Пример #1
0
def change_thickness_ABAQUS(imperfection_file_name,
                            model_name,
                            part_name,
                            stack,
                            t_model,
                            t_measured,
                            H_model,
                            H_measured,
                            R_model,
                            R_best_fit=None,
                            number_of_sets=None,
                            semi_angle=0.,
                            stretch_H=False,
                            z_offset_bot=None,
                            scaling_factor=1.,
                            num_closest_points=5,
                            power_parameter=2,
                            elems_t=None,
                            t_set=None,
                            use_theta_z_format=False):
    r"""Applies a given thickness imperfection to the finite element model

    Assumes that a percentage variation of the laminate thickness can be
    represented by the same percentage veriation of each ply, i.e., each
    ply thickness is varied in order to reflect a given measured thickness
    imperfection field.

    Parameters
    ----------

    imperfection_file_name : str
        Full path to the imperfection file.
    model_name : str
        Model name.
    part_name : str
        Part name.
    stack : list
        The stacking sequence of the current model with each angle given in
        degrees.
    t_model : float
        The nominal shell thickness of the current model.
    t_measured : float
        The nominal thickness of the measured specimen.
    H_model : float
        Total height of the model where the imperfections will be applied to,
        considering also eventual resin rings.
    H_measured : float
        The total height of the measured test specimen, including eventual
        resin rings at the edges.
    R_model : float
        Radius **at the bottom edge** of the model where the imperfections
        will be applied to.
    R_best_fit : float, optional
        Best fit radius obtained with functions :func:`.best_fit_cylinder`
        or :func:`.best_fit_cone`.
    number_of_sets : int, optional
        Defines in how many levels the thicknesses should be divided. If
        ``None`` it will be based on the input file, and if the threshold
        of ``100`` is exceeded, ``10`` sections are used.
    semi_angle : float, optional
        Cone semi-vertex angle in degrees, when applicable.
    stretch_H : bool, optional
        If the measured imperfection data should be stretched to the current
        model (which may happen when ``H_model!=H_measured``.
    z_offset_bot : float, optional
        It is common to have the measured data not covering the whole test
        specimen, and therefore it will be centralized, if a non-centralized
        position is desired this parameter can be used for the adjustment.
    scaling_factor : float, optional
        A scaling factor that can be used to study the imperfection
        sensitivity.
    num_closest_points : int, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    power_parameter : float, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    elems_t : np.ndarray, optional
        Interpolated thickness for each element. Can be used to avoid the same
        interpolation to be performed twice.
    t_set : set, optional
        A ``set`` object containing the unique thicknesses that will be used
        to create the new properties.
    use_theta_z_format : bool, optional
        If the new format `\theta, Z, imp` should be used instead of the old
        `X, Y, Z`.

    """
    from abaqus import mdb

    import desicos.abaqus.abaqus_functions as abaqus_functions

    mod = mdb.models[model_name]
    part = mod.parts[part_name]
    part_cyl_csys = part.features['part_cyl_csys']
    part_cyl_csys = part.datums[part_cyl_csys.id]

    if use_theta_z_format:
        if elems_t is None or t_set is None:
            log('Reading coordinates for elements...')
            elements = vec_calc_elem_cg(part.elements)

            log('Coordinates for elements read!')
            d, d, data = read_theta_z_imp(path=imperfection_file_name,
                                          H_measured=H_measured,
                                          stretch_H=stretch_H,
                                          z_offset_bot=z_offset_bot)

            data3D = np.zeros((data.shape[0], 4), dtype=FLOAT)
            z = data[:, 1]
            z *= H_model

            alpharad = deg2rad(semi_angle)
            tana = tan(alpharad)

            def r_local(z):
                return R_model - z * tana

            data3D[:, 0] = r_local(z) * cos(data[:, 0])
            data3D[:, 1] = r_local(z) * sin(data[:, 0])
            data3D[:, 2] = z
            data3D[:, 3] = data[:, 2]

            dist, ans = inv_weighted(data3D,
                                     elements[:, :3],
                                     ncp=num_closest_points,
                                     power_parameter=power_parameter)

            t_set = set(ans)
            t_set.discard(0.)  #TODO why inv_weighted returns an array with 0.
            elems_t = np.zeros((elements.shape[0], 2), dtype=FLOAT)
            elems_t[:, 0] = elements[:, 3]
            elems_t[:, 1] = ans

        else:
            log('Thickness differences already calculated!')

