def test_isStdStar(self): """test isStdStar works for cmx, main, and sv1 fibermaps""" from desispec.fluxcalibration import isStdStar from desitarget.targetmask import desi_mask, mws_mask from desitarget.sv1.sv1_targetmask import desi_mask as sv1_desi_mask from desitarget.sv1.sv1_targetmask import mws_mask as sv1_mws_mask from desitarget.cmx.cmx_targetmask import cmx_mask from desitarget.targets import main_cmx_or_sv from astropy.table import Table #- CMX fm = Table() fm['CMX_TARGET'] = np.zeros(10, dtype=int) fm['CMX_TARGET'][0:2] = cmx_mask.STD_FAINT fm['CMX_TARGET'][2:4] = cmx_mask.SV0_STD_FAINT self.assertEqual(main_cmx_or_sv(fm)[2], 'cmx') self.assertEqual(np.count_nonzero(isStdStar(fm)), 4) #- SV1 fm = Table() fm['SV1_DESI_TARGET'] = np.zeros(10, dtype=int) fm['SV1_MWS_TARGET'] = np.zeros(10, dtype=int) fm['SV1_DESI_TARGET'][0:2] = sv1_desi_mask.STD_FAINT fm['SV1_MWS_TARGET'][2:4] = sv1_mws_mask.GAIA_STD_FAINT self.assertEqual(main_cmx_or_sv(fm)[2], 'sv1') self.assertEqual(np.count_nonzero(isStdStar(fm)), 4) #- Main fm = Table() fm['DESI_TARGET'] = np.zeros(10, dtype=int) fm['MWS_TARGET'] = np.zeros(10, dtype=int) fm['DESI_TARGET'][0:2] = desi_mask.STD_FAINT fm['DESI_TARGET'][2:4] = desi_mask.STD_BRIGHT fm['DESI_TARGET'][4:6] |= desi_mask.MWS_ANY fm['MWS_TARGET'][4:6] = sv1_mws_mask.GAIA_STD_FAINT self.assertEqual(main_cmx_or_sv(fm)[2], 'main') self.assertEqual(np.count_nonzero(isStdStar(fm)), 6) self.assertEqual(np.count_nonzero(isStdStar(fm, bright=False)), 4) self.assertEqual(np.count_nonzero(isStdStar(fm, bright=True)), 2)
def select_stdstars(data, fibermap, snrcut=10, verbose=False): """Select spectra based on S/N and targeting bit. """ from astropy.table import Table from desitarget.targets import main_cmx_or_sv night, expid = data['NIGHT'][0], data['EXPID'][0] out_fibermap = fibermap.copy() # Pre-select standards istd = np.where(isStdStar(out_fibermap))[0] target_colnames, target_masks, survey = main_cmx_or_sv(out_fibermap) target_col, target_mask = target_colnames[0], target_masks[ 0] # CMX_TARGET, CMX_MASK for commissioning #istd = np.where((out_fibermap[target_col] & target_mask.mask('STD_BRIGHT') != 0))[0] # For each standard, apply a minimum S/N cut (in any camera) to # subselect the fibers that were reasonably centered on the fiber. reject = np.ones(len(istd), dtype=bool) #if len(istd) == 0: # pdb.set_trace() if len(istd) > 0: for ii, fiber in enumerate(out_fibermap['FIBER'][istd]): wspec = np.where( (data['EXPID'] == expid) * (data['FIBER'] == fiber))[0] if len(wspec) > 0: isnr = np.where(data['MEDIAN_CALIB_SNR'][wspec] > snrcut)[0] if len(isnr) > 0: reject[ii] = False if np.sum(~reject) > 0: istd_keep = istd[~reject] else: istd_keep = [] if np.sum(reject) > 0: istd_reject = istd[reject] else: istd_reject = [] # Hack! Set the targeting bit for the failed standards to zero! if len(istd_reject) > 0: out_fibermap[target_col][istd_reject] = 0 if verbose: print('EXPID={}, NSTD={}/{}'.format(expid, len(istd_keep), len(istd))) return out_fibermap
def qa_throughput(night, verbose=False, overwrite=False): """Make some QAplots of the throughput. """ import astropy.units as u from astropy import constants as const import matplotlib.pyplot as plt import seaborn as sns sns.set(context='talk', style='ticks') #, font_scale=1.0) import desimodel.io pngfile = os.path.join(outdir, 'qa', 'qa-throughput-{}.png'.format(str(night))) if os.path.isfile(pngfile) and not overwrite: print('File exists {}'.format(pngfile)) return desi = desimodel.io.load_desiparams() area = (desi['area']['geometric_area'] * u.m**2).to(u.cm**2) thru = dict() for camera in ('b', 'r', 'z'): thru[camera] = desimodel.io.load_throughput(camera) #import specter.throughput #thrufile = '/global/u2/i/ioannis/repos/desihub/desimodel/data/throughput/thru-{}.fits'.format(camera) #thru[camera] = specter.throughput.load_throughput(thrufile) fig, ax = plt.subplots(figsize=(8, 6)) allexpiddir = sorted( glob(os.path.join(outdir, 'exposures', str(night), '????????'))) colors = iter(plt.cm.rainbow(np.linspace(0, 1, len(allexpiddir)))) nstar = 0 for expiddir in allexpiddir: expid = os.path.basename(expiddir) for spectro in np.arange(10): #calibfiles = desispec.io.findfile( # 'fluxcalib', night=night, expid=int(expid), spectrograph=spectro, # camera=camera, specprod_dir=outdir) calibfiles = glob( os.path.join(expiddir, 'fluxcalib-*{}-{}.fits'.format(spectro, expid))) if len(calibfiles) == 3: #print(calibfile, os.path.isfile(calibfile)) col = next(colors) for camera in ('b', 'r', 'z'): cframefile = os.path.join( expiddir, 'cframe-{}{}-{}.fits'.format(camera, spectro, expid)) calibfile = os.path.join( expiddir, 'fluxcalib-{}{}-{}.fits'.format( camera, spectro, expid)) info = fitsio.FITS(calibfile) hdr = info['FLUXCALIB'].read_header() exptime = hdr['EXPTIME'] * u.s wave = info['WAVELENGTH'].read() * u.angstrom flux = info['FLUXCALIB'].read() ivar = info['IVAR'].read() specthru = flux * 1e17 * (u.electron / u.angstrom) / ( u.erg / u.s / u.cm / u.cm / u.angstrom) specthru *= const.h.to(u.erg * u.s) * const.c.to( u.angstrom / u.s) / exptime / area / wave # [electron/photon] # Plot just the standards-- fibermap = desispec.io.read_fibermap(cframefile) istd = np.where(isStdStar(fibermap))[0] for ii in istd: if camera == 'b': label = '{}-{}-{}'.format(int(expid), str(spectro), fibermap['FIBER'][ii]) else: label = None if np.max(specthru[ii, :].value) > 1: print( 'Weird star in EXPID={}, camera={}, fiber={}'. format(expid, camera, fibermap['FIBER'][ii])) else: if camera == 'b': nstar += 1 ax.plot(wave.value, specthru[ii, :].value, label=label, alpha=0.8, color=col) for camera in ('b', 'r', 'z'): ax.plot(thru[camera]._wave, thru[camera].thru(thru[camera]._wave), color='k') #, alpha=0.8) ax.set_xlabel(r'Wavelength ($\AA$)') ax.set_ylabel('Throughput (electron / photon)') ax.set_ylim(0, 1) ax.set_title('Night {}, N={}'.format(night, nstar)) ax.legend(loc='upper right', ncol=2, fontsize=12) fig.subplots_adjust(left=0.14, bottom=0.16) print('Writing {}'.format(pngfile)) fig.savefig(pngfile)
def update_frame_fibermaps(night, verbose=False, overwrite=False): """Update the fibermaps in each frame file with the necessary information on targeted standard stars. """ from astropy.table import Table from desitarget.targets import main_cmx_or_sv # Build the stacked QA and fiberassign "map" files. data, fiberassignmap = gather_nightwatch_qa(night, verbose=verbose, overwrite=overwrite) if data is None: return # For each EXPID, find the fibers with standard stars *and* good spectra. fibermapdict = dict() for expid in set(data['EXPID']): strexpid = '{:08d}'.format(expid) framefiles = sorted( glob( desispec.io.findfile('frame', night=night, expid=expid, specprod_dir=specprod_dir, camera='*'))) # Figure out which framefiles need to be (re)processed. if overwrite: need_framefiles = framefiles else: need_framefiles = [] for framefile in framefiles: outframefile = framefile.replace(specprod_dir, outdir) if not os.path.isfile(outframefile): need_framefiles.append(framefile) need_framefiles = np.array(need_framefiles) if len(need_framefiles) == 0: print('All done with NIGHT={}, EXPID={}'.format(night, strexpid)) continue # Read and cache the fibermap. thismap = np.where((fiberassignmap['EXPID'] == strexpid) * (fiberassignmap['NIGHT'] == str(night)))[0] tileid, fibermapfile = fiberassignmap['TILEID'][thismap][ 0], fiberassignmap['FIBERASSIGNFILE'][thismap][0] strtileid = str(tileid) if strtileid in fibermapdict.keys(): print('Using cached fibermap for TILEID={}'.format(strtileid)) fullfibermap = fibermapdict[strtileid] else: fibermapfile = os.path.join(rawdata_dir, str(night), fibermapfile) if verbose: print('Reading and caching {}'.format(fibermapfile)) fullfibermap = Table( fitsio.read(fibermapfile)) #, columns=['CMX_TARGET'])) fibermapdict[strtileid] = fullfibermap # Select standard stars thisspec = np.where( np.logical_and(data['EXPID'] == expid, data['NIGHT'] == night))[0] if len(thisspec) == 0: print('This should never happen!') pdb.set_trace() use_fullfibermap = select_stdstars(data[thisspec], fullfibermap, verbose=verbose) #check = np.where(isStdStar(use_fullfibermap))[0] #if len(check) == 0: # pdb.set_trace() # Finally process every frame containing at least one standard star. for framefile in framefiles: outframefile = framefile.replace(specprod_dir, outdir) # Shouldn't need this bit of code because we checked for existing # files above. if os.path.isfile(outframefile) and not overwrite: print('File exists {}'.format(outframefile)) continue fibers = fitsio.read(framefile, 'FIBERMAP', columns='FIBER') fibermap = use_fullfibermap[np.isin(use_fullfibermap['FIBER'], fibers)] #fibermap = fullfibermap[np.isin(fullfibermap['FIBER'], fr.fibermap['FIBER'])] # Require at least one standard star on this petal. #target_colnames, target_masks, survey = main_cmx_or_sv(fibermap) #target_col, target_mask = target_colnames[0], target_masks[0] # CMX_TARGET, CMX_MASK for commissioning #istd = np.where((fibermap[target_col] & target_mask.mask('STD_BRIGHT') != 0))[0] istd = np.where(isStdStar(fibermap))[0] if len(istd) > 0: # Read and copy all the columns! #if verbose: # print('Reading {}'.format(framefile)) fr = desispec.io.read_frame(framefile) #import matplotlib.pyplot as plt #plt.plot(fr.wave, fr.flux[istd[0], :]) ; plt.show() #pdb.set_trace() # Fragile. desi_proc should be smarter about how it initializes # the dummy fibermap and/or we should be smarter about what # columns we assume that desi_proc has added... isky = np.where(fr.fibermap['OBJTYPE'] == 'SKY')[0] if len(isky) == 0: print('No sky fibers found -- this should not happen!') continue fibermap['OBJTYPE'][isky] = fr.fibermap['OBJTYPE'][ isky] # fragile! fibermap['DESI_TARGET'][isky] |= fr.fibermap['DESI_TARGET'][ isky] # fragile! fr.fibermap = fibermap if verbose: print('Writing {}'.format(outframefile)) desispec.io.write_frame(outframefile, fr) # Also create a soft link to the skymodel file so we can run pipeline QA. skymodelfile = desispec.io.findfile( 'sky', night=night, expid=expid, camera=fr.meta['CAMERA'], specprod_dir=specprod_dir) # note: specprod_dir! cmd = 'ln -sf {} {}'.format( skymodelfile, skymodelfile.replace(specprod_dir, outdir)) print(cmd) os.system(cmd) if False: print('Returning after first EXPID - fix me.') return
