Пример #1
0
    def test_compute_fiberflat(self):
        """
        Tests desi_compute_fiberflat --infile frame.fits --outfile fiberflat.fits
        """
        self._write_frame(flavor='flat')
        self._write_fibermap()

        # QA fig requires fibermapfile
        cmd = '{} {}/desi_compute_fiberflat --infile {} --outfile {} --qafile {} --qafig {}'.format(
                sys.executable, self.binDir, self.framefile,
                self.fiberflatfile, self.qa_calib_file, self.qafig)
        outputs = [self.fiberflatfile,self.qa_calib_file,self.qafig]
        inputs = [self.framefile,]
        err = runcmd(cmd, inputs=inputs, outputs=outputs, clobber=True)
        self.assertEqual(err, 0)

        #- Confirm that the output file can be read as a fiberflat
        ff1 = io.read_fiberflat(self.fiberflatfile)
        
        #- Remove outputs and call again via function instead of system call
        self._remove_files(outputs)
        args = desispec.scripts.fiberflat.parse(cmd.split()[2:])        
        err = runcmd(desispec.scripts.fiberflat.main, args=[args,],
            inputs=inputs, outputs=outputs, clobber=True)

        #- Confirm that the output file can be read as a fiberflat
        ff2 = io.read_fiberflat(self.fiberflatfile)
        
        self.assertTrue(np.all(ff1.fiberflat == ff2.fiberflat))
        self.assertTrue(np.all(ff1.ivar == ff2.ivar))
        self.assertTrue(np.all(ff1.mask == ff2.mask))
        self.assertTrue(np.all(ff1.meanspec == ff2.meanspec))
        self.assertTrue(np.all(ff1.wave == ff2.wave))
        self.assertTrue(np.all(ff1.fibers == ff2.fibers))        
Пример #2
0
def main(args):

    log = get_logger()
    log.info("starting at {}".format(time.asctime()))
    inputs = []
    for filename in args.infile:
        inflat = read_fiberflat(filename)
        if args.program is not None:
            if args.program != inflat.header["PROGRAM"]:
                log.info("skip {}".format(filename))
                continue

        inputs.append(read_fiberflat(filename))
    fiberflat = average_fiberflat(inputs)
    write_fiberflat(args.outfile, fiberflat)
    log.info("successfully wrote %s" % args.outfile)
Пример #3
0
def main():

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--infile',
                        type=str,
                        default=None,
                        required=True,
                        help='path of DESI exposure frame fits file')
    parser.add_argument('--fibermap',
                        type=str,
                        default=None,
                        required=True,
                        help='path of DESI exposure frame fits file')
    parser.add_argument('--fiberflat',
                        type=str,
                        default=None,
                        required=True,
                        help='path of DESI fiberflat fits file')
    parser.add_argument('--outfile',
                        type=str,
                        default=None,
                        required=True,
                        help='path of DESI sky fits file')

    args = parser.parse_args()
    log = get_logger()

    log.info("starting")

    # read exposure to load data and get range of spectra
    frame = read_frame(args.infile)
    specmin = frame.header["SPECMIN"]
    specmax = frame.header["SPECMAX"]

    # read fibermap to locate sky fibers
    fibermap = read_fibermap(args.fibermap)
    selection = np.where((fibermap["OBJTYPE"] == "SKY")
                         & (fibermap["FIBER"] >= specmin)
                         & (fibermap["FIBER"] <= specmax))[0]
    if selection.size == 0:
        log.error("no sky fiber in fibermap %s" % args.fibermap)
        sys.exit(12)

    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat to sky fibers
    apply_fiberflat(frame, fiberflat)

    # compute sky model
    skymodel = compute_sky(frame, fibermap)

    # write result
    write_sky(args.outfile, skymodel, frame.header)

    log.info("successfully wrote %s" % args.outfile)
Пример #4
0
def main(args) :

    log=get_logger()

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel=read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux,model_wave,model_fibers=read_stdstar_models(args.models)