    else:
        if elems_t is None or t_set is None:
            # reading elements data
            log('Reading coordinates for elements...')
            elements = vec_calc_elem_cg(part.elements)
            log('Coordinates for elements read!')
            # calling translate_nodes function
            elems_t, t_set = calc_elems_t(
                imperfection_file_name,
                nodes=elements,
                t_model=t_model,
                t_measured=t_measured,
                H_model=H_model,
                H_measured=H_measured,
                R_model=R_model,
                R_best_fit=R_best_fit,
                semi_angle=semi_angle,
                stretch_H=stretch_H,
                z_offset_bot=z_offset_bot,
                num_closest_points=num_closest_points,
                power_parameter=power_parameter)
        else:
            log('Thickness differences already calculated!')
    # creating sets
    t_list = []
    max_len_t_set = 100
    if len(t_set) >= max_len_t_set and number_of_sets in (None, 0):
        number_of_sets = 10
        log('More than {0:d} different thicknesses measured!'.format(
            max_len_t_set))
        log('Forcing a number_of_sets = {0:d}'.format(number_of_sets))
    if number_of_sets is None or number_of_sets == 0:
        number_of_sets = len(t_set)
        t_list = list(t_set)
        t_list.sort()
    else:
        t_min = min(t_set)
        t_max = max(t_set)
        t_list = list(np.linspace(t_min, t_max, number_of_sets + 1))

    # grouping elements
    sets_ids = [[] for i in range(len(t_list))]
    for entry in elems_t:
        elem_id, t = entry
        index = index_within_linspace(t_list, t)
        sets_ids[index].append(int(elem_id))
    # putting elements in sets
    original_layup = part.compositeLayups['CompositePlate']
    for i, set_ids in enumerate(sets_ids):
        if len(set_ids) == 0:
            # since t_set_norm * t_model <> t_set originally measured
            # there may be empty set_ids at the end
            continue
        elements = part.elements.sequenceFromLabels(labels=set_ids)
        suffix = 'measured_imp_t_{0:03d}'.format(i)
        set_name = 'Set_' + suffix
        log('Creating set ({0: 7d} elements): {1}'.format(
            len(set_ids), set_name))
        part.Set(name=set_name, elements=elements)
        region = part.sets[set_name]
        layup_name = 'CLayup_' + suffix
        t_diff = (float(t_list[i]) - t_model) * scaling_factor
        t_scaling_factor = (t_model + t_diff) / t_model

        def modify_ply(index, kwargs):
            kwargs['thickness'] *= t_scaling_factor
            kwargs['region'] = region
            return kwargs

        layup = part.CompositeLayup(name=layup_name,
                                    objectToCopy=original_layup)
        layup.resume()
        abaqus_functions.modify_composite_layup(part=part,
                                                layup_name=layup_name,
                                                modify_func=modify_ply)
    # suppress needed to put the new properties to the input file
    original_layup.suppress()

    return elems_t, t_set
Пример #2
0
def calc_translations_ABAQUS(imperfection_file_name,
                             model_name,
                             part_name,
                             H_model,
                             H_measured,
                             R_model,
                             R_best_fit=None,
                             semi_angle=0.,
                             stretch_H=False,
                             z_offset_bot=None,
                             rotatedeg=0.,
                             scaling_factor=1.,
                             r_TOL=1.,
                             num_closest_points=5,
                             power_parameter=2,
                             use_theta_z_format=True,
                             ignore_bot_h=None,
                             ignore_top_h=None,
                             sample_size=None,
                             T=None):
    r"""Reads an imperfection file and calculates the nodal translations