def main(args) : """ finds the best models of all standard stars in the frame and normlize the model flux. Output is written to a file and will be called for calibration. """ log = get_logger() log.info("mag delta %s = %f (for the pre-selection of stellar models)"%(args.color,args.delta_color)) frames={} flats={} skies={} spectrograph=None starfibers=None starindices=None fibermap=None # READ DATA ############################################ for filename in args.frames : log.info("reading %s"%filename) frame=io.read_frame(filename) header=fits.getheader(filename, 0) frame_fibermap = frame.fibermap frame_starindices = np.where(isStdStar(frame_fibermap['DESI_TARGET']))[0] #- Confirm that all fluxes have entries but trust targeting bits #- to get basic magnitude range correct keep = np.ones(len(frame_starindices), dtype=bool) for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']: #- and W1 and W2? keep &= frame_fibermap[colname][frame_starindices] > 10**((22.5-30)/2.5) keep &= frame_fibermap[colname][frame_starindices] < 10**((22.5-0)/2.5) frame_starindices = frame_starindices[keep] camera=safe_read_key(header,"CAMERA").strip().lower() if spectrograph is None : spectrograph = frame.spectrograph fibermap = frame_fibermap starindices=frame_starindices starfibers=fibermap["FIBER"][starindices] elif spectrograph != frame.spectrograph : log.error("incompatible spectrographs %d != %d"%(spectrograph,frame.spectrograph)) raise ValueError("incompatible spectrographs %d != %d"%(spectrograph,frame.spectrograph)) elif starindices.size != frame_starindices.size or np.sum(starindices!=frame_starindices)>0 : log.error("incompatible fibermap") raise ValueError("incompatible fibermap") if not camera in frames : frames[camera]=[] frames[camera].append(frame) for filename in args.skymodels : log.info("reading %s"%filename) sky=io.read_sky(filename) header=fits.getheader(filename, 0) camera=safe_read_key(header,"CAMERA").strip().lower() if not camera in skies : skies[camera]=[] skies[camera].append(sky) for filename in args.fiberflats : log.info("reading %s"%filename) header=fits.getheader(filename, 0) flat=io.read_fiberflat(filename) camera=safe_read_key(header,"CAMERA").strip().lower() # NEED TO ADD MORE CHECKS if camera in flats: log.warning("cannot handle several flats of same camera (%s), will use only the first one"%camera) #raise ValueError("cannot handle several flats of same camera (%s)"%camera) else : flats[camera]=flat if starindices.size == 0 : log.error("no STD star found in fibermap") raise ValueError("no STD star found in fibermap") log.info("found %d STD stars"%starindices.size) log.warning("Not using flux errors for Standard Star fits!") # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA ############################################ for cam in frames : if not cam in skies: log.warning("Missing sky for %s"%cam) frames.pop(cam) continue if not cam in flats: log.warning("Missing flat for %s"%cam) frames.pop(cam) continue flat=flats[cam] for frame,sky in zip(frames[cam],skies[cam]) : frame.flux = frame.flux[starindices] frame.ivar = frame.ivar[starindices] frame.ivar *= (frame.mask[starindices] == 0) frame.ivar *= (sky.ivar[starindices] != 0) frame.ivar *= (sky.mask[starindices] == 0) frame.ivar *= (flat.ivar[starindices] != 0) frame.ivar *= (flat.mask[starindices] == 0) frame.flux *= ( frame.ivar > 0) # just for clean plots for star in range(frame.flux.shape[0]) : ok=np.where((frame.ivar[star]>0)&(flat.fiberflat[star]!=0))[0] if ok.size > 0 : frame.flux[star] = frame.flux[star]/flat.fiberflat[star] - sky.flux[star] frame.resolution_data = frame.resolution_data[starindices] nstars = starindices.size fibermap = Table(fibermap[starindices]) # READ MODELS ############################################ log.info("reading star models in %s"%args.starmodels) stdwave,stdflux,templateid,teff,logg,feh=io.read_stdstar_templates(args.starmodels) # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG ############################################ #- Support older fibermaps if 'PHOTSYS' not in fibermap.colnames: log.warning('Old fibermap format; using defaults for missing columns') log.warning(" PHOTSYS = 'S'") log.warning(" MW_TRANSMISSION_G/R/Z = 1.0") log.warning(" EBV = 0.0") fibermap['PHOTSYS'] = 'S' fibermap['MW_TRANSMISSION_G'] = 1.0 fibermap['MW_TRANSMISSION_R'] = 1.0 fibermap['MW_TRANSMISSION_Z'] = 1.0 fibermap['EBV'] = 0.0 model_filters = dict() if 'S' in fibermap['PHOTSYS']: for filter_name in ['DECAM_G', 'DECAM_R', 'DECAM_Z']: model_filters[filter_name] = load_filter(filter_name) if 'N' in fibermap['PHOTSYS']: for filter_name in ['BASS_G', 'BASS_R', 'MZLS_Z']: model_filters[filter_name] = load_filter(filter_name) if len(model_filters) == 0: raise ValueError("No filters loaded; neither 'N' nor 'S' in PHOTSYS?") log.info("computing model mags for %s"%sorted(model_filters.keys())) model_mags = dict() fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom for filter_name, filter_response in model_filters.items(): model_mags[filter_name] = filter_response.get_ab_magnitude(stdflux*fluxunits,stdwave) log.info("done computing model mags") # LOOP ON STARS TO FIND BEST MODEL ############################################ linear_coefficients=np.zeros((nstars,stdflux.shape[0])) chi2dof=np.zeros((nstars)) redshift=np.zeros((nstars)) normflux=[] star_mags = dict() star_unextincted_mags = dict() for band in ['G', 'R', 'Z']: star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_'+band]) star_unextincted_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_'+band] / fibermap['MW_TRANSMISSION_'+band]) star_colors = dict() star_colors['G-R'] = star_mags['G'] - star_mags['R'] star_colors['R-Z'] = star_mags['R'] - star_mags['Z'] star_unextincted_colors = dict() star_unextincted_colors['G-R'] = star_unextincted_mags['G'] - star_unextincted_mags['R'] star_unextincted_colors['R-Z'] = star_unextincted_mags['R'] - star_unextincted_mags['Z'] fitted_model_colors = np.zeros(nstars) for star in range(nstars) : log.info("finding best model for observed star #%d"%star) # np.array of wave,flux,ivar,resol wave = {} flux = {} ivar = {} resolution_data = {} for camera in frames : for i,frame in enumerate(frames[camera]) : identifier="%s-%d"%(camera,i) wave[identifier]=frame.wave flux[identifier]=frame.flux[star] ivar[identifier]=frame.ivar[star] resolution_data[identifier]=frame.resolution_data[star] # preselect models based on magnitudes if fibermap['PHOTSYS'][star] == 'N': if args.color == 'G-R': model_colors = model_mags['BASS_G'] - model_mags['BASS_R'] elif args.color == 'R-Z': model_colors = model_mags['BASS_R'] - model_mags['MZLS_Z'] else: raise ValueError('Unknown color {}'.format(args.color)) else: if args.color == 'G-R': model_colors = model_mags['DECAM_G'] - model_mags['DECAM_R'] elif args.color == 'R-Z': model_colors = model_mags['DECAM_R'] - model_mags['DECAM_Z'] else: raise ValueError('Unknown color {}'.format(args.color)) color_diff = model_colors - star_unextincted_colors[args.color][star] selection = np.abs(color_diff) < args.delta_color # smallest cube in parameter space including this selection (needed for interpolation) new_selection = (teff>=np.min(teff[selection]))&(teff<=np.max(teff[selection])) new_selection &= (logg>=np.min(logg[selection]))&(logg<=np.max(logg[selection])) new_selection &= (feh>=np.min(feh[selection]))&(feh<=np.max(feh[selection])) selection = np.where(new_selection)[0] log.info("star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d"%( star, starfibers[star], args.color, star_unextincted_colors[args.color][star], selection.size, stdflux.shape[0])) # Match unextincted standard stars to data coefficients, redshift[star], chi2dof[star] = match_templates( wave, flux, ivar, resolution_data, stdwave, stdflux[selection], teff[selection], logg[selection], feh[selection], ncpu=args.ncpu, z_max=args.z_max, z_res=args.z_res, template_error=args.template_error ) linear_coefficients[star,selection] = coefficients log.info('Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}'.format( starfibers[star], np.inner(teff,linear_coefficients[star]), np.inner(logg,linear_coefficients[star]), np.inner(feh,linear_coefficients[star]), redshift[star], chi2dof[star]) ) # Apply redshift to original spectrum at full resolution model=np.zeros(stdwave.size) redshifted_stdwave = stdwave*(1+redshift[star]) for i,c in enumerate(linear_coefficients[star]) : if c != 0 : model += c*np.interp(stdwave,redshifted_stdwave,stdflux[i]) # Apply dust extinction to the model model *= dust_transmission(stdwave, fibermap['EBV'][star]) # Compute final color of dust-extincted model if fibermap['PHOTSYS'][star] == 'N': if args.color == 'G-R': model_mag1 = model_filters['BASS_G'].get_ab_magnitude(model*fluxunits, stdwave) model_mag2 = model_filters['BASS_R'].get_ab_magnitude(model*fluxunits, stdwave) model_magr = model_mag2 elif args.color == 'R-Z': model_mag1 = model_filters['BASS_R'].get_ab_magnitude(model*fluxunits, stdwave) model_mag2 = model_filters['MZLS_Z'].get_ab_magnitude(model*fluxunits, stdwave) model_magr = model_mag1 else: raise ValueError('Unknown color {}'.format(args.color)) else: if args.color == 'G-R': model_mag1 = model_filters['DECAM_G'].get_ab_magnitude(model*fluxunits, stdwave) model_mag2 = model_filters['DECAM_R'].get_ab_magnitude(model*fluxunits, stdwave) model_magr = model_mag2 elif args.color == 'R-Z': model_mag1 = model_filters['DECAM_R'].get_ab_magnitude(model*fluxunits, stdwave) model_mag2 = model_filters['DECAM_Z'].get_ab_magnitude(model*fluxunits, stdwave) model_magr = model_mag1 else: raise ValueError('Unknown color {}'.format(args.color)) fitted_model_colors[star] = model_mag1 - model_mag2 #- TODO: move this back into normalize_templates, at the cost of #- recalculating a model magnitude? # Normalize the best model using reported magnitude scalefac=10**((model_magr - star_mags['R'][star])/2.5) log.info('scaling R mag {} to {} using scale {}'.format(model_magr, star_mags['R'][star], scalefac)) normflux.append(model*scalefac) # Now write the normalized flux for all best models to a file normflux=np.array(normflux) data={} data['LOGG']=linear_coefficients.dot(logg) data['TEFF']= linear_coefficients.dot(teff) data['FEH']= linear_coefficients.dot(feh) data['CHI2DOF']=chi2dof data['REDSHIFT']=redshift data['COEFF']=linear_coefficients data['DATA_%s'%args.color]=star_colors[args.color] data['MODEL_%s'%args.color]=fitted_model_colors io.write_stdstar_models(args.outfile,normflux,stdwave,starfibers,data)
def SNRFit(frame, night, camera, expid, params, fidboundary=None, offline=False): """ Signal vs. Noise With fitting Take flux and inverse variance arrays and calculate S/N for individual targets (ELG, LRG, QSO, STD) and for each amplifier of the camera. then fit the log(snr)=a+b*mag or log(snr)=poly(mag) see http://arXiv.org/abs/0706.1062v2 for proper fitting of power-law distributions it is not implemented here! qadict has the following data model "MAGNITUDES" : ndarray - Depends on camera (DECAM_G, DECAM_R, DECAM_Z) "MEDIAN_SNR" : ndarray (nfiber) "NUM_NEGATIVE_SNR" : int "SNR_MAG_TGT" "FITCOEFF_TGT" : list "SNR_RESID" : list, can be trimmed down during the fitting "FIDSNR_TGT" "RA" : ndarray (nfiber) "DEC" : ndarray (nfiber) "OBJLIST" : list - Save a copy to make sense of the list order later "EXPTIME" : float "FIT_FILTER" : str "r2" : float - Fitting parameter Args: frame: desispec.Frame object night : camera : expid : int params: parameters dictionary { "Func": "linear", # Fit function type one of ["linear","poly","astro"] "FIDMAG": 22.0, # magnitude to evaluate the fit "Filter":"DECAM_R", #filter name } fidboundary : list of slices indicating where to select in fiber and wavelength directions for each amp (output of slice_fidboundary function) offline: bool, optional If True, save things differently for offline Returns: qadict : dict """ #- Get imaging magnitudes and calculate SNR fmag = 22.0 if "FIDMAG" in params: fmag = params["FIDMAG"] mediansnr = SN_ratio(frame.flux, frame.ivar) qadict = {"MEDIAN_SNR": mediansnr} exptime = frame.meta["EXPTIME"] ivar = frame.ivar if "Filter" in params: thisfilter = params["Filter"] elif camera[0] == 'b': thisfilter = 'DECAM_G' elif camera[0] == 'r': thisfilter = 'DECAM_R' else: thisfilter = 'DECAM_Z' qadict["FIT_FILTER"] = thisfilter qadict["EXPTIME"] = exptime if thisfilter in ('DECAM_G', 'BASS_G'): photflux = frame.fibermap['FLUX_G'] elif thisfilter in ('DECAM_R', 'BASS_R'): photflux = frame.fibermap['FLUX_R'] elif thisfilter in ('DECAM_Z', 'MZLS_Z'): photflux = frame.fibermap['FLUX_Z'] else: raise ValueError('Unknown filter {}'.format(thisfilter)) mag_grz = np.zeros((3, frame.nspec)) + 99.0 for i, colname in enumerate(['FLUX_G', 'FLUX_R', 'FLUX_Z']): ok = frame.fibermap[colname] > 0 mag_grz[i, ok] = 22.5 - 2.5 * np.log10(frame.fibermap[colname][ok]) qadict["FILTERS"] = ['G', 'R', 'Z'] #qadict["OBJLIST"]=list(objlist) #- Set up fit of SNR vs. Magnitude # RS: commenting this until we have flux calibration # try: # #- Get read noise from Get_RMS TODO: use header information