    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap
    model_fibers = model_fibers%500
    if np.any(fibermap['OBJTYPE'][model_fibers] != 'STD'):
        for i in model_fibers:
            log.error("inconsistency with spectrum %d, OBJTYPE='%s' in fibermap"%(i,fibermap["OBJTYPE"][i]))
        sys.exit(12)

    fluxcalib = compute_flux_calibration(frame, model_wave, model_flux)

    # QA
    if (args.qafile is not None):
        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR'])
        # Run
        #import pdb; pdb.set_trace()
        qaframe.run_qa('FLUXCALIB', (frame, fluxcalib))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s"%args.outfile)
Пример #5
0
def main(args):

    log = get_logger()
    log.info("starting at {}".format(time.asctime()))
    inputs = []
    for filename in args.infile:
        inputs.append(read_fiberflat(filename))
    fiberflat = average_fiberflat(inputs)
    write_fiberflat(args.outfile, fiberflat)
    log.info("successfully wrote %s" % args.outfile)
Пример #6
0
def main(args) :

    log=get_logger()
    log.info("starting at {}".format(time.asctime()))
    inputs=[]
    for filename in args.infile :
        inputs.append(read_fiberflat(filename))
    fiberflat = average_fiberflat(inputs)
    write_fiberflat(args.outfile,fiberflat)
    log.info("successfully wrote %s"%args.outfile)
Пример #7
0
def main() :

    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--infile', type = str, default = None, required=True,
                        help = 'path of DESI exposure frame fits file')
    parser.add_argument('--fiberflat', type = str, default = None,
                        help = 'path of DESI fiberflat fits file')
    parser.add_argument('--sky', type = str, default = None,
                        help = 'path of DESI sky fits file')
    parser.add_argument('--calib', type = str, default = None,
                        help = 'path of DESI calibration fits file')
    parser.add_argument('--outfile', type = str, default = None, required=True,
                        help = 'path of DESI sky fits file')
    # add calibration here when exists

    args = parser.parse_args()
    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    frame = read_frame(args.infile)
    
    if args.fiberflat!=None :
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to sky fibers
        apply_fiberflat(frame, fiberflat)

    if args.sky!=None :
        log.info("subtract sky")
        # read sky
        skymodel=read_sky(args.sky)
        # subtract sky
        subtract_sky(frame, skymodel)

    if args.calib!=None :
        log.info("calibrate")
        # read calibration
        fluxcalib=read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)


    # save output
    write_frame(args.outfile, frame)

    log.info("successfully wrote %s"%args.outfile)
Пример #8
0
def main(args):
    log = get_logger()

    frame=read_frame(args.infile, skip_resolution=True)
    fibermap=read_fibermap(args.infile)
    fiberflat=read_fiberflat(args.fiberflat)
    skymodel=read_sky(args.sky)
    fluxcalib=read_flux_calibration(args.calib)

    cam=args.infile.split('/')[-1].split('-')[1]
    band=cam[0]
    bands=[band]

    # Indices of sky fibers. 
    sky_indx = np.where(fibermap['OBJTYPE'] == 'SKY')[0]
    
    rd_var, sky_var = calc_var(bands, args.nea, args.psf, frame, fluxcalib, fiberflat, skymodel, components=True)   
    var = calc_var(bands, args.nea, args.psf, frame, fluxcalib, fiberflat, skymodel, components=False)
    
    nsky = 4 
    fig, axes = plt.subplots(1, nsky, figsize=(5 * nsky, 5))

    for i in range(nsky):
        def calc_alphavar(alpha):
            return alpha * rd_var[sky_indx,:] + sky_var[sky_indx,:]
        
        def alpha_fit(alpha):
            _var = calc_alphavar(alpha)
            ivar =  1. / _var
            X2 = (frame.ivar[sky_indx,:] - ivar)**2.
            return np.sum(X2)
        
        res = minimize(alpha_fit, x0=[1.])
        alpha = res.x[0]

        indx = sky_indx[i]
        