    Parameters
    ----------
    imperfection_file_name : str
        Full path to the imperfection file.
    model_name : str
        Model name.
    part_name : str
        Part name.
    H_model : float
        Total height of the model where the imperfections will be applied to,
        considering also eventual resin rings.
    H_measured : float
        The total height of the measured test specimen, including eventual
        resin rings at the edges.
    R_model : float
        Radius **at the bottom edge** of the model where the imperfections
        will be applied to.
    R_best_fit : float, optional
        Best fit radius obtained with functions :func:`.best_fit_cylinder`
        or :func:`.best_fit_cone`.
    semi_angle : float, optional
        Cone semi-vertex angle in degrees, when applicable.
    stretch_H : bool, optional
        If the measured imperfection data should be stretched to the current
        model (which may happen when ``H_model!=H_measured``.
    z_offset_bot : float, optional
        It is common to have the measured data not covering the whole test
        specimen, and therefore it will be centralized, if a non-centralized
        position is desired this parameter can be used for the adjustment.
    rotatedeg : float, optional
        Rotation angle in degrees telling how much the imperfection pattern
        should be rotated about the `X_3` (or `Z`) axis.
    scaling_factor : float, optional
        A scaling factor that can be used to study the imperfection
        sensitivity.
    r_TOL : float, optional
        Percentage tolerance to ignore noisy data from the measurements.
    num_closest_points : int, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    power_parameter : float, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    use_theta_z_format : bool, optional
        If the new format `\theta, Z, imp` should be used instead of the old
        `X, Y, Z`.
    ignore_bot_h : None or float, optional
        Used to ignore nodes from the bottom resin ring.
    ignore_top_h : None or float, optional
        Used to ignore nodes from the top resin ring.
    sample_size : int, optional
        If the input file containing the measured data is too large it may be
        required to limit the sample size in order to avoid memory errors.
    T : None or np.ndarray, optional
        A transformation matrix (cf. :func:`.transf_matrix`) required when the
        mesh is not in the :ref:`default coordinate system <figure_conecyl>`.

    """
    import abaqus

    import desicos.abaqus.abaqus_functions as abaqus_functions

    mod = abaqus.mdb.models[model_name]
    part = mod.parts[part_name]
    part_nodes = np.array(part.nodes)
    coords = np.array([n.coordinates for n in part_nodes], dtype=FLOAT)

    if T is not None:
        tmp = np.vstack((coords.T, np.ones((1, coords.shape[0]))))
        coords = np.dot(T, tmp).T
        del tmp

    if ignore_bot_h is not None:
        if ignore_bot_h <= 0:
            ignore_bot_h = None
        else:
            mask = coords[:, 2] > ignore_bot_h
            coords = coords[mask]
            part_nodes = part_nodes[mask]

    if ignore_top_h is not None:
        if ignore_top_h <= 0:
            ignore_top_h = None
        else:
            mask = coords[:, 2] < (H_model - ignore_top_h)
            coords = coords[mask]
            part_nodes = part_nodes[mask]

    if use_theta_z_format:
        d, d, data = read_theta_z_imp(path=imperfection_file_name,
                                      H_measured=H_measured,
                                      stretch_H=stretch_H,
                                      z_offset_bot=z_offset_bot)
        if sample_size:
            num = data.shape[0]
            if sample_size < num:
                log('Using sample_size={0}'.format(sample_size), level=1)
                data = data[sample(range(num), int(sample_size)), :]

        if r_TOL:
            max_imp = R_model * r_TOL / 100.
            imp = data[:, 2]
            cond = np.any(np.array((imp > max_imp, imp < (-max_imp))), axis=0)
            log('Skipping {0} points'.format(len(imp[cond])))
            data = data[np.logical_not(cond), :]

        data3D = np.zeros((data.shape[0], 4), dtype=FLOAT)
        if rotatedeg:
            data[:, 0] += deg2rad(rotatedeg)
        z = data[:, 1]
        z *= H_model

        alpharad = deg2rad(semi_angle)
        tana = tan(alpharad)

        def r_local(z):
            return R_model - z * tana

        data3D[:, 0] = r_local(z) * cos(data[:, 0])
        data3D[:, 1] = r_local(z) * sin(data[:, 0])
        data3D[:, 2] = z
        data3D[:, 3] = data[:, 2]

        dist, w0 = inv_weighted(data3D,
                                coords,
                                ncp=num_closest_points,
                                power_parameter=power_parameter)

        thetas = arctan2(coords[:, 1], coords[:, 0])

        trans = np.zeros_like(coords)
        trans[:, 0] = w0 * cos(alpharad) * cos(thetas)
        trans[:, 1] = w0 * cos(alpharad) * sin(thetas)
        trans[:, 2] = w0 * sin(alpharad)

    else:
        #NOTE perhaps remove this in the future, when the imperfection files
        #     are stored as theta, z, amplitude only
        nodes = np.array(
            [[n.coordinates[0], n.coordinates[1], n.coordinates[2], n.label]
             for n in part_nodes],
            dtype=FLOAT)

