=ref_db)
    sg.generate_by_label_occurence(params,
                                   n_soundscapes,
                                   outfolder,
                                   min_events=1,
                                   max_events=1,
                                   pitch_shift=('uniform', -3, 3))


if __name__ == '__main__':
    base_soundbank = osp.join("..", "..", "synthetic")

    for subset in ["train", "eval"]:
        soundbank_path = osp.join(base_soundbank, "audio", subset, "soundbank")
        fg_folder = osp.join(soundbank_path, "foreground/")
        bg_folder = osp.join(soundbank_path, "background")

        dataset_path = osp.join("..", "..", "dataset")
        param_file = osp.join(dataset_path, "metadata", subset,
                              f"event_occurences_{subset}.json")
        outfolder = osp.join(dataset_path, "audio", subset,
                             "one_event_generated")
        out_tsv = osp.join(dataset_path, "audio", subset,
                           "one_event_generated.tsv")

        generate_training(15, fg_folder, bg_folder, param_file, outfolder)
        rm_high_polyphony(outfolder, 3)
        post_process_txt_labels(outfolder,
                                output_folder=outfolder,
                                output_tsv=out_tsv)
Пример #5
0
        if random_state is None:
            random_states = [None for i in range(nproc)]
        else:
            random_states = [random_state + i for i in range(nproc)]
        print(random_states)
        with multiprocessing.Pool(nproc) as p:
            p.starmap(generate_multiproc,
                      zip(list_start, numbers, random_states))
    # Single process
    else:
        sg = SoundscapesGenerator(duration=clip_duration,
                                  fg_folder=fg_folder,
                                  bg_folder=bg_folder,
                                  ref_db=ref_db,
                                  samplerate=sample_rate,
                                  random_state=random_state)
        sg.generate_by_label_occurence(label_occurences=co_occur_dict,
                                       number=n_soundscapes,
                                       out_folder=full_out_folder,
                                       save_isolated_events=True,
                                       pitch_shift=pitch_shift)

    # ##
    # Post processing
    rm_high_polyphony(full_out_folder, max_polyphony=2)
    # concat same labels overlapping
    post_process_txt_labels(full_out_folder,
                            output_folder=full_out_folder,
                            output_tsv=out_tsv,
                            rm_nOn_nOff=True)