        axes[i].plot(skymodel.wave, median_filter(frame.ivar[indx,:], 10), lw=0.4, label='Sky frame IVAR', alpha=0.4)
        axes[i].plot(skymodel.wave, 1./rd_var[indx,:], lw=0.4, label='Model rd. IVAR', alpha=0.4)
        # axes[i].plot(skymodel.wave, 1./sky_var[indx,:], lw=0.4, label='Model Sky IVAR', alpha=0.4)
        # axes[i].plot(skymodel.wave, 1./var[indx,:], lw=0.4, label=r'Model IVAR', alpha=0.4)
        axes[i].plot(skymodel.wave, median_filter(1./calc_alphavar(alpha)[i,:], 10), lw=0.4, label=r'$\alpha$ Model IVAR', alpha=0.4)
        axes[i].set_title(r'Fiber {:d} ($\alpha$ = {:.6f})'.format(indx, alpha))
        axes[i].set_xlabel(r'Wavelength [$AA$]')
        axes[i].set_yscale('log')
        axes[i].set_ylim(bottom=5.e-4, top=3.e-2)
        axes[i].legend(frameon=False, loc=2)
        
    axes[0].set_ylabel('e/A')
        
    pl.show()
Пример #9
0
    def test_compute_fiberflat(self):
        """
        Tests desi_compute_fiberflat.py --infile frame.fits --outfile fiberflat.fits
        """
        self._write_frame()
        #- run the command and confirm error code = 0
        cmd = '{} {}/desi_compute_fiberflat.py --infile {} --outfile {}'.format(
            sys.executable, self.binDir, self.framefile, self.fiberflatfile)
        # self.assertTrue(os.path.exists(os.path.join(self.binDir,'desi_compute_fiberflat.py')))
        err = runcmd(cmd, [self.framefile,], [self.fiberflatfile,], clobber=True)
        self.assertEqual(err, 0)

        #- Confirm that the output file can be read as a fiberflat
        ff = io.read_fiberflat(self.fiberflatfile)
Пример #10
0
    def run(self, indir):
        '''TODO: document'''

        log = desiutil.log.get_logger()

        results = list()

        infiles = glob.glob(os.path.join(indir, 'qframe-*.fits'))
        if len(infiles) == 0:
            log.error("no qframe in {}".format(indir))
            return None

        for filename in infiles:
            qframe = read_qframe(filename)
            night = int(qframe.meta['NIGHT'])
            expid = int(qframe.meta['EXPID'])
            cam = qframe.meta['CAMERA'][0].upper()
            spectro = int(qframe.meta['CAMERA'][1])

            try:
                cfinder = CalibFinder([qframe.meta])
            except:
                log.error(
                    "failed to find calib for qframe {}".format(filename))
                continue
            if not cfinder.haskey("FIBERFLAT"):
                log.warning(
                    "no known fiberflat for qframe {}".format(filename))
                continue
            fflat = read_fiberflat(cfinder.findfile("FIBERFLAT"))
            tmp = np.median(fflat.fiberflat, axis=1)
            reference_fflat = tmp / np.median(tmp)

            tmp = np.median(qframe.flux, axis=1)
            this_fflat = tmp / np.median(tmp)

            for f, fiber in enumerate(qframe.fibermap["FIBER"]):
                results.append(
                    collections.OrderedDict(NIGHT=night,
                                            EXPID=expid,
                                            SPECTRO=spectro,
                                            CAM=cam,
                                            FIBER=fiber,
                                            FIBERFLAT=this_fflat[f],
                                            REF_FIBERFLAT=reference_fflat[f]))

        if len(results) == 0:
            return None
        return Table(results, names=results[0].keys())
Пример #11
0
def main(args) :

    log=get_logger()

    log.info("starting")

    # read exposure to load data and get range of spectra
    frame = read_frame(args.infile)
    specmin, specmax = np.min(frame.fibers), np.max(frame.fibers)

    if args.cosmics_nsig>0 : # Reject cosmics
        reject_cosmic_rays_1d(frame,args.cosmics_nsig)

    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat to sky fibers
    apply_fiberflat(frame, fiberflat)

    # compute sky model
    skymodel = compute_sky(frame,add_variance=(not args.no_extra_variance),\
                           angular_variation_deg=args.angular_variation_deg,\
                           chromatic_variation_deg=args.chromatic_variation_deg,\
                           adjust_wavelength=args.adjust_wavelength,\
                           adjust_lsf=args.adjust_lsf)