        # calling translate_nodes function
        trans = calc_nodal_translations(imperfection_file_name,
                                        nodes=nodes,
                                        H_model=H_model,
                                        H_measured=H_measured,
                                        R_model=R_model,
                                        R_best_fit=R_best_fit,
                                        semi_angle=semi_angle,
                                        stretch_H=stretch_H,
                                        z_offset_bot=z_offset_bot,
                                        rotatedeg=rotatedeg,
                                        r_TOL=r_TOL,
                                        num_closest_points=num_closest_points,
                                        power_parameter=power_parameter,
                                        sample_size=sample_size)
        trans = trans[:, :3]

    return trans
Пример #3
0

if __name__ == '__main__':
    cc = stds['desicos_study'].ccs[1]
    cc.created_model = False
    cc.create_model()
    part_nodes = mdb.models[cc.model_name].parts[cc.part_name_shell].nodes
    coords = np.array([n.coordinates for n in part_nodes])

    sf = 100

    path = r'C:\clones\desicos\desicos\conecylDB\files\dlr\degenhardt_2010_z20\degenhardt_2010_z20_msi_theta_z_imp.txt'
    H_measured = 510.
    H_model = 510.
    d, d, data = read_theta_z_imp(path=path,
                                  H_measured=H_measured,
                                  stretch_H=False,
                                  z_offset_bot=None)

    log('init sample')
    data = np.array(sample(data, 10000))
    log('end sample')
    data = data[np.argsort(data[:, 0])]
    data = np.vstack((data[-3000:], data[:], data[:3000]))
    data[:, 0] /= data[:, 0].max()

    mesh = np.zeros((coords.shape[0], 2), dtype=FLOAT)
    mesh[:, 0] = arctan2(coords[:, 1], coords[:, 0])
    mesh[:, 1] = coords[:, 2]
    mesh_norm = mesh.copy()
    mesh_norm[:, 0] /= mesh_norm[:, 0].max()
    mesh_norm[:, 1] /= mesh_norm[:, 1].max()
Пример #4
0
def change_thickness_ABAQUS(imperfection_file_name,
                            model_name,
                            part_name,
                            stack,
                            t_model,
                            t_measured,
                            H_model,
                            H_measured,
                            R_model,
                            R_best_fit = None,
                            number_of_sets = None,
                            semi_angle = 0.,
                            stretch_H = False,
                            z_offset_bot = None,
                            scaling_factor = 1.,
                            num_closest_points = 5,
                            power_parameter = 2,
                            num_sec_z = 100,
                            elems_t = None,
                            t_set = None,
                            use_theta_z_format = False):
    r"""Applies a given thickness imperfection to the finite element model

    Assumes that a percentage variation of the laminate thickness can be
    represented by the same percentage veriation of each ply, i.e., each
    ply thickness is varied in order to reflect a given measured thickness
    imperfection field.

    Parameters
    ----------

    imperfection_file_name : str
        Full path to the imperfection file.
    model_name : str
        Model name.
    part_name : str
        Part name.
    stack : list
        The stacking sequence of the current model with each angle given in
        degrees.
    t_model : float
        The nominal shell thickness of the current model.
    t_measured : float
        The nominal thickness of the measured specimen.
    H_model : float
        Total height of the model where the imperfections will be applied to,
        considering also eventual resin rings.
    H_measured : float
        The total height of the measured test specimen, including eventual
        resin rings at the edges.
    R_model : float
        Radius **at the bottom edge** of the model where the imperfections
        will be applied to.
    R_best_fit : float, optional
        Best fit radius obtained with functions :func:`.best_fit_cylinder`
        or :func:`.best_fit_cone`.
    number_of_sets : int, optional
        Defines in how many levels the thicknesses should be divided. If
        ``None`` it will be based on the input file, and if the threshold
        of ``100`` is exceeded, ``10`` sections are used.
    semi_angle : float, optional
        Cone semi-vertex angle in degrees, when applicable.
    stretch_H : bool, optional
        If the measured imperfection data should be stretched to the current
        model (which may happen when ``H_model!=H_measured``.
    z_offset_bot : float, optional
        It is common to have the measured data not covering the whole test
        specimen, and therefore it will be centralized, if a non-centralized
        position is desired this parameter can be used for the adjustment.
    scaling_factor : float, optional
        A scaling factor that can be used to study the imperfection
        sensitivity.
    num_closest_points : int, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    power_parameter : float, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    num_sec_z : int, optional
        Number of spatial sections used to classify the measured data in order
        to accelerate the searching algorithms
    elems_t : np.ndarray, optional
        Interpolated thickness for each element. Can be used to avoid the same
        interpolation to be performed twice.
    t_set : set, optional
        A ``set`` object containing the unique thicknesses that will be used
        to create the new properties.
    use_theta_z_format : bool, optional
        If the new format `\theta, Z, imp` should be used instead of the old
        `X, Y, Z`.