for this # rfile=findfile('ql_getrms_file',int(night),int(expid),camera,specprod_dir=os.environ['QL_SPEC_REDUX']) # with open(rfile) as rf: # rmsfile=yaml.load(rf) # rmsval=rmsfile["METRICS"]["NOISE"] # #- The factor of 1e-3 is a very basic (and temporary!!) flux calibration # #- used to convert read noise to proper flux units # r2=1e-3*rmsval**2 # except: # log.info("Was not able to obtain read noise from prior knowledge, fitting B+R**2...") # Use astronomically motivated function for SNR fit funcMap = s2n_funcs(exptime=exptime) fit = funcMap['astro'] # Use median inverse variance of each fiber for chi2 minimization var = [] for i in range(len(ivar)): var.append(1 / np.median(ivar[i])) neg_snr_tot = [] #- neg_snr_tot counts the number of times a fiber has a negative median SNR. This should #- not happen for non-sky fibers with actual flux in them. However, it does happen rarely #- in sims. To avoid this, we omit such fibers in the fit, but keep count for diagnostic #- purposes. #- Loop over each target type, and associate SNR and image magnitudes for each type. resid_snr = [] fidsnr_tgt = [] fitcoeff = [] fitcovar = [] snrmag = [] fitsnr = [] fitT = [] elgfibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.ELG) != 0)[0] lrgfibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.LRG) != 0)[0] qsofibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.QSO) != 0)[0] bgsfibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.BGS_ANY) != 0)[0] mwsfibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.MWS_ANY) != 0)[0] stdfibers = np.where(isStdStar(frame.fibermap))[0] for T, fibers in ( ['ELG', elgfibers], ['LRG', lrgfibers], ['QSO', qsofibers], ['BGS', bgsfibers], ['MWS', mwsfibers], ['STAR', stdfibers], ): if len(fibers) == 0: pass else: objvar = np.array(var)[fibers] medsnr = mediansnr[fibers] all_medsnr = medsnr.copy() # In case any are cut below mags = np.zeros(medsnr.shape) ok = (photflux[fibers] > 0) mags[ok] = 22.5 - 2.5 * np.log10(photflux[fibers][ok]) try: #- Determine negative SNR and mag values and remove neg_snr = len(np.where(medsnr <= 0.0)[0]) neg_snr_tot.append(neg_snr) xs = mags.argsort() #- Convert magnitudes to flux x = 10**(-0.4 * (mags[xs] - 22.5)) med_snr = medsnr[xs] y = med_snr #- Fit SNR vs. Magnitude using chi squared minimization, #- evaluate at fiducial magnitude, and store results in METRICS #- Set high minimum initally chi2 value to be overwritten when fitting minchi2 = 1e10 for a in range(100): for b in range(100): guess = [0.01 * a, 0.1 * b] fitdata = fit(x, guess[0], guess[1]) totchi2 = [] for k in range(len(x)): singlechi2 = ((y[k] - fitdata[k]) / objvar[k])**2 totchi2.append(singlechi2) chi2 = np.sum(totchi2) if chi2 <= minchi2: minchi2 = chi2 fita = guess[0] fitb = guess[1] #- Increase granualarity of 'a' by a factor of 10 for c in range(100): for d in range(100): guess = [fita - 0.05 + 0.001 * c, 0.1 * d] fitdata = fit(x, guess[0], guess[1]) totchi2 = [] for k in range(len(x)): singlechi2 = ((y[k] - fitdata[k]) / objvar[k])**2 totchi2.append(singlechi2) chi2 = np.sum(totchi2) if chi2 <= minchi2: minchi2 = chi2 fitc = guess[0] fitd = guess[1] #- Increase granualarity of 'a' by another factor of 10 for e in range(100): for f in range(100): guess = [fitc - 0.005 + 0.0001 * e, 0.1 * f] fitdata = fit(x, guess[0], guess[1]) totchi2 = [] for k in range(len(x)): singlechi2 = ((y[k] - fitdata[k]) / objvar[k])**2 totchi2.append(singlechi2) chi2 = np.sum(totchi2) if chi2 <= minchi2: minchi2 = chi2 fite = guess[0] fitf = guess[1] # Save fitcoeff.append([fite, fitf]) fidsnr_tgt.append(fit(10**(-0.4 * (fmag - 22.5)), fita, fitb)) fitT.append(T) except RuntimeError: log.warning("In fit of {}, Fit minimization failed!".format(T)) fitcoeff.append(np.nan) fidsnr_tgt.append(np.nan) qadict["{:s}_FIBERID".format(T)] = fibers.tolist() if offline: snr_mag = [medsnr, mags] snrmag.append(snr_mag) else: snr_mag = [all_medsnr, mags] snrmag.append(snr_mag) #- Calculate residual SNR for focal plane plots if not offline: fit_snr = fit(x, fite, fitf) fitsnr.append(fit_snr) resid = (med_snr - fit_snr) / fit_snr resid_snr += resid.tolist() else: x = 10**(-0.4 * (mags - 22.5)) fit_snr = fit(x, fite, fitf) fitsnr.append(fit_snr) resid = (all_medsnr - fit_snr) / fit_snr resid_snr += resid.tolist() qadict["NUM_NEGATIVE_SNR"] = sum(neg_snr_tot) qadict["SNR_MAG_TGT"] = snrmag qadict["FITCOEFF_TGT"] = fitcoeff qadict["SNR_RESID"] = resid_snr qadict["FIDSNR_TGT"] = fidsnr_tgt qadict["OBJLIST"] = fitT qadict["RA"] = frame.fibermap['TARGET_RA'] qadict["DEC"] = frame.fibermap['TARGET_DEC'] return qadict, fitsnr
def SignalVsNoise(frame, params, fidboundary=None): """ Signal vs. Noise Take flux and inverse variance arrays and calculate S/N for individual targets (ELG, LRG, QSO, STD) and for each amplifier of the camera. Args: flux (array): 2d [nspec,nwave] the signal (typically for spectra, this comes from frame object ivar (array): 2d [nspec,nwave] corresponding inverse variance fidboundary : list of slices indicating where to select in fiber and wavelength directions for each amp (output of slice_fidboundary function) """ mags = _get_mags(frame) medsnr = SN_ratio(frame.flux, frame.ivar) #- Calculate median SNR per bin and associate with imaging Mag. for ELG fibers elgfibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.ELG) != 0)[0] elg_medsnr = medsnr[elgfibers] elg_mag = mags[elgfibers] elg_snr_mag = np.array((elg_medsnr, elg_mag)) #- not storing fiber number #- Calculate median SNR, associate with imaging Mag for LRGs lrgfibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.LRG) != 0)[0] lrg_medsnr = medsnr[lrgfibers] lrg_mag = mags[lrgfibers] lrg_snr_mag = np.array((lrg_medsnr, lrg_mag)) #- Calculate median SNR, associate with imaging Mag. for QSOs qsofibers = np.where( (frame.fibermap['DESI_TARGET'] & desi_mask.QSO) != 0)[0] qso_medsnr = medsnr[qsofibers] qso_mag = mags[qsofibers] qso_snr_mag = np.array((qso_medsnr, qso_mag)) #- Calculate median SNR, associate with Mag. for STD stars stdfibers = np.where(isStdStar(frame.fibermap))[0] std_medsnr = medsnr[stdfibers] std_mag = mags[stdfibers] std_snr_mag = np.array((std_medsnr, std_mag)) #- Median S/N for different amp zones. average_amp = None if fidboundary is not None: averages = [] for ii in range(4): if fidboundary[ii][ 0].start is not None: #- have fibers in this amp? medsnramp = SN_ratio(frame.flux[fidboundary[ii]], frame.ivar[fidboundary[ii]]) averages.append(np.mean(medsnramp)) else: averages.append(None) average_amp = np.array(averages) elg_fidmag_snr = [] star_fidmag_snr = [] ra = frame.fibermap['TARGET_RA'] dec = frame.fibermap['TARGET_DEC'] #- fill QA dict with metrics: qadict = { "RA": ra, "DEC": dec, "MEDIAN_SNR": medsnr, "MEDIAN_AMP_SNR": average_amp, "ELG_FIBERID": elgfibers.tolist(), "ELG_SNR_MAG": elg_snr_mag, "LRG_FIBERID": lrgfibers.tolist(), "LRG_SNR_MAG": lrg_snr_mag, "QSO_FIBERID": qsofibers.tolist(), "QSO_SNR_MAG": qso_snr_mag, "STAR_FIBERID": stdfibers.tolist(), "STAR_SNR_MAG": std_snr_mag, "ELG_FIDMAG_SNR": elg_fidmag_snr, "STAR_FIDMAG_SNR": star_fidmag_snr } return qadict
def main(args): """ finds the best models of all standard stars in the frame and normlize the model flux. Output is written to a file and will be called for calibration. """ log = get_logger() log.info("mag delta %s = %f (for the pre-selection of stellar models)" % (args.color, args.delta_color)) frames = {} flats = {} skies = {} spectrograph = None starfibers = None starindices = None fibermap = None # READ DATA ############################################ for filename in args.frames: log.info("reading %s" % filename) frame = io.read_frame(filename) header = fits.getheader(filename, 0) frame_fibermap = frame.fibermap frame_starindices = np.where(isStdStar(frame_fibermap))[0] #- Confirm that all fluxes have entries but trust targeting bits #- to get basic magnitude range correct keep = np.ones(len(frame_starindices), dtype=bool) for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']: #- and W1 and W2? keep &= frame_fibermap[colname][frame_starindices] > 10**( (22.5 - 30) / 2.5) keep &= frame_fibermap[colname][frame_starindices] < 10**( (22.5 - 0) / 2.5) frame_starindices = frame_starindices[keep] camera = safe_read_key(header, "CAMERA").strip().lower() if spectrograph is None: spectrograph = frame.spectrograph fibermap = frame_fibermap starindices = frame_starindices starfibers = fibermap["FIBER"][starindices] elif spectrograph != frame.spectrograph: log.error("incompatible spectrographs %d != %d" % (spectrograph, frame.spectrograph)) raise ValueError("incompatible spectrographs %d != %d" % (spectrograph, frame.spectrograph)) elif starindices.size != frame_starindices.size or np.sum( starindices != frame_starindices) > 0: log.error("incompatible fibermap") raise ValueError("incompatible fibermap") if not camera in frames: frames[camera] = [] frames[camera].append(frame) for filename in args.skymodels: log.info("reading %s" % filename) sky = io.read_sky(filename) header = fits.getheader(filename, 0) camera = safe_read_key(header, "CAMERA").strip().lower() if not camera in skies: skies[camera] = [] skies[camera].append(sky) for filename in args.fiberflats: log.info("reading %s" % filename) header = fits.getheader(filename, 0) flat = io.read_fiberflat(filename) camera = safe_read_key(header, "CAMERA").strip().lower() # NEED TO ADD MORE CHECKS if camera in flats: log.warning( "cannot handle several flats of same camera (%s), will use only the first one" % camera) #raise ValueError("cannot handle several flats of same camera (%s)"%camera) else: flats[camera] = flat if starindices.size == 0: log.error("no STD star found in fibermap") raise ValueError("no STD star found in fibermap") log.info("found %d STD stars" % starindices.size) log.warning("Not using flux errors for Standard Star fits!") # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA ############################################ for cam in frames: if not cam in skies: log.warning("Missing sky for %s" % cam) frames.pop(cam) continue if not cam in flats: log.warning("Missing flat for %s" % cam) frames.pop(cam) continue flat = flats[cam] for frame, sky in zip(frames[cam], skies[cam]): frame.flux = frame.flux[starindices] frame.ivar = frame.ivar[starindices] frame.ivar *= (frame.mask[starindices] == 0) frame.ivar *= (sky.ivar[starindices] != 0) frame.ivar *= (sky.mask[starindices] == 0) frame.ivar *= (flat.ivar[starindices] != 0) frame.ivar *= (flat.mask[starindices] == 0) frame.flux *= (frame.ivar > 0) # just for clean plots for star in range(frame.flux.shape[0]): ok = np.where((frame.ivar[star] > 0) & (flat.fiberflat[star] != 0))[0] if ok.size > 0: frame.flux[star] = frame.flux[star] / flat.fiberflat[ star] - sky.flux[star] frame.resolution_data = frame.resolution_data[starindices] nstars = starindices.size fibermap = Table(fibermap[starindices]) # READ MODELS ############################################ log.info("reading star models in %s" % args.starmodels) stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates( args.starmodels) # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG ############################################ #- Support older fibermaps if 'PHOTSYS' not in fibermap.colnames: log.warning('Old fibermap format; using defaults for missing columns') log.warning(" PHOTSYS = 'S'") log.warning(" MW_TRANSMISSION_G/R/Z = 1.0") log.warning(" EBV = 0.0") fibermap['PHOTSYS'] = 'S' fibermap['MW_TRANSMISSION_G'] = 1.0 fibermap['MW_TRANSMISSION_R'] = 1.0 fibermap['MW_TRANSMISSION_Z'] = 1.0 fibermap['EBV'] = 0.0 model_filters = dict() if 'S' in fibermap['PHOTSYS']: for filter_name in ['DECAM_G', 'DECAM_R', 'DECAM_Z']: model_filters[filter_name] = load_filter(filter_name) if 'N' in fibermap['PHOTSYS']: for filter_name in ['BASS_G', 'BASS_R', 'MZLS_Z']: model_filters[filter_name] = load_filter(filter_name) if len(model_filters) == 0: raise ValueError("No filters loaded; neither 'N' nor 'S' in PHOTSYS?") log.info("computing model mags for %s" % sorted(model_filters.keys())) model_mags = dict() fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom for filter_name, filter_response in model_filters.items(): model_mags[filter_name] = filter_response.get_ab_magnitude( stdflux * fluxunits, stdwave) log.info("done computing model mags") # LOOP ON STARS TO FIND BEST MODEL ############################################ linear_coefficients = np.zeros((nstars, stdflux.shape[0])) chi2dof = np.zeros((nstars)) redshift = np.zeros((nstars)) normflux = [] star_mags = dict() star_unextincted_mags = dict() for band in ['G', 'R', 'Z']: star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_' + band]) star_unextincted_mags[band] = 22.5 - 2.5 * np.log10( fibermap['FLUX_' + band] / fibermap['MW_TRANSMISSION_' + band]) star_colors = dict() star_colors['G-R'] = star_mags['G'] - star_mags['R'] star_colors['R-Z'] = star_mags['R'] - star_mags['Z'] star_unextincted_colors = dict() star_unextincted_colors[ 'G-R'] = star_unextincted_mags['G'] - star_unextincted_mags['R'] star_unextincted_colors[ 'R-Z'] = star_unextincted_mags['R'] - star_unextincted_mags['Z'] fitted_model_colors = np.zeros(nstars) for star in range(nstars): log.info("finding best model for observed star #%d" % star) # np.array of wave,flux,ivar,resol wave = {} flux = {} ivar = {} resolution_data = {} for camera in frames: for i, frame in enumerate(frames[camera]): identifier = "%s-%d" % (camera, i) wave[identifier] = frame.wave flux[identifier] = frame.flux[star] ivar[identifier] = frame.ivar[star] resolution_data[identifier] = frame.resolution_data[star] # preselect models based on magnitudes if fibermap['PHOTSYS'][star] == 'N': if args.color == 'G-R': model_colors = model_mags['BASS_G'] - model_mags['BASS_R'] elif args.color == 'R-Z': model_colors = model_mags['BASS_R'] - model_mags['MZLS_Z'] else: raise ValueError('Unknown color {}'.format(args.color)) else: if args.color == 'G-R': model_colors = model_mags['DECAM_G'] - model_mags['DECAM_R'] elif args.color == 'R-Z': model_colors = model_mags['DECAM_R'] - model_mags['DECAM_Z'] else: raise ValueError('Unknown color {}'.format(args.color)) color_diff = model_colors - star_unextincted_colors[args.color][star] selection = np.abs(color_diff) < args.delta_color # smallest cube in parameter space including this selection (needed for interpolation) new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max( teff[selection])) new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max( logg[selection])) new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max( feh[selection])) selection = np.where(new_selection)[0] log.info( "star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d" % (star, starfibers[star], args.color, star_unextincted_colors[args.color][star], selection.size, stdflux.shape[0])) # Match unextincted standard stars to data coefficients, redshift[star], chi2dof[star] = match_templates( wave, flux, ivar, resolution_data, stdwave, stdflux[selection], teff[selection], logg[selection], feh[selection], ncpu=args.ncpu, z_max=args.z_max, z_res=args.z_res, template_error=args.template_error) linear_coefficients[star, selection] = coefficients log.info( 'Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}' .format(starfibers[star], np.inner(teff, linear_coefficients[star]), np.inner(logg, linear_coefficients[star]), np.inner(feh, linear_coefficients[star]), redshift[star], chi2dof[star])) # Apply redshift to original spectrum at full resolution model = np.zeros(stdwave.size) redshifted_stdwave = stdwave * (1 + redshift[star]) for i, c in enumerate(linear_coefficients[star]): if c != 0: model += c * np.interp(stdwave, redshifted_stdwave, stdflux[i]) # Apply dust extinction to the model model *= dust_transmission(stdwave, fibermap['EBV'][star]) # Compute final color of dust-extincted model if fibermap['PHOTSYS'][star] == 'N': if args.color == 'G-R': model_mag1 = model_filters['BASS_G'].get_ab_magnitude( model * fluxunits, stdwave) model_mag2 = model_filters['BASS_R'].get_ab_magnitude( model * fluxunits, stdwave) model_magr = model_mag2 elif args.color == 'R-Z': model_mag1 = model_filters['BASS_R'].get_ab_magnitude( model * fluxunits, stdwave) model_mag2 = model_filters['MZLS_Z'].get_ab_magnitude( model * fluxunits, stdwave) model_magr = model_mag1 else: raise ValueError('Unknown color {}'.format(args.color)) else: if args.color == 'G-R': model_mag1 = model_filters['DECAM_G'].get_ab_magnitude( model * fluxunits, stdwave) model_mag2 = model_filters['DECAM_R'].get_ab_magnitude( model * fluxunits, stdwave) model_magr = model_mag2 elif args.color == 'R-Z': model_mag1 = model_filters['DECAM_R'].get_ab_magnitude( model * fluxunits, stdwave) model_mag2 = model_filters['DECAM_Z'].get_ab_magnitude( model * fluxunits, stdwave) model_magr = model_mag1 else: raise ValueError('Unknown color {}'.format(args.color)) fitted_model_colors[star] = model_mag1 - model_mag2 #- TODO: move this back into normalize_templates, at the cost of #- recalculating a model magnitude? # Normalize the best model using reported magnitude scalefac = 10**((model_magr - star_mags['R'][star]) / 2.5) log.info('scaling R mag {} to {} using scale {}'.format( model_magr, star_mags['R'][star], scalefac)) normflux.append(model * scalefac) # Now write the normalized flux for all best models to a file normflux = np.array(normflux) data = {} data['LOGG'] = linear_coefficients.dot(logg) data['TEFF'] = linear_coefficients.dot(teff) data['FEH'] = linear_coefficients.dot(feh) data['CHI2DOF'] = chi2dof data['REDSHIFT'] = redshift data['COEFF'] = linear_coefficients data['DATA_%s' % args.color] = star_colors[args.color] data['MODEL_%s' % args.color] = fitted_model_colors io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers, data)
def main(args) : log=get_logger() cmd = ['desi_compute_fluxcalibration',] for key, value in args.__dict__.items(): if value is not None: cmd += ['--'+key, str(value)] cmd = ' '.join(cmd) log.info(cmd) log.info("read frame") # read frame frame = read_frame(args.infile) log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat apply_fiberflat(frame, fiberflat) log.info("subtract sky") # read sky skymodel=read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) log.info("compute flux calibration") # read models model_flux,model_wave,model_fibers,model_metadata=read_stdstar_models(args.models) if args.chi2cut > 0 : ok = np.where(model_metadata["CHI2DOF"]<args.chi2cut)[0] if ok.size == 0 : log.error("chi2cut has discarded all stars") sys.exit(12) nstars=model_flux.shape[0] nbad=nstars-ok.size if nbad>0 : log.warning("discarding %d star(s) out of %d because of chi2cut"%(nbad,nstars)) model_flux=model_flux[ok] model_fibers=model_fibers[ok] model_metadata=model_metadata[:][ok] if args.delta_color_cut > 0 : ok = np.where(np.abs(model_metadata["MODEL_G-R"]-model_metadata["DATA_G-R"])<args.delta_color_cut)[0] nstars=model_flux.shape[0] nbad=nstars-ok.size if nbad>0 : log.warning("discarding %d star(s) out of %d because |delta_color|>%f"%(nbad,nstars,args.delta_color_cut)) model_flux=model_flux[ok] model_fibers=model_fibers[ok] model_metadata=model_metadata[:][ok] # automatically reject stars that ar chi2 outliers if args.chi2cut_nsig > 0 : mchi2=np.median(model_metadata["CHI2DOF"]) rmschi2=np.std(model_metadata["CHI2DOF"]) maxchi2=mchi2+args.chi2cut_nsig*rmschi2 ok=np.where(model_metadata["CHI2DOF"]<=maxchi2)[0] nstars=model_flux.shape[0] nbad=nstars-ok.size if nbad>0 : log.warning("discarding %d star(s) out of %d because reduced chi2 outliers (at %d sigma, giving rchi2<%f )"%(nbad,nstars,args.chi2cut_nsig,maxchi2)) model_flux=model_flux[ok] model_fibers=model_fibers[ok] model_metadata=model_metadata[:][ok] # check that the model_fibers are actually standard stars fibermap = frame.fibermap ## check whether star fibers from args.models are consistent with fibers from fibermap ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit fibermap_std_indices = np.where(isStdStar(fibermap['DESI_TARGET']))[0] if np.any(~np.in1d(model_fibers%500, fibermap_std_indices)): for i in model_fibers%500: log.error("inconsistency with spectrum {}, OBJTYPE='{}', DESI_TARGET={} in fibermap".format( (i, fibermap["OBJTYPE"][i], fibermap["DESI_TARGET"][i]))) sys.exit(12) fluxcalib = compute_flux_calibration(frame, model_wave, model_flux, model_fibers%500) # QA if (args.qafile is not None): log.info("performing fluxcalib QA") # Load qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR']) # Run #import pdb; pdb.set_trace() qaframe.run_qa('FLUXCALIB', (frame, fluxcalib)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib) # write result write_flux_calibration(args.outfile, fluxcalib, header=frame.meta) log.info("successfully wrote %s"%args.outfile)
def main(args): log = get_logger() cmd = [ 'desi_compute_fluxcalibration', ] for key, value in args.__dict__.items(): if value is not None: cmd += ['--' + key, str(value)] cmd = ' '.join(cmd) log.info(cmd) log.info("read frame") # read frame frame = read_frame(args.infile) # Set fibermask flagged spectra to have 0 flux and variance frame = get_fiberbitmasked_frame(frame, bitmask='flux', ivar_framemask=True) log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat apply_fiberflat(frame, fiberflat) log.info("subtract sky") # read sky skymodel = read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) log.info("compute flux calibration") # read models model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models( args.models) ok = np.ones(len(model_metadata), dtype=bool) if args.chi2cut > 0: log.info("Apply cut CHI2DOF<{}".format(args.chi2cut)) ok &= (model_metadata["CHI2DOF"] < args.chi2cut) if args.delta_color_cut > 0: log.info("Apply cut |delta color|<{}".format(args.delta_color_cut)) ok &= (np.abs(model_metadata["MODEL_G-R"] - model_metadata["DATA_G-R"]) < args.delta_color_cut) if args.min_color is not None: log.info("Apply cut DATA_G-R>{}".format(args.min_color)) ok &= (model_metadata["DATA_G-R"] > args.min_color) if args.chi2cut_nsig > 0: # automatically reject stars that ar chi2 outliers mchi2 = np.median(model_metadata["CHI2DOF"]) rmschi2 = np.std(model_metadata["CHI2DOF"]) maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2 log.info("Apply cut CHI2DOF<{} based on chi2cut_nsig={}".format( maxchi2, args.chi2cut_nsig)) ok &= (model_metadata["CHI2DOF"] <= maxchi2) ok = np.where(ok)[0] if ok.size == 0: log.error("cuts discarded all stars") sys.exit(12) nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning("discarding %d star(s) out of %d because of cuts" % (nbad, nstars)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # check that the model_fibers are actually standard stars fibermap = frame.fibermap ## check whether star fibers from args.models are consistent with fibers from fibermap ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit fibermap_std_indices = np.where(isStdStar(fibermap))[0] if np.any(~np.in1d(model_fibers % 500, fibermap_std_indices)): target_colnames, target_masks, survey = main_cmx_or_sv(fibermap) colname = target_colnames[0] for i in model_fibers % 500: log.error( "inconsistency with spectrum {}, OBJTYPE={}, {}={} in fibermap" .format(i, fibermap["OBJTYPE"][i], colname, fibermap[colname][i])) sys.exit(12) # Make sure the fibers of interest aren't entirely masked. if np.sum( np.sum(frame.ivar[model_fibers % 500, :] == 0, axis=1) == frame.nwave) == len(model_fibers): log.warning('All standard-star spectra are masked!') return fluxcalib = compute_flux_calibration( frame, model_wave, model_flux, model_fibers % 500, highest_throughput_nstars=args.highest_throughput) # QA if (args.qafile is not None): log.info("performing fluxcalib QA") # Load qaframe = load_qa_frame(args.qafile, frame_meta=frame.meta, flavor=frame.meta['FLAVOR']) # Run #import pdb; pdb.set_trace() qaframe.run_qa('FLUXCALIB', (frame, fluxcalib)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib) # write result write_flux_calibration(args.outfile, fluxcalib, header=frame.meta) log.info("successfully wrote %s" % args.outfile)