    # QA
    if (args.qafile is not None) or (args.qafig is not None):
        log.info("performing skysub QA")
        # Load
        qaframe = load_qa_frame(args.qafile, frame_meta=frame.meta, flavor=frame.meta['FLAVOR'])
        # Run
        qaframe.run_qa('SKYSUB', (frame, skymodel))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_skyres(args.qafig, frame, skymodel, qaframe)

    # record inputs
    frame.meta['IN_FRAME'] = shorten_filename(args.infile)
    frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat)

    # write result
    write_sky(args.outfile, skymodel, frame.meta)
    log.info("successfully wrote %s"%args.outfile)
Пример #12
0
def main() :

    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--infile', type = str, default = None, required=True,
                        help = 'path of DESI exposure frame fits file')
    parser.add_argument('--fibermap', type = str, default = None, required=True,
                        help = 'path of DESI exposure frame fits file')
    parser.add_argument('--fiberflat', type = str, default = None, required=True,
                        help = 'path of DESI fiberflat fits file')
    parser.add_argument('--outfile', type = str, default = None, required=True,
                        help = 'path of DESI sky fits file')


    args = parser.parse_args()
    log=get_logger()

    log.info("starting")

    # read exposure to load data and get range of spectra
    frame = read_frame(args.infile)
    specmin=frame.header["SPECMIN"]
    specmax=frame.header["SPECMAX"]

    # read fibermap to locate sky fibers
    fibermap = read_fibermap(args.fibermap)
    selection=np.where((fibermap["OBJTYPE"]=="SKY")&(fibermap["FIBER"]>=specmin)&(fibermap["FIBER"]<=specmax))[0]
    if selection.size == 0 :
        log.error("no sky fiber in fibermap %s"%args.fibermap)
        sys.exit(12)

    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat to sky fibers
    apply_fiberflat(frame, fiberflat)

    # compute sky model
    skymodel = compute_sky(frame, fibermap)

    # write result
    write_sky(args.outfile, skymodel, frame.header)

    log.info("successfully wrote %s"%args.outfile)
Пример #13
0
def main(args):

    log = get_logger()

    log.info("starting")

    # read exposure to load data and get range of spectra
    frame = read_frame(args.infile)
    specmin, specmax = np.min(frame.fibers), np.max(frame.fibers)

    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat to sky fibers
    apply_fiberflat(frame, fiberflat)

    # compute sky model
    skymodel = compute_sky(frame)

    # QA
    if (args.qafile is not None) or (args.qafig is not None):
        log.info("performing skysub QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame,
                                flavor=frame.meta['FLAVOR'])
        # Run
        qaframe.run_qa('SKYSUB', (frame, skymodel))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_skyres(args.qafig, frame, skymodel, qaframe)

    # write result
    write_sky(args.outfile, skymodel, frame.meta)
    log.info("successfully wrote %s" % args.outfile)
Пример #14
0
def main(args):

    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    frame = read_frame(args.infile)

    if args.fiberflat!=None :
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to sky fibers
        apply_fiberflat(frame, fiberflat)

    if args.sky!=None :
        log.info("subtract sky")
        # read sky
        skymodel=read_sky(args.sky)
        # subtract sky
        subtract_sky(frame, skymodel)

    if args.calib!=None :
        log.info("calibrate")
        # read calibration
        fluxcalib=read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)


    # save output
    write_frame(args.outfile, frame, units='1e-17 erg/(s cm2 A)')

    log.info("successfully wrote %s"%args.outfile)
Пример #15
0
def main(args) :

    log=get_logger()

    log.info("starting")

    # read exposure to load data and get range of spectra
    frame = read_frame(args.infile)
    specmin, specmax = np.min(frame.fibers), np.max(frame.fibers)

    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat to sky fibers
    apply_fiberflat(frame, fiberflat)