    """
    from abaqus import mdb

    import desicos.abaqus.abaqus_functions as abaqus_functions

    mod = mdb.models[model_name]
    part = mod.parts[part_name]
    part_cyl_csys = part.features['part_cyl_csys']
    part_cyl_csys = part.datums[part_cyl_csys.id]

    if use_theta_z_format:
        if elems_t is None or t_set is None:
            log('Reading coordinates for elements...')
            elements = vec_calc_elem_cg(part.elements)

            log('Coordinates for elements read!')
            d, d, data = read_theta_z_imp(path = imperfection_file_name,
                                          H_measured = H_measured,
                                          stretch_H = stretch_H,
                                          z_offset_bot = z_offset_bot)

            data3D = np.zeros((data.shape[0], 4), dtype=FLOAT)
            z = data[:, 1]
            z *= H_model

            alpharad = deg2rad(semi_angle)
            tana = tan(alpharad)
            def r_local(z):
                return R_model - z*tana
            data3D[:, 0] = r_local(z)*cos(data[:, 0])
            data3D[:, 1] = r_local(z)*sin(data[:, 0])
            data3D[:, 2] = z
            data3D[:, 3] = data[:, 2]

            ans = inv_weighted(data3D, elements[:, :3],
                               num_sub = num_sec_z,
                               col = 2,
                               ncp = num_closest_points,
                               power_parameter = power_parameter)

            t_set = set(ans)
            t_set.discard(0.) #TODO why inv_weighted returns an array with 0.
            elems_t = np.zeros((elements.shape[0], 2), dtype=FLOAT)
            elems_t[:, 0] = elements[:, 3]
            elems_t[:, 1] = ans

        else:
            log('Thickness differences already calculated!')

    else:
        if elems_t is None or t_set is None:
            # reading elements data
            log('Reading coordinates for elements...')
            elements = vec_calc_elem_cg(part.elements)
            log('Coordinates for elements read!')
            # calling translate_nodes function
            elems_t, t_set = calc_elems_t(
                                imperfection_file_name,
                                nodes = elements,
                                t_model = t_model,
                                t_measured = t_measured,
                                H_model = H_model,
                                H_measured = H_measured,
                                R_model = R_model,
                                R_best_fit = R_best_fit,
                                semi_angle = semi_angle,
                                stretch_H = stretch_H,
                                z_offset_bot = z_offset_bot,
                                num_closest_points = num_closest_points,
                                power_parameter = power_parameter,
                                num_sec_z = num_sec_z)
        else:
            log('Thickness differences already calculated!')
    # creating sets
    t_list = []
    max_len_t_set = 100
    if len(t_set) >= max_len_t_set and number_of_sets in (None, 0):
        number_of_sets = 10
        log('More than {0:d} different thicknesses measured!'.format(
            max_len_t_set))
        log('Forcing a number_of_sets = {0:d}'.format(number_of_sets))
    if number_of_sets is None or number_of_sets == 0:
        number_of_sets = len(t_set)
        t_list = list(t_set)
        t_list.sort()
    else:
        t_min = min(t_set)
        t_max = max(t_set)
        t_list = list(np.linspace(t_min, t_max, number_of_sets+1))

    # grouping elements
    sets_ids = [[] for i in range(len(t_list))]
    for entry in elems_t:
        elem_id, t = entry
        index = index_within_linspace(t_list, t)
        sets_ids[index].append(int(elem_id))
    # putting elements in sets
    original_layup = part.compositeLayups['CompositePlate']
    for i, set_ids in enumerate(sets_ids):
        if len(set_ids) == 0:
            # since t_set_norm * t_model <> t_set originally measured
            # there may be empty set_ids at the end
            continue
        elements = part.elements.sequenceFromLabels(labels=set_ids)
        suffix = 'measured_imp_t_{0:03d}'.format(i)
        set_name = 'Set_' + suffix
        log('Creating set ({0: 7d} elements): {1}'.format(
            len(set_ids), set_name))
        part.Set(name = set_name, elements = elements)
        region = part.sets[set_name]
        layup_name = 'CLayup_' + suffix
        t_diff = (float(t_list[i]) - t_model) * scaling_factor
        t_scaling_factor = (t_model + t_diff)/t_model