def main(args): """ finds the best models of all standard stars in the frame and normlize the model flux. Output is written to a file and will be called for calibration. """ log = get_logger() log.info("mag delta %s = %f (for the pre-selection of stellar models)" % (args.color, args.delta_color)) log.info('multiprocess parallelizing with {} processes'.format(args.ncpu)) # READ DATA ############################################ # First loop through and group by exposure and spectrograph frames_by_expid = {} for filename in args.frames: log.info("reading %s" % filename) frame = io.read_frame(filename) expid = safe_read_key(frame.meta, "EXPID") camera = safe_read_key(frame.meta, "CAMERA").strip().lower() spec = camera[1] uniq_key = (expid, spec) if uniq_key in frames_by_expid.keys(): frames_by_expid[uniq_key][camera] = frame else: frames_by_expid[uniq_key] = {camera: frame} frames = {} flats = {} skies = {} spectrograph = None starfibers = None starindices = None fibermap = None # For each unique expid,spec pair, get the logical OR of the FIBERSTATUS for all # cameras and then proceed with extracting the frame information # once we modify the fibermap FIBERSTATUS for (expid, spec), camdict in frames_by_expid.items(): fiberstatus = None for frame in camdict.values(): if fiberstatus is None: fiberstatus = frame.fibermap['FIBERSTATUS'].data.copy() else: fiberstatus |= frame.fibermap['FIBERSTATUS'] for camera, frame in camdict.items(): frame.fibermap['FIBERSTATUS'] |= fiberstatus # Set fibermask flagged spectra to have 0 flux and variance frame = get_fiberbitmasked_frame(frame, bitmask='stdstars', ivar_framemask=True) frame_fibermap = frame.fibermap frame_starindices = np.where(isStdStar(frame_fibermap))[0] #- Confirm that all fluxes have entries but trust targeting bits #- to get basic magnitude range correct keep = np.ones(len(frame_starindices), dtype=bool) for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']: #- and W1 and W2? keep &= frame_fibermap[colname][frame_starindices] > 10**( (22.5 - 30) / 2.5) keep &= frame_fibermap[colname][frame_starindices] < 10**( (22.5 - 0) / 2.5) frame_starindices = frame_starindices[keep] if spectrograph is None: spectrograph = frame.spectrograph fibermap = frame_fibermap starindices = frame_starindices starfibers = fibermap["FIBER"][starindices] elif spectrograph != frame.spectrograph: log.error("incompatible spectrographs %d != %d" % (spectrograph, frame.spectrograph)) raise ValueError("incompatible spectrographs %d != %d" % (spectrograph, frame.spectrograph)) elif starindices.size != frame_starindices.size or np.sum( starindices != frame_starindices) > 0: log.error("incompatible fibermap") raise ValueError("incompatible fibermap") if not camera in frames: frames[camera] = [] frames[camera].append(frame) # possibly cleanup memory del frames_by_expid for filename in args.skymodels: log.info("reading %s" % filename) sky = io.read_sky(filename) camera = safe_read_key(sky.header, "CAMERA").strip().lower() if not camera in skies: skies[camera] = [] skies[camera].append(sky) for filename in args.fiberflats: log.info("reading %s" % filename) flat = io.read_fiberflat(filename) camera = safe_read_key(flat.header, "CAMERA").strip().lower() # NEED TO ADD MORE CHECKS if camera in flats: log.warning( "cannot handle several flats of same camera (%s), will use only the first one" % camera) #raise ValueError("cannot handle several flats of same camera (%s)"%camera) else: flats[camera] = flat if starindices.size == 0: log.error("no STD star found in fibermap") raise ValueError("no STD star found in fibermap") log.info("found %d STD stars" % starindices.size) log.warning("Not using flux errors for Standard Star fits!") # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA ############################################ # since poping dict, we need to copy keys to iterate over to avoid # RuntimeError due to changing dict frame_cams = list(frames.keys()) for cam in frame_cams: if not cam in skies: log.warning("Missing sky for %s" % cam) frames.pop(cam) continue if not cam in flats: log.warning("Missing flat for %s" % cam) frames.pop(cam) continue flat = flats[cam] for frame, sky in zip(frames[cam], skies[cam]): frame.flux = frame.flux[starindices] frame.ivar = frame.ivar[starindices] frame.ivar *= (frame.mask[starindices] == 0) frame.ivar *= (sky.ivar[starindices] != 0) frame.ivar *= (sky.mask[starindices] == 0) frame.ivar *= (flat.ivar[starindices] != 0) frame.ivar *= (flat.mask[starindices] == 0) frame.flux *= (frame.ivar > 0) # just for clean plots for star in range(frame.flux.shape[0]): ok = np.where((frame.ivar[star] > 0) & (flat.fiberflat[star] != 0))[0] if ok.size > 0: frame.flux[star] = frame.flux[star] / flat.fiberflat[ star] - sky.flux[star] frame.resolution_data = frame.resolution_data[starindices] # CHECK S/N ############################################ # for each band in 'brz', record quadratic sum of median S/N across wavelength snr = dict() for band in ['b', 'r', 'z']: snr[band] = np.zeros(starindices.size) for cam in frames: band = cam[0].lower() for frame in frames[cam]: msnr = np.median(frame.flux * np.sqrt(frame.ivar) / np.sqrt(np.gradient(frame.wave)), axis=1) # median SNR per sqrt(A.) msnr *= (msnr > 0) snr[band] = np.sqrt(snr[band]**2 + msnr**2) log.info("SNR(B) = {}".format(snr['b'])) ############################### max_number_of_stars = 50 min_blue_snr = 4. ############################### indices = np.argsort(snr['b'])[::-1][:max_number_of_stars] validstars = np.where(snr['b'][indices] > min_blue_snr)[0] #- TODO: later we filter on models based upon color, thus throwing #- away very blue stars for which we don't have good models. log.info("Number of stars with median stacked blue S/N > {} /sqrt(A) = {}". format(min_blue_snr, validstars.size)) if validstars.size == 0: log.error("No valid star") sys.exit(12) validstars = indices[validstars] for band in ['b', 'r', 'z']: snr[band] = snr[band][validstars] log.info("BLUE SNR of selected stars={}".format(snr['b'])) for cam in frames: for frame in frames[cam]: frame.flux = frame.flux[validstars] frame.ivar = frame.ivar[validstars] frame.resolution_data = frame.resolution_data[validstars] starindices = starindices[validstars] starfibers = starfibers[validstars] nstars = starindices.size fibermap = Table(fibermap[starindices]) # MASK OUT THROUGHPUT DIP REGION ############################################ mask_throughput_dip_region = True if mask_throughput_dip_region: wmin = 4300. wmax = 4500. log.warning( "Masking out the wavelength region [{},{}]A in the standard star fit" .format(wmin, wmax)) for cam in frames: for frame in frames[cam]: ii = np.where((frame.wave >= wmin) & (frame.wave <= wmax))[0] if ii.size > 0: frame.ivar[:, ii] = 0 # READ MODELS ############################################ log.info("reading star models in %s" % args.starmodels) stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates( args.starmodels) # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG ############################################ #- Support older fibermaps if 'PHOTSYS' not in fibermap.colnames: log.warning('Old fibermap format; using defaults for missing columns') log.warning(" PHOTSYS = 'S'") log.warning(" MW_TRANSMISSION_G/R/Z = 1.0") log.warning(" EBV = 0.0") fibermap['PHOTSYS'] = 'S' fibermap['MW_TRANSMISSION_G'] = 1.0 fibermap['MW_TRANSMISSION_R'] = 1.0 fibermap['MW_TRANSMISSION_Z'] = 1.0 fibermap['EBV'] = 0.0 model_filters = dict() for band in ["G", "R", "Z"]: for photsys in np.unique(fibermap['PHOTSYS']): model_filters[band + photsys] = load_legacy_survey_filter( band=band, photsys=photsys) log.info("computing model mags for %s" % sorted(model_filters.keys())) model_mags = dict() fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom for filter_name, filter_response in model_filters.items(): model_mags[filter_name] = filter_response.get_ab_magnitude( stdflux * fluxunits, stdwave) log.info("done computing model mags") # LOOP ON STARS TO FIND BEST MODEL ############################################ linear_coefficients = np.zeros((nstars, stdflux.shape[0])) chi2dof = np.zeros((nstars)) redshift = np.zeros((nstars)) normflux = [] star_mags = dict() star_unextincted_mags = dict() for band in ['G', 'R', 'Z']: star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_' + band]) star_unextincted_mags[band] = 22.5 - 2.5 * np.log10( fibermap['FLUX_' + band] / fibermap['MW_TRANSMISSION_' + band]) star_colors = dict() star_colors['G-R'] = star_mags['G'] - star_mags['R'] star_colors['R-Z'] = star_mags['R'] - star_mags['Z'] star_unextincted_colors = dict() star_unextincted_colors[ 'G-R'] = star_unextincted_mags['G'] - star_unextincted_mags['R'] star_unextincted_colors[ 'R-Z'] = star_unextincted_mags['R'] - star_unextincted_mags['Z'] fitted_model_colors = np.zeros(nstars) for star in range(nstars): log.info("finding best model for observed star #%d" % star) # np.array of wave,flux,ivar,resol wave = {} flux = {} ivar = {} resolution_data = {} for camera in frames: for i, frame in enumerate(frames[camera]): identifier = "%s-%d" % (camera, i) wave[identifier] = frame.wave flux[identifier] = frame.flux[star] ivar[identifier] = frame.ivar[star] resolution_data[identifier] = frame.resolution_data[star] # preselect models based on magnitudes photsys = fibermap['PHOTSYS'][star] if not args.color in ['G-R', 'R-Z']: raise ValueError('Unknown color {}'.format(args.color)) bands = args.color.split("-") model_colors = model_mags[bands[0] + photsys] - model_mags[bands[1] + photsys] color_diff = model_colors - star_unextincted_colors[args.color][star] selection = np.abs(color_diff) < args.delta_color if np.sum(selection) == 0: log.warning("no model in the selected color range for this star") continue # smallest cube in parameter space including this selection (needed for interpolation) new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max( teff[selection])) new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max( logg[selection])) new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max( feh[selection])) selection = np.where(new_selection)[0] log.info( "star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d" % (star, starfibers[star], args.color, star_unextincted_colors[args.color][star], selection.size, stdflux.shape[0])) # Match unextincted standard stars to data coefficients, redshift[star], chi2dof[star] = match_templates( wave, flux, ivar, resolution_data, stdwave, stdflux[selection], teff[selection], logg[selection], feh[selection], ncpu=args.ncpu, z_max=args.z_max, z_res=args.z_res, template_error=args.template_error) linear_coefficients[star, selection] = coefficients log.info( 'Star Fiber: {}; TEFF: {:.3f}; LOGG: {:.3f}; FEH: {:.3f}; Redshift: {:g}; Chisq/dof: {:.3f}' .format(starfibers[star], np.inner(teff, linear_coefficients[star]), np.inner(logg, linear_coefficients[star]), np.inner(feh, linear_coefficients[star]), redshift[star], chi2dof[star])) # Apply redshift to original spectrum at full resolution model = np.zeros(stdwave.size) redshifted_stdwave = stdwave * (1 + redshift[star]) for i, c in enumerate(linear_coefficients[star]): if c != 0: model += c * np.interp(stdwave, redshifted_stdwave, stdflux[i]) # Apply dust extinction to the model log.info("Applying MW dust extinction to star {} with EBV = {}".format( star, fibermap['EBV'][star])) model *= dust_transmission(stdwave, fibermap['EBV'][star]) # Compute final color of dust-extincted model photsys = fibermap['PHOTSYS'][star] if not args.color in ['G-R', 'R-Z']: raise ValueError('Unknown color {}'.format(args.color)) bands = args.color.split("-") model_mag1 = model_filters[bands[0] + photsys].get_ab_magnitude( model * fluxunits, stdwave) model_mag2 = model_filters[bands[1] + photsys].get_ab_magnitude( model * fluxunits, stdwave) fitted_model_colors[star] = model_mag1 - model_mag2 if bands[0] == "R": model_magr = model_mag1 elif bands[1] == "R": model_magr = model_mag2 #- TODO: move this back into normalize_templates, at the cost of #- recalculating a model magnitude? # Normalize the best model using reported magnitude scalefac = 10**((model_magr - star_mags['R'][star]) / 2.5) log.info('scaling R mag {:.3f} to {:.3f} using scale {}'.format( model_magr, star_mags['R'][star], scalefac)) normflux.append(model * scalefac) # Now write the normalized flux for all best models to a file normflux = np.array(normflux) fitted_stars = np.where(chi2dof != 0)[0] if fitted_stars.size == 0: log.error("No star has been fit.") sys.exit(12) data = {} data['LOGG'] = linear_coefficients[fitted_stars, :].dot(logg) data['TEFF'] = linear_coefficients[fitted_stars, :].dot(teff) data['FEH'] = linear_coefficients[fitted_stars, :].dot(feh) data['CHI2DOF'] = chi2dof[fitted_stars] data['REDSHIFT'] = redshift[fitted_stars] data['COEFF'] = linear_coefficients[fitted_stars, :] data['DATA_%s' % args.color] = star_colors[args.color][fitted_stars] data['MODEL_%s' % args.color] = fitted_model_colors[fitted_stars] data['BLUE_SNR'] = snr['b'][fitted_stars] data['RED_SNR'] = snr['r'][fitted_stars] data['NIR_SNR'] = snr['z'][fitted_stars] io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers[fitted_stars], data)
def main(args): log = get_logger() cmd = [ 'desi_compute_fluxcalibration', ] for key, value in args.__dict__.items(): if value is not None: cmd += ['--' + key, str(value)] cmd = ' '.join(cmd) log.info(cmd) log.info("read frame") # read frame frame = read_frame(args.infile) # Set fibermask flagged spectra to have 0 flux and variance frame = get_fiberbitmasked_frame(frame, bitmask='flux', ivar_framemask=True) log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat apply_fiberflat(frame, fiberflat) log.info("subtract sky") # read sky skymodel = read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) log.info("compute flux calibration") # read models model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models( args.models) ok = np.ones(len(model_metadata), dtype=bool) if args.chi2cut > 0: log.info("apply cut CHI2DOF<{}".format(args.chi2cut)) good = (model_metadata["CHI2DOF"] < args.chi2cut) bad = ~good ok &= good if np.any(bad): log.info(" discard {} stars with CHI2DOF= {}".format( np.sum(bad), list(model_metadata["CHI2DOF"][bad]))) legacy_filters = ('G-R', 'R-Z') gaia_filters = ('GAIA-BP-RP', 'GAIA-G-RP') model_column_list = model_metadata.columns.names if args.color is None: if 'MODEL_G-R' in model_column_list: color = 'G-R' elif 'MODEL_GAIA-BP-RP' in model_column_list: log.info('Using Gaia filters') color = 'GAIA-BP-RP' else: log.error( "Can't find either G-R or BP-RP color in the model file.") sys.exit(15) else: if args.color not in legacy_filters and args.color not in gaia_filters: log.error( 'Color name {} is not allowed, must be one of {} {}'.format( args.color, legacy_filters, gaia_filters)) sys.exit(14) color = args.color if color not in model_column_list: # This should't happen log.error( 'The color {} was not computed in the models'.format(color)) sys.exit(16) if args.delta_color_cut > 0: log.info("apply cut |delta color|<{}".format(args.delta_color_cut)) good = (np.abs(model_metadata["MODEL_" + color] - model_metadata["DATA_" + color]) < args.delta_color_cut) bad = ok & (~good) ok &= good if np.any(bad): vals = model_metadata["MODEL_" + color][bad] - model_metadata["DATA_" + color][bad] log.info(" discard {} stars with dcolor= {}".format( np.sum(bad), list(vals))) if args.min_color is not None: log.info("apply cut DATA_{}>{}".format(color, args.min_color)) good = (model_metadata["DATA_{}".format(color)] > args.min_color) bad = ok & (~good) ok &= good if np.any(bad): vals = model_metadata["DATA_{}".format(color)][bad] log.info(" discard {} stars with {}= {}".format( np.sum(bad), color, list(vals))) if args.chi2cut_nsig > 0: # automatically reject stars that ar chi2 outliers mchi2 = np.median(model_metadata["CHI2DOF"]) rmschi2 = np.std(model_metadata["CHI2DOF"]) maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2 log.info("apply cut CHI2DOF<{} based on chi2cut_nsig={}".format( maxchi2, args.chi2cut_nsig)) good = (model_metadata["CHI2DOF"] <= maxchi2) bad = ok & (~good) ok &= good if np.any(bad): log.info(" discard {} stars with CHI2DOF={}".format( np.sum(bad), list(model_metadata["CHI2DOF"][bad]))) ok = np.where(ok)[0] if ok.size == 0: log.error("selection cuts discarded all stars") sys.exit(12) nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning("discarding %d star(s) out of %d because of cuts" % (nbad, nstars)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # check that the model_fibers are actually standard stars fibermap = frame.fibermap ## check whether star fibers from args.models are consistent with fibers from fibermap ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit fibermap_std_indices = np.where(isStdStar(fibermap))[0] if np.any(~np.in1d(model_fibers % 500, fibermap_std_indices)): target_colnames, target_masks, survey = main_cmx_or_sv(fibermap) colname = target_colnames[0] for i in model_fibers % 500: log.error( "inconsistency with spectrum {}, OBJTYPE={}, {}={} in fibermap" .format(i, fibermap["OBJTYPE"][i], colname, fibermap[colname][i])) sys.exit(12) # Make sure the fibers of interest aren't entirely masked. if np.sum( np.sum(frame.ivar[model_fibers % 500, :] == 0, axis=1) == frame.nwave) == len(model_fibers): log.warning('All standard-star spectra are masked!') return fluxcalib = compute_flux_calibration( frame, model_wave, model_flux, model_fibers % 500, highest_throughput_nstars=args.highest_throughput, exposure_seeing_fwhm=args.seeing_fwhm) # QA if (args.qafile is not None): from desispec.io import write_qa_frame from desispec.io.qa import load_qa_frame from desispec.qa import qa_plots log.info("performing fluxcalib QA") # Load qaframe = load_qa_frame(args.qafile, frame_meta=frame.meta, flavor=frame.meta['FLAVOR']) # Run #import pdb; pdb.set_trace() qaframe.run_qa('FLUXCALIB', (frame, fluxcalib)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib) # record inputs frame.meta['IN_FRAME'] = shorten_filename(args.infile) frame.meta['IN_SKY'] = shorten_filename(args.sky) frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat) frame.meta['STDMODEL'] = shorten_filename(args.models) # write result write_flux_calibration(args.outfile, fluxcalib, header=frame.meta) log.info("successfully wrote %s" % args.outfile)
def main(args): log = get_logger() cmd = [ 'desi_compute_fluxcalibration', ] for key, value in args.__dict__.items(): if value is not None: cmd += ['--' + key, str(value)] cmd = ' '.join(cmd) log.info(cmd) log.info("read frame") # read frame frame = read_frame(args.infile) log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat apply_fiberflat(frame, fiberflat) log.info("subtract sky") # read sky skymodel = read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) log.info("compute flux calibration") # read models model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models( args.models) if args.chi2cut > 0: ok = np.where(model_metadata["CHI2DOF"] < args.chi2cut)[0] if ok.size == 0: log.error("chi2cut has discarded all stars") sys.exit(12) nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning("discarding %d star(s) out of %d because of chi2cut" % (nbad, nstars)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] if args.delta_color_cut > 0: ok = np.where( np.abs(model_metadata["MODEL_G-R"] - model_metadata["DATA_G-R"]) < args.delta_color_cut)[0] nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning( "discarding %d star(s) out of %d because |delta_color|>%f" % (nbad, nstars, args.delta_color_cut)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # automatically reject stars that ar chi2 outliers if args.chi2cut_nsig > 0: mchi2 = np.median(model_metadata["CHI2DOF"]) rmschi2 = np.std(model_metadata["CHI2DOF"]) maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2 ok = np.where(model_metadata["CHI2DOF"] <= maxchi2)[0] nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning( "discarding %d star(s) out of %d because reduced chi2 outliers (at %d sigma, giving rchi2<%f )" % (nbad, nstars, args.chi2cut_nsig, maxchi2)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # check that the model_fibers are actually standard stars fibermap = frame.fibermap ## check whether star fibers from args.models are consistent with fibers from fibermap ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit fibermap_std_indices = np.where(isStdStar(fibermap))[0] if np.any(~np.in1d(model_fibers % 500, fibermap_std_indices)): if 'DESI_TARGET' in fibermap: colname = 'DESI_TARGET' else: colname = 'SV1_DESI_TARGET' #- TODO: could become SV2_DESI_TARGET for i in model_fibers % 500: log.error( "inconsistency with spectrum {}, OBJTYPE='{}', {}={} in fibermap" .format((i, fibermap["OBJTYPE"][i], colname, fibermap[colname][i]))) sys.exit(12) fluxcalib = compute_flux_calibration(frame, model_wave, model_flux, model_fibers % 500) # QA if (args.qafile is not None): log.info("performing fluxcalib QA") # Load qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR']) # Run #import pdb; pdb.set_trace() qaframe.run_qa('FLUXCALIB', (frame, fluxcalib)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib) # write result write_flux_calibration(args.outfile, fluxcalib, header=frame.meta) log.info("successfully wrote %s" % args.outfile)