    # compute sky model
    skymodel = compute_sky(frame)

    # QA
    if (args.qafile is not None) or (args.qafig is not None):
        log.info("performing skysub QA")
        # Load
        qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR'])
        # Run
        qaframe.run_qa('SKYSUB', (frame, skymodel))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_skyres(args.qafig, frame, skymodel, qaframe)

    # write result
    write_sky(args.outfile, skymodel, frame.meta)
    log.info("successfully wrote %s"%args.outfile)
def main() :

    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--infile', type = str, default = None, required=True,
                        help = 'path of DESI exposure frame fits file')
    parser.add_argument('--fibermap', type = str, default = None, required=True,
                        help = 'path of DESI exposure frame fits file')
    parser.add_argument('--fiberflat', type = str, default = None, required=True,
                        help = 'path of DESI fiberflat fits file')
    parser.add_argument('--sky', type = str, default = None, required=True,
                        help = 'path of DESI sky fits file')
    parser.add_argument('--models', type = str, default = None, required=True,
                        help = 'path of spetro-photometric stellar spectra fits file')
    parser.add_argument('--outfile', type = str, default = None, required=True,
                        help = 'path of DESI flux calbration fits file')


    args = parser.parse_args()
    log=get_logger()

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)
    
    log.info("subtract sky")
    # read sky
    skymodel=read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux,model_wave,model_fibers=read_stdstar_models(args.models)

    # select fibers
    SPECMIN=frame.header["SPECMIN"]
    SPECMAX=frame.header["SPECMAX"]
    selec=np.where((model_fibers>=SPECMIN)&(model_fibers<=SPECMAX))[0]
    if selec.size == 0 :
        log.error("no stellar models for this spectro")
        sys.exit(12)
    fibers=model_fibers[selec]-frame.header["SPECMIN"]
    log.info("star fibers= %s"%str(fibers))

    table = read_fibermap(args.fibermap)
    bad=np.where(table["OBJTYPE"][fibers]!="STD")[0]
    if bad.size > 0 :
        for fiber in fibers[bad] :
            log.error("inconsistency with fiber %d, OBJTYPE='%s' in fibermap"%(fiber,table["OBJTYPE"][fiber]))
        sys.exit(12)

    fluxcalib = compute_flux_calibration(frame, fibers, model_wave, model_flux)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.header)


    log.info("successfully wrote %s"%args.outfile)
Пример #17
0
def main(args=None):

    if args is None:
        args = parse()
    elif isinstance(args, (list, tuple)):
        args = parse(args)

    t0 = time.time()
    log = get_logger()

    # guess if it is a preprocessed or a raw image
    hdulist = fits.open(args.image)
    is_input_preprocessed = ("IMAGE" in hdulist) & ("IVAR" in hdulist)
    primary_header = hdulist[0].header
    hdulist.close()

    if is_input_preprocessed:
        image = read_image(args.image)
    else:
        if args.camera is None:
            print(
                "ERROR: Need to specify camera to open a raw fits image (with all cameras in different fits HDUs)"
            )
            print(
                "Try adding the option '--camera xx', with xx in {brz}{0-9}, like r7,  or type 'desi_qproc --help' for more options"
            )
            sys.exit(12)
        image = read_raw(args.image, args.camera, fill_header=[
            1,
        ])

    if args.auto:
        log.debug("AUTOMATIC MODE")
        try:
            night = image.meta['NIGHT']
            if not 'EXPID' in image.meta:
                if 'EXPNUM' in image.meta:
                    log.warning('using EXPNUM {} for EXPID'.format(
                        image.meta['EXPNUM']))
                    image.meta['EXPID'] = image.meta['EXPNUM']
            expid = image.meta['EXPID']
        except KeyError as e:
            log.error(
                "Need at least NIGHT and EXPID (or EXPNUM) to run in auto mode. Retry without the --auto option."
            )
            log.error(str(e))
            sys.exit(12)

        indir = os.path.dirname(args.image)
        if args.fibermap is None:
            filename = '{}/fibermap-{:08d}.fits'.format(indir, expid)
            if os.path.isfile(filename):
                log.debug("auto-mode: found a fibermap, {}, using it!".format(
                    filename))
                args.fibermap = filename
        if args.output_preproc is None:
            if not is_input_preprocessed:
                args.output_preproc = '{}/preproc-{}-{:08d}.fits'.format(
                    args.auto_output_dir, args.camera.lower(), expid)
                log.debug("auto-mode: will write preproc in " +
                          args.output_preproc)
            else:
                log.debug(
                    "auto-mode: will not write preproc because input is a preprocessed image"
                )