        def modify_ply(index, kwargs):
            kwargs['thickness'] *= t_scaling_factor
            kwargs['region'] = region
            return kwargs

        layup = part.CompositeLayup(name=layup_name,
                                    objectToCopy=original_layup)
        layup.resume()
        abaqus_functions.modify_composite_layup(part=part,
            layup_name=layup_name, modify_func=modify_ply)
    # suppress needed to put the new properties to the input file
    original_layup.suppress()

    return elems_t, t_set
Пример #5
0
def calc_translations_ABAQUS(imperfection_file_name,
                             model_name,
                             part_name,
                             H_model,
                             H_measured,
                             R_model,
                             R_best_fit=None,
                             semi_angle=0.,
                             stretch_H=False,
                             z_offset_bot=None,
                             rotatedeg=0.,
                             scaling_factor=1.,
                             r_TOL=1.,
                             num_closest_points=5,
                             power_parameter=2,
                             num_sec_z=50,
                             use_theta_z_format=True,
                             ignore_bot_h=None,
                             ignore_top_h=None,
                             sample_size=None,
                             T=None):
    r"""Reads an imperfection file and calculates the nodal translations

    Parameters
    ----------
    imperfection_file_name : str
        Full path to the imperfection file.
    model_name : str
        Model name.
    part_name : str
        Part name.
    H_model : float
        Total height of the model where the imperfections will be applied to,
        considering also eventual resin rings.
    H_measured : float
        The total height of the measured test specimen, including eventual
        resin rings at the edges.
    R_model : float
        Radius **at the bottom edge** of the model where the imperfections
        will be applied to.
    R_best_fit : float, optional
        Best fit radius obtained with functions :func:`.best_fit_cylinder`
        or :func:`.best_fit_cone`.
    semi_angle : float, optional
        Cone semi-vertex angle in degrees, when applicable.
    stretch_H : bool, optional
        If the measured imperfection data should be stretched to the current
        model (which may happen when ``H_model!=H_measured``.
    z_offset_bot : float, optional
        It is common to have the measured data not covering the whole test
        specimen, and therefore it will be centralized, if a non-centralized
        position is desired this parameter can be used for the adjustment.
    rotatedeg : float, optional
        Rotation angle in degrees telling how much the imperfection pattern
        should be rotated about the `X_3` (or `Z`) axis.
    scaling_factor : float, optional
        A scaling factor that can be used to study the imperfection
        sensitivity.
    r_TOL : float, optional
        Percentage tolerance to ignore noisy data from the measurements.
    num_closest_points : int, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    power_parameter : float, optional
        See :func:`the inverse-weighted interpolation algorithm
        <.inv_weighted>`.
    num_sec_z : int, optional
        Number of spatial sections used to classify the measured data in order
        to accelerate the searching algorithms
    use_theta_z_format : bool, optional
        If the new format `\theta, Z, imp` should be used instead of the old
        `X, Y, Z`.
    ignore_bot_h : None or float, optional
        Used to ignore nodes from the bottom resin ring.
    ignore_top_h : None or float, optional
        Used to ignore nodes from the top resin ring.
    sample_size : int, optional
        If the input file containing the measured data is too large it may be
        required to limit the sample size in order to avoid memory errors.
    T : None or np.ndarray, optional
        A transformation matrix (cf. :func:`.transf_matrix`) required when the
        mesh is not in the :ref:`default coordinate system <figure_conecyl>`.