def s2nfit(frame, camera, params): """ Signal vs. Noise With fitting Take flux and inverse variance arrays and calculate S/N for individual targets (ELG, LRG, QSO, STD) and for each amplifier of the camera. then fit snr=A*mag/sqrt(A*mag+B) see http://arXiv.org/abs/0706.1062v2 for proper fitting of power-law distributions it is not implemented here! Instead we use scipy.optimize.curve_fit Args: frame: desispec.Frame object camera: str, name of the camera params: parameters dictionary for S/N Returns: qadict : dict MEDIAN_SNR (ndarray, nfiber): Median S/N of light in each fiber FIT_FILTER (str): Filter used for the fluxes EXPTIME (float): Exposure time XXX_FIBERID (list): Fibers matching ELG, LRG, BGS, etc. SNR_MAG_TGT (list): List of lists with S/N and mag of ELG, LRG, BGS, etc. FITCOEFF_TGT (list): List of fitted coefficients. Junk fits have np.nan OBJLIST (list): List of object types analyzed (1 or more fiber) """ # Median snr snr = frame.flux * np.sqrt(frame.ivar) mediansnr = np.median(snr, axis=1) qadict = {"MEDIAN_SNR": mediansnr} exptime = frame.meta["EXPTIME"] # Parse filters if "Filter" in params: thisfilter = params["Filter"] elif camera[0] == 'b': thisfilter = 'DECAM_G' elif camera[0] == 'r': thisfilter = 'DECAM_R' else: thisfilter = 'DECAM_Z' qadict["FIT_FILTER"] = thisfilter qadict["EXPTIME"] = exptime if thisfilter in ('DECAM_G', 'BASS_G'): photflux = frame.fibermap['FLUX_G'] elif thisfilter in ('DECAM_R', 'BASS_R'): photflux = frame.fibermap['FLUX_R'] elif thisfilter in ('DECAM_Z', 'MZLS_Z'): photflux = frame.fibermap['FLUX_Z'] else: raise ValueError('Unknown filter {}'.format(thisfilter)) # - Loop over each target type, and associate SNR and image magnitudes for each type. fitcoeff = [] snrmag = [] fitsnr = [] fitT = [] elgfibers = np.where((frame.fibermap['DESI_TARGET'] & desi_mask.ELG) != 0)[0] lrgfibers = np.where((frame.fibermap['DESI_TARGET'] & desi_mask.LRG) != 0)[0] qsofibers = np.where((frame.fibermap['DESI_TARGET'] & desi_mask.QSO) != 0)[0] bgsfibers = np.where((frame.fibermap['DESI_TARGET'] & desi_mask.BGS_ANY) != 0)[0] mwsfibers = np.where((frame.fibermap['DESI_TARGET'] & desi_mask.MWS_ANY) != 0)[0] stdfibers = np.where(isStdStar(frame.fibermap))[0] for T, fibers in ( ['ELG', elgfibers], ['LRG', lrgfibers], ['QSO', qsofibers], ['BGS', bgsfibers], ['MWS', mwsfibers], ['STAR', stdfibers], ): if len(fibers) == 0: continue # S/N of the fibers medsnr = mediansnr[fibers] mags = np.zeros(medsnr.shape) fit_these = photflux[fibers] > 0 mags[fit_these] = 22.5 - 2.5 * np.log10(photflux[fibers][fit_these]) # Fit try: popt, pcov = optimize.curve_fit(s2n_flux_astro, photflux[fibers][fit_these].data, medsnr[fit_these]/exptime**(1/2), p0=(0.02, 1.)) except RuntimeError: fitcoeff.append([np.nan, np.nan]) else: fitcoeff.append([popt[0], popt[1]]) # Save fitT.append(T) qadict["{:s}_FIBERID".format(T)] = fibers.tolist() snr_mag = [medsnr.tolist(), mags.tolist()] snrmag.append(snr_mag) # Save qadict["SNR_MAG_TGT"] = snrmag qadict["FITCOEFF_TGT"] = fitcoeff qadict["OBJLIST"] = fitT # Return return qadict, fitsnr
def main(args, comm=None): """ finds the best models of all standard stars in the frame and normlize the model flux. Output is written to a file and will be called for calibration. """ log = get_logger() log.info("mag delta %s = %f (for the pre-selection of stellar models)" % (args.color, args.delta_color)) if args.mpi or comm is not None: from mpi4py import MPI if comm is None: comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() if rank == 0: log.info('mpi parallelizing with {} ranks'.format(size)) else: comm = None rank = 0 size = 1 # disable multiprocess by forcing ncpu = 1 when using MPI if comm is not None: ncpu = 1 if rank == 0: log.info('disabling multiprocess (forcing ncpu = 1)') else: ncpu = args.ncpu if ncpu > 1: if rank == 0: log.info( 'multiprocess parallelizing with {} processes'.format(ncpu)) if args.ignore_gpu and desispec.fluxcalibration.use_gpu: # Opt-out of GPU usage desispec.fluxcalibration.use_gpu = False if rank == 0: log.info('ignoring GPU') elif desispec.fluxcalibration.use_gpu: # Nothing to do here, GPU is used by default if available if rank == 0: log.info('using GPU') else: if rank == 0: log.info('GPU not available') std_targetids = None if args.std_targetids is not None: std_targetids = args.std_targetids # READ DATA ############################################ # First loop through and group by exposure and spectrograph frames_by_expid = {} rows = list() for filename in args.frames: log.info("reading %s" % filename) frame = io.read_frame(filename) night = safe_read_key(frame.meta, "NIGHT") expid = safe_read_key(frame.meta, "EXPID") camera = safe_read_key(frame.meta, "CAMERA").strip().lower() rows.append((night, expid, camera)) spec = camera[1] uniq_key = (expid, spec) if uniq_key in frames_by_expid.keys(): frames_by_expid[uniq_key][camera] = frame else: frames_by_expid[uniq_key] = {camera: frame} input_frames_table = Table(rows=rows, names=('NIGHT', 'EXPID', 'TILEID')) frames = {} flats = {} skies = {} spectrograph = None starfibers = None starindices = None fibermap = None # For each unique expid,spec pair, get the logical OR of the FIBERSTATUS for all # cameras and then proceed with extracting the frame information # once we modify the fibermap FIBERSTATUS for (expid, spec), camdict in frames_by_expid.items(): fiberstatus = None for frame in camdict.values(): if fiberstatus is None: fiberstatus = frame.fibermap['FIBERSTATUS'].data.copy() else: fiberstatus |= frame.fibermap['FIBERSTATUS'] for camera, frame in camdict.items(): frame.fibermap['FIBERSTATUS'] |= fiberstatus # Set fibermask flagged spectra to have 0 flux and variance frame = get_fiberbitmasked_frame(frame, bitmask='stdstars', ivar_framemask=True) frame_fibermap = frame.fibermap if std_targetids is None: frame_starindices = np.where(isStdStar(frame_fibermap))[0] else: frame_starindices = np.nonzero( np.isin(frame_fibermap['TARGETID'], std_targetids))[0] #- Confirm that all fluxes have entries but trust targeting bits #- to get basic magnitude range correct keep_legacy = np.ones(len(frame_starindices), dtype=bool) for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']: #- and W1 and W2? keep_legacy &= frame_fibermap[colname][ frame_starindices] > 10**((22.5 - 30) / 2.5) keep_legacy &= frame_fibermap[colname][ frame_starindices] < 10**((22.5 - 0) / 2.5) keep_gaia = np.ones(len(frame_starindices), dtype=bool) for colname in ['G', 'BP', 'RP']: #- and W1 and W2? keep_gaia &= frame_fibermap[ 'GAIA_PHOT_' + colname + '_MEAN_MAG'][frame_starindices] > 10 keep_gaia &= frame_fibermap[ 'GAIA_PHOT_' + colname + '_MEAN_MAG'][frame_starindices] < 20 n_legacy_std = keep_legacy.sum() n_gaia_std = keep_gaia.sum() keep = keep_legacy | keep_gaia # accept both types of standards for the time being # keep the indices for gaia/legacy subsets gaia_indices = keep_gaia[keep] legacy_indices = keep_legacy[keep] frame_starindices = frame_starindices[keep] if spectrograph is None: spectrograph = frame.spectrograph fibermap = frame_fibermap starindices = frame_starindices starfibers = fibermap["FIBER"][starindices] elif spectrograph != frame.spectrograph: log.error("incompatible spectrographs {} != {}".format( spectrograph, frame.spectrograph)) raise ValueError("incompatible spectrographs {} != {}".format( spectrograph, frame.spectrograph)) elif starindices.size != frame_starindices.size or np.sum( starindices != frame_starindices) > 0: log.error("incompatible fibermap") raise ValueError("incompatible fibermap") if not camera in frames: frames[camera] = [] frames[camera].append(frame) # possibly cleanup memory del frames_by_expid for filename in args.skymodels: log.info("reading %s" % filename) sky = io.read_sky(filename) camera = safe_read_key(sky.header, "CAMERA").strip().lower() if not camera in skies: skies[camera] = [] skies[camera].append(sky) for filename in args.fiberflats: log.info("reading %s" % filename) flat = io.read_fiberflat(filename) camera = safe_read_key(flat.header, "CAMERA").strip().lower() # NEED TO ADD MORE CHECKS if camera in flats: log.warning( "cannot handle several flats of same camera (%s), will use only the first one" % camera) #raise ValueError("cannot handle several flats of same camera (%s)"%camera) else: flats[camera] = flat # if color is not specified we decide on the fly color = args.color if color is not None: if color[:4] == 'GAIA': legacy_color = False gaia_color = True else: legacy_color = True gaia_color = False if n_legacy_std == 0 and legacy_color: raise Exception( 'Specified Legacy survey color, but no legacy standards') if n_gaia_std == 0 and gaia_color: raise Exception('Specified gaia color, but no gaia stds') if starindices.size == 0: log.error("no STD star found in fibermap") raise ValueError("no STD star found in fibermap") log.info("found %d STD stars" % starindices.size) if n_legacy_std == 0: gaia_std = True if color is None: color = 'GAIA-BP-RP' else: gaia_std = False if color is None: color = 'G-R' if n_gaia_std > 0: log.info('Gaia standards found but not used') if gaia_std: # The name of the reference filter to which we normalize the flux ref_mag_name = 'GAIA-G' color_band1, color_band2 = ['GAIA-' + _ for _ in color[5:].split('-')] log.info( "Using Gaia standards with color {} and normalizing to {}".format( color, ref_mag_name)) # select appropriate subset of standards starindices = starindices[gaia_indices] starfibers = starfibers[gaia_indices] else: ref_mag_name = 'R' color_band1, color_band2 = color.split('-') log.info("Using Legacy standards with color {} and normalizing to {}". format(color, ref_mag_name)) # select appropriate subset of standards starindices = starindices[legacy_indices] starfibers = starfibers[legacy_indices] # excessive check but just in case if not color in ['G-R', 'R-Z', 'GAIA-BP-RP', 'GAIA-G-RP']: raise ValueError('Unknown color {}'.format(color)) # log.warning("Not using flux errors for Standard Star fits!") # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA ############################################ # since poping dict, we need to copy keys to iterate over to avoid # RuntimeError due to changing dict frame_cams = list(frames.keys()) for cam in frame_cams: if not cam in skies: log.warning("Missing sky for %s" % cam) frames.pop(cam) continue if not cam in flats: log.warning("Missing flat for %s" % cam) frames.pop(cam) continue flat = flats[cam] for frame, sky in zip(frames[cam], skies[cam]): frame.flux = frame.flux[starindices] frame.ivar = frame.ivar[starindices] frame.ivar *= (frame.mask[starindices] == 0) frame.ivar *= (sky.ivar[starindices] != 0) frame.ivar *= (sky.mask[starindices] == 0) frame.ivar *= (flat.ivar[starindices] != 0) frame.ivar *= (flat.mask[starindices] == 0) frame.flux *= (frame.ivar > 0) # just for clean plots for star in range(frame.flux.shape[0]): ok = np.where((frame.ivar[star] > 0) & (flat.fiberflat[star] != 0))[0] if ok.size > 0: frame.flux[star] = frame.flux[star] / flat.fiberflat[ star] - sky.flux[star] frame.resolution_data = frame.resolution_data[starindices] nframes = len(frames[cam]) if nframes > 1: # optimal weights for the coaddition = ivar*throughput, not directly ivar, # we estimate the relative throughput with median fluxes at this stage medflux = np.zeros(nframes) for i, frame in enumerate(frames[cam]): if np.sum(frame.ivar > 0) == 0: log.error( "ivar=0 for all std star spectra in frame {}-{:08d}". format(cam, frame.meta["EXPID"])) else: medflux[i] = np.median(frame.flux[frame.ivar > 0]) log.debug("medflux = {}".format(medflux)) medflux *= (medflux > 0) if np.sum(medflux > 0) == 0: log.error( "mean median flux = 0, for all stars in fibers {}".format( list(frames[cam][0].fibermap["FIBER"][starindices]))) sys.exit(12) mmedflux = np.mean(medflux[medflux > 0]) weights = medflux / mmedflux log.info("coadding {} exposures in cam {}, w={}".format( nframes, cam, weights)) sw = np.zeros(frames[cam][0].flux.shape) swf = np.zeros(frames[cam][0].flux.shape) swr = np.zeros(frames[cam][0].resolution_data.shape) for i, frame in enumerate(frames[cam]): sw += weights[i] * frame.ivar swf += weights[i] * frame.ivar * frame.flux swr += weights[i] * frame.ivar[:, None, :] * frame.resolution_data coadded_frame = frames[cam][0] coadded_frame.ivar = sw coadded_frame.flux = swf / (sw + (sw == 0)) coadded_frame.resolution_data = swr / ((sw + (sw == 0))[:, None, :]) frames[cam] = [coadded_frame] # CHECK S/N ############################################ # for each band in 'brz', record quadratic sum of median S/N across wavelength snr = dict() for band in ['b', 'r', 'z']: snr[band] = np.zeros(starindices.size) for cam in frames: band = cam[0].lower() for frame in frames[cam]: msnr = np.median(frame.flux * np.sqrt(frame.ivar) / np.sqrt(np.gradient(frame.wave)), axis=1) # median SNR per sqrt(A.) msnr *= (msnr > 0) snr[band] = np.sqrt(snr[band]**2 + msnr**2) log.info("SNR(B) = {}".format(snr['b'])) ############################### max_number_of_stars = 50 min_blue_snr = 4. ############################### indices = np.argsort(snr['b'])[::-1][:max_number_of_stars] validstars = np.where(snr['b'][indices] > min_blue_snr)[0] #- TODO: later we filter on models based upon color, thus throwing #- away very blue stars for which we don't have good models. log.info("Number of stars with median stacked blue S/N > {} /sqrt(A) = {}". format(min_blue_snr, validstars.size)) if validstars.size == 0: log.error("No valid star") sys.exit(12) validstars = indices[validstars] for band in ['b', 'r', 'z']: snr[band] = snr[band][validstars] log.info("BLUE SNR of selected stars={}".format(snr['b'])) for cam in frames: for frame in frames[cam]: frame.flux = frame.flux[validstars] frame.ivar = frame.ivar[validstars] frame.resolution_data = frame.resolution_data[validstars] starindices = starindices[validstars] starfibers = starfibers[validstars] nstars = starindices.size fibermap = Table(fibermap[starindices]) # MASK OUT THROUGHPUT DIP REGION ############################################ mask_throughput_dip_region = True if mask_throughput_dip_region: wmin = 4300. wmax = 4500. log.warning( "Masking out the wavelength region [{},{}]A in the standard star fit" .format(wmin, wmax)) for cam in frames: for frame in frames[cam]: ii = np.where((frame.wave >= wmin) & (frame.wave <= wmax))[0] if ii.size > 0: frame.ivar[:, ii] = 0 # READ MODELS ############################################ log.info("reading star models in %s" % args.starmodels) stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates( args.starmodels) # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG ############################################ #- Support older fibermaps if 'PHOTSYS' not in fibermap.colnames: log.warning('Old fibermap format; using defaults for missing columns') log.warning(" PHOTSYS = 'S'") log.warning(" EBV = 0.0") fibermap['PHOTSYS'] = 'S' fibermap['EBV'] = 0.0 if not np.in1d(np.unique(fibermap['PHOTSYS']), ['', 'N', 'S', 'G']).all(): log.error('Unknown PHOTSYS found') raise Exception('Unknown PHOTSYS found') # Fetching Filter curves model_filters = dict() for band in ["G", "R", "Z"]: for photsys in np.unique(fibermap['PHOTSYS']): if photsys in ['N', 'S']: model_filters[band + photsys] = load_legacy_survey_filter( band=band, photsys=photsys) if len(model_filters) == 0: log.info('No Legacy survey photometry identified in fibermap') # I will always load gaia data even if we are fitting LS standards only for band in ["G", "BP", "RP"]: model_filters["GAIA-" + band] = load_gaia_filter(band=band, dr=2) # Compute model mags on rank 0 and bcast result to other ranks # This sidesteps an OOM event on Cori Haswell with "-c 2" model_mags = None if rank == 0: log.info("computing model mags for %s" % sorted(model_filters.keys())) model_mags = dict() for filter_name in model_filters.keys(): model_mags[filter_name] = get_magnitude(stdwave, stdflux, model_filters, filter_name) log.info("done computing model mags") if comm is not None: model_mags = comm.bcast(model_mags, root=0) # LOOP ON STARS TO FIND BEST MODEL ############################################ star_mags = dict() star_unextincted_mags = dict() if gaia_std and (fibermap['EBV'] == 0).all(): log.info("Using E(B-V) from SFD rather than FIBERMAP") # when doing gaia standards, on old tiles the # EBV is not set so we fetch from SFD (in original SFD scaling) ebv = SFDMap(scaling=1).ebv( acoo.SkyCoord(ra=fibermap['TARGET_RA'] * units.deg, dec=fibermap['TARGET_DEC'] * units.deg)) else: ebv = fibermap['EBV'] photometric_systems = np.unique(fibermap['PHOTSYS']) if not gaia_std: for band in ['G', 'R', 'Z']: star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_' + band]) star_unextincted_mags[band] = np.zeros(star_mags[band].shape) for photsys in photometric_systems: r_band = extinction_total_to_selective_ratio( band, photsys) # dimensionless # r_band = a_band / E(B-V) # E(B-V) is a difference of magnitudes (dimensionless) # a_band = -2.5*log10(effective dust transmission) , dimensionless # effective dust transmission = # integral( SED(lambda) * filter_transmission(lambda,band) * dust_transmission(lambda,E(B-V)) dlamdba) # / integral( SED(lambda) * filter_transmission(lambda,band) dlamdba) selection = (fibermap['PHOTSYS'] == photsys) a_band = r_band * ebv[selection] # dimensionless star_unextincted_mags[band][selection] = 22.5 - 2.5 * np.log10( fibermap['FLUX_' + band][selection]) - a_band for band in ['G', 'BP', 'RP']: star_mags['GAIA-' + band] = fibermap['GAIA_PHOT_' + band + '_MEAN_MAG'] for band, extval in gaia_extinction(star_mags['GAIA-G'], star_mags['GAIA-BP'], star_mags['GAIA-RP'], ebv).items(): star_unextincted_mags['GAIA-' + band] = star_mags['GAIA-' + band] - extval star_colors = dict() star_unextincted_colors = dict() # compute the colors and define the unextincted colors # the unextincted colors are filled later if not gaia_std: for c1, c2 in ['GR', 'RZ']: star_colors[c1 + '-' + c2] = star_mags[c1] - star_mags[c2] star_unextincted_colors[c1 + '-' + c2] = (star_unextincted_mags[c1] - star_unextincted_mags[c2]) for c1, c2 in [('BP', 'RP'), ('G', 'RP')]: star_colors['GAIA-' + c1 + '-' + c2] = (star_mags['GAIA-' + c1] - star_mags['GAIA-' + c2]) star_unextincted_colors['GAIA-' + c1 + '-' + c2] = (star_unextincted_mags['GAIA-' + c1] - star_unextincted_mags['GAIA-' + c2]) linear_coefficients = np.zeros((nstars, stdflux.shape[0])) chi2dof = np.zeros((nstars)) redshift = np.zeros((nstars)) normflux = np.zeros((nstars, stdwave.size)) fitted_model_colors = np.zeros(nstars) local_comm, head_comm = None, None if comm is not None: # All ranks in local_comm work on the same stars local_comm = comm.Split(rank % nstars, rank) # The color 1 in head_comm contains all ranks that are have rank 0 in local_comm head_comm = comm.Split(rank < nstars, rank) for star in range(rank % nstars, nstars, size): log.info("rank %d: finding best model for observed star #%d" % (rank, star)) # np.array of wave,flux,ivar,resol wave = {} flux = {} ivar = {} resolution_data = {} for camera in frames: for i, frame in enumerate(frames[camera]): identifier = "%s-%d" % (camera, i) wave[identifier] = frame.wave flux[identifier] = frame.flux[star] ivar[identifier] = frame.ivar[star] resolution_data[identifier] = frame.resolution_data[star] # preselect models based on magnitudes photsys = fibermap['PHOTSYS'][star] if gaia_std: model_colors = model_mags[color_band1] - model_mags[color_band2] else: model_colors = model_mags[color_band1 + photsys] - model_mags[color_band2 + photsys] color_diff = model_colors - star_unextincted_colors[color][star] selection = np.abs(color_diff) < args.delta_color if np.sum(selection) == 0: log.warning("no model in the selected color range for this star") continue # smallest cube in parameter space including this selection (needed for interpolation) new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max( teff[selection])) new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max( logg[selection])) new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max( feh[selection])) selection = np.where(new_selection)[0] log.info( "star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d" % (star, starfibers[star], color, star_unextincted_colors[color][star], selection.size, stdflux.shape[0])) # Match unextincted standard stars to data match_templates_result = match_templates( wave, flux, ivar, resolution_data, stdwave, stdflux[selection], teff[selection], logg[selection], feh[selection], ncpu=ncpu, z_max=args.z_max, z_res=args.z_res, template_error=args.template_error, comm=local_comm) # Only local rank 0 can perform the remaining work if local_comm is not None and local_comm.Get_rank() != 0: continue coefficients, redshift[star], chi2dof[star] = match_templates_result linear_coefficients[star, selection] = coefficients log.info( 'Star Fiber: {}; TEFF: {:.3f}; LOGG: {:.3f}; FEH: {:.3f}; Redshift: {:g}; Chisq/dof: {:.3f}' .format(starfibers[star], np.inner(teff, linear_coefficients[star]), np.inner(logg, linear_coefficients[star]), np.inner(feh, linear_coefficients[star]), redshift[star], chi2dof[star])) # Apply redshift to original spectrum at full resolution model = np.zeros(stdwave.size) redshifted_stdwave = stdwave * (1 + redshift[star]) for i, c in enumerate(linear_coefficients[star]): if c != 0: model += c * np.interp(stdwave, redshifted_stdwave, stdflux[i]) # Apply dust extinction to the model log.info("Applying MW dust extinction to star {} with EBV = {}".format( star, ebv[star])) model *= dust_transmission(stdwave, ebv[star]) # Compute final color of dust-extincted model photsys = fibermap['PHOTSYS'][star] if not gaia_std: model_mag1, model_mag2 = [ get_magnitude(stdwave, model, model_filters, _ + photsys) for _ in [color_band1, color_band2] ] else: model_mag1, model_mag2 = [ get_magnitude(stdwave, model, model_filters, _) for _ in [color_band1, color_band2] ] if color_band1 == ref_mag_name: model_magr = model_mag1 elif color_band2 == ref_mag_name: model_magr = model_mag2 else: # if the reference magnitude is not among colours # I'm fetching it separately. This will happen when # colour is BP-RP and ref magnitude is G if gaia_std: model_magr = get_magnitude(stdwave, model, model_filters, ref_mag_name) else: model_magr = get_magnitude(stdwave, model, model_filters, ref_mag_name + photsys) fitted_model_colors[star] = model_mag1 - model_mag2 #- TODO: move this back into normalize_templates, at the cost of #- recalculating a model magnitude? cur_refmag = star_mags[ref_mag_name][star] # Normalize the best model using reported magnitude scalefac = 10**((model_magr - cur_refmag) / 2.5) log.info('scaling {} mag {:.3f} to {:.3f} using scale {}'.format( ref_mag_name, model_magr, cur_refmag, scalefac)) normflux[star] = model * scalefac if head_comm is not None and rank < nstars: # head_comm color is 1 linear_coefficients = head_comm.reduce(linear_coefficients, op=MPI.SUM, root=0) redshift = head_comm.reduce(redshift, op=MPI.SUM, root=0) chi2dof = head_comm.reduce(chi2dof, op=MPI.SUM, root=0) fitted_model_colors = head_comm.reduce(fitted_model_colors, op=MPI.SUM, root=0) normflux = head_comm.reduce(normflux, op=MPI.SUM, root=0) # Check at least one star was fit. The check is peformed on rank 0 and # the result is bcast to other ranks so that all ranks exit together if # the check fails. atleastonestarfit = False if rank == 0: fitted_stars = np.where(chi2dof != 0)[0] atleastonestarfit = fitted_stars.size > 0 if comm is not None: atleastonestarfit = comm.bcast(atleastonestarfit, root=0) if not atleastonestarfit: log.error("No star has been fit.") sys.exit(12) # Now write the normalized flux for all best models to a file if rank == 0: # get the fibermap from any input frame for the standard stars fibermap = Table(frame.fibermap) keep = np.isin(fibermap['FIBER'], starfibers[fitted_stars]) fibermap = fibermap[keep] # drop fibermap columns specific to exposures instead of targets for col in [ 'DELTA_X', 'DELTA_Y', 'EXPTIME', 'NUM_ITER', 'FIBER_RA', 'FIBER_DEC', 'FIBER_X', 'FIBER_Y' ]: if col in fibermap.colnames: fibermap.remove_column(col) data = {} data['LOGG'] = linear_coefficients[fitted_stars, :].dot(logg) data['TEFF'] = linear_coefficients[fitted_stars, :].dot(teff) data['FEH'] = linear_coefficients[fitted_stars, :].dot(feh) data['CHI2DOF'] = chi2dof[fitted_stars] data['REDSHIFT'] = redshift[fitted_stars] data['COEFF'] = linear_coefficients[fitted_stars, :] data['DATA_%s' % color] = star_colors[color][fitted_stars] data['MODEL_%s' % color] = fitted_model_colors[fitted_stars] data['BLUE_SNR'] = snr['b'][fitted_stars] data['RED_SNR'] = snr['r'][fitted_stars] data['NIR_SNR'] = snr['z'][fitted_stars] io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers[fitted_stars], data, fibermap, input_frames_table)