        if args.auto_output_dir != '.':
            if not os.path.isdir(args.auto_output_dir):
                log.debug("auto-mode: creating directory " +
                          args.auto_output_dir)
                os.makedirs(args.auto_output_dir)

    if args.output_preproc is not None:
        write_image(args.output_preproc, image)

    cfinder = None

    if args.psf is None:
        if cfinder is None:
            cfinder = CalibFinder([image.meta, primary_header])
        args.psf = cfinder.findfile("PSF")
        log.info(" Using PSF {}".format(args.psf))

    tset = read_xytraceset(args.psf)

    # add fibermap
    if args.fibermap:
        if os.path.isfile(args.fibermap):
            fibermap = read_fibermap(args.fibermap)
        else:
            log.error("no fibermap file {}".format(args.fibermap))
            fibermap = None
    else:
        fibermap = None

    if "OBSTYPE" in image.meta:
        obstype = image.meta["OBSTYPE"].upper()
        image.meta["OBSTYPE"] = obstype  # make sure it's upper case
        qframe = None
    else:
        log.warning("No OBSTYPE keyword, trying to guess ...")
        qframe = qproc_boxcar_extraction(tset,
                                         image,
                                         width=args.width,
                                         fibermap=fibermap)
        obstype = check_qframe_flavor(
            qframe, input_flavor=image.meta["FLAVOR"]).upper()
        image.meta["OBSTYPE"] = obstype

    log.info("OBSTYPE = '{}'".format(obstype))

    if args.auto:

        # now set the things to do
        if obstype == "SKY" or obstype == "TWILIGHT" or obstype == "SCIENCE":

            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.apply_fiberflat = True
            args.skysub = True
            args.output_skyframe = '{}/qsky-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.fluxcalib = True
            args.outframe = '{}/qcframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)

        elif obstype == "ARC" or obstype == "TESTARC":

            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.compute_lsf_sigma = True

        elif obstype == "FLAT" or obstype == "TESTFLAT":
            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.compute_fiberflat = '{}/qfiberflat-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)

    if args.shift_psf:

        # using the trace shift script
        if args.auto:
            options = option_list({
                "psf":
                args.psf,
                "image":
                "dummy",
                "outpsf":
                "dummy",
                "continuum": ((obstype == "FLAT") | (obstype == "TESTFLAT")),
                "sky": ((obstype == "SCIENCE") | (obstype == "SKY"))
            })
        else:
            options = option_list({
                "psf": args.psf,
                "image": "dummy",
                "outpsf": "dummy"
            })
        tmp_args = trace_shifts_script.parse(options=options)
        tset = trace_shifts_script.fit_trace_shifts(image=image, args=tmp_args)

    qframe = qproc_boxcar_extraction(tset,
                                     image,
                                     width=args.width,
                                     fibermap=fibermap)

    if tset.meta is not None:
        # add traceshift info in the qframe, this will be saved in the qframe header
        if qframe.meta is None:
            qframe.meta = dict()
        for k in tset.meta.keys():
            qframe.meta[k] = tset.meta[k]

    if args.output_rawframe is not None:
        write_qframe(args.output_rawframe, qframe)
        log.info("wrote raw extracted frame in {}".format(
            args.output_rawframe))

    if args.compute_lsf_sigma:
        tset = process_arc(qframe, tset, linelist=None, npoly=2, nbins=2)

    if args.output_psf is not None:
        for k in qframe.meta:
            if k not in tset.meta:
                tset.meta[k] = qframe.meta[k]
        write_xytraceset(args.output_psf, tset)

    if args.compute_fiberflat is not None:
        fiberflat = qproc_compute_fiberflat(qframe)
        #write_qframe(args.compute_fiberflat,qflat)
        write_fiberflat(args.compute_fiberflat, fiberflat, header=qframe.meta)
        log.info("wrote fiberflat in {}".format(args.compute_fiberflat))