    """
    import abaqus

    import desicos.abaqus.abaqus_functions as abaqus_functions

    mod = abaqus.mdb.models[model_name]
    part = mod.parts[part_name]
    part_nodes = np.array(part.nodes)
    coords = np.array([n.coordinates for n in part_nodes], dtype=FLOAT)

    if T is not None:
        tmp = np.vstack((coords.T, np.ones((1, coords.shape[0]))))
        coords = np.dot(T, tmp).T
        del tmp

    if ignore_bot_h is not None:
        if ignore_bot_h <= 0:
            ignore_bot_h = None
        else:
            mask = coords[:, 2] > ignore_bot_h
            coords = coords[mask]
            part_nodes = part_nodes[mask]

    if ignore_top_h is not None:
        if ignore_top_h <= 0:
            ignore_top_h = None
        else:
            mask = coords[:, 2] < (H_model - ignore_top_h)
            coords = coords[mask]
            part_nodes = part_nodes[mask]

    if use_theta_z_format:
        d, d, data = read_theta_z_imp(path=imperfection_file_name,
                                      H_measured=H_measured,
                                      stretch_H=stretch_H,
                                      z_offset_bot=z_offset_bot)
        if sample_size:
            num = data.shape[0]
            if sample_size < num:
                log('Using sample_size={0}'.format(sample_size), level=1)
                data = data[sample(range(num), int(sample_size)), :]

        if r_TOL:
            max_imp = R_model * r_TOL / 100.
            imp = data[:, 2]
            cond = np.any(np.array((imp > max_imp, imp < (-max_imp))), axis=0)
            log('Skipping {0} points'.format(len(imp[cond])))
            data = data[np.logical_not(cond), :]

        data3D = np.zeros((data.shape[0], 4), dtype=FLOAT)
        if rotatedeg:
            data[:, 0] += deg2rad(rotatedeg)
        z = data[:, 1]
        z *= H_model

        alpharad = deg2rad(semi_angle)
        tana = tan(alpharad)
        def r_local(z):
            return R_model - z*tana
        data3D[:, 0] = r_local(z)*cos(data[:, 0])
        data3D[:, 1] = r_local(z)*sin(data[:, 0])
        data3D[:, 2] = z
        data3D[:, 3] = data[:, 2]

        w0 = inv_weighted(data3D, coords,
                          num_sub = num_sec_z,
                          col = 2,
                          ncp = num_closest_points,
                          power_parameter = power_parameter)

        thetas = arctan2(coords[:, 1], coords[:, 0])

        trans = np.zeros_like(coords)
        trans[:, 0] = w0*cos(alpharad)*cos(thetas)
        trans[:, 1] = w0*cos(alpharad)*sin(thetas)
        trans[:, 2] = w0*sin(alpharad)

    else:
        #NOTE perhaps remove this in the future, when the imperfection files
        #     are stored as theta, z, amplitude only
        nodes = np.array([[n.coordinates[0],
                           n.coordinates[1],
                           n.coordinates[2],
                           n.label] for n in part_nodes], dtype=FLOAT)

        # calling translate_nodes function
        trans = calc_nodal_translations(
                                imperfection_file_name,
                                nodes = nodes,
                                H_model = H_model,
                                H_measured = H_measured,
                                R_model = R_model,
                                R_best_fit = R_best_fit,
                                semi_angle = semi_angle,
                                stretch_H = stretch_H,
                                z_offset_bot = z_offset_bot,
                                rotatedeg = rotatedeg,
                                r_TOL = r_TOL,
                                num_closest_points = num_closest_points,
                                power_parameter = power_parameter,
                                num_sec_z = num_sec_z,
                                sample_size = sample_size)
        trans = trans[:, :3]

    return trans
Пример #6
0

if __name__ == '__main__':
    cc = stds['desicos_study'].ccs[1]
    cc.created_model = False
    cc.create_model()
    part_nodes = mdb.models[cc.model_name].parts[cc.part_name_shell].nodes
    coords = np.array([n.coordinates for n in part_nodes])

    sf = 100

    path = r'C:\clones\desicos\desicos\conecylDB\files\dlr\degenhardt_2010_z20\degenhardt_2010_z20_msi_theta_z_imp.txt'
    H_measured = 510.
    H_model = 510.
    d, d, data = read_theta_z_imp(path=path,
                                  H_measured=H_measured,
                                  stretch_H=False,
                                  z_offset_bot=None)

    log('init sample')
    data = np.array(sample(data, 10000))
    log('end sample')
    data = data[np.argsort(data[:, 0])]
    data = np.vstack((data[-3000:], data[:], data[:3000]))
    data[:, 0] /= data[:, 0].max()


    mesh = np.zeros((coords.shape[0], 2), dtype=FLOAT)
    mesh[:, 0] = arctan2(coords[:, 1], coords[:, 0])
    mesh[:, 1] = coords[:, 2]
    mesh_norm = mesh.copy()
    mesh_norm[:, 0] /= mesh_norm[:, 0].max()