    if args.apply_fiberflat or args.input_fiberflat:

        if args.input_fiberflat is None:
            if cfinder is None:
                cfinder = CalibFinder([image.meta, primary_header])
            try:
                args.input_fiberflat = cfinder.findfile("FIBERFLAT")
            except KeyError as e:
                log.error("no FIBERFLAT for this spectro config")
                sys.exit(12)
        log.info("applying fiber flat {}".format(args.input_fiberflat))
        flat = read_fiberflat(args.input_fiberflat)
        qproc_apply_fiberflat(qframe, flat)

    if args.skysub:
        log.info("sky subtraction")
        if args.output_skyframe is not None:
            skyflux = qproc_sky_subtraction(qframe, return_skymodel=True)
            sqframe = QFrame(qframe.wave, skyflux, np.ones(skyflux.shape))
            write_qframe(args.output_skyframe, sqframe)
            log.info("wrote sky model in {}".format(args.output_skyframe))
        else:
            qproc_sky_subtraction(qframe)

    if args.fluxcalib:
        if cfinder is None:
            cfinder = CalibFinder([image.meta, primary_header])
        # check for flux calib
        if cfinder.haskey("FLUXCALIB"):
            fluxcalib_filename = cfinder.findfile("FLUXCALIB")
            fluxcalib = read_average_flux_calibration(fluxcalib_filename)
            log.info("read average calib in {}".format(fluxcalib_filename))
            seeing = qframe.meta["SEEING"]
            airmass = qframe.meta["AIRMASS"]
            exptime = qframe.meta["EXPTIME"]
            exposure_calib = fluxcalib.value(seeing=seeing, airmass=airmass)
            for q in range(qframe.nspec):
                fiber_calib = np.interp(qframe.wave[q], fluxcalib.wave,
                                        exposure_calib) * exptime
                inv_calib = (fiber_calib > 0) / (fiber_calib +
                                                 (fiber_calib == 0))
                qframe.flux[q] *= inv_calib
                qframe.ivar[q] *= fiber_calib**2 * (fiber_calib > 0)

            # add keyword in header giving the calibration factor applied at a reference wavelength
            band = qframe.meta["CAMERA"].upper()[0]
            if band == "B":
                refwave = 4500
            elif band == "R":
                refwave = 6500
            else:
                refwave = 8500
            calvalue = np.interp(refwave, fluxcalib.wave,
                                 exposure_calib) * exptime
            qframe.meta["CALWAVE"] = refwave
            qframe.meta["CALVALUE"] = calvalue
        else:
            log.error(
                "Cannot calibrate fluxes because no FLUXCALIB keywork in calibration files"
            )

    fibers = parse_fibers(args.fibers)
    if fibers is None:
        fibers = qframe.flux.shape[0]
    else:
        ii = np.arange(qframe.fibers.size)[np.in1d(qframe.fibers, fibers)]
        if ii.size == 0:
            log.error("no such fibers in frame,")
            log.error("fibers are in range [{}:{}]".format(
                qframe.fibers[0], qframe.fibers[-1] + 1))
            sys.exit(12)
        qframe = qframe[ii]

    if args.outframe is not None:
        write_qframe(args.outframe, qframe)
        log.info("wrote {}".format(args.outframe))

    t1 = time.time()
    log.info("all done in {:3.1f} sec".format(t1 - t0))

    if args.plot:
        log.info("plotting {} spectra".format(qframe.wave.shape[0]))

        import matplotlib.pyplot as plt
        fig = plt.figure()
        for i in range(qframe.wave.shape[0]):
            j = (qframe.ivar[i] > 0)
            plt.plot(qframe.wave[i, j], qframe.flux[i, j])
        plt.grid()
        plt.xlabel("wavelength")
        plt.ylabel("flux")
        plt.show()
Пример #18
0
def main(args):

    log = get_logger()
    if (args.night is None or args.arm is None) and args.prefix is None:
        log.error(
            "ERROR in arguments, need night and arm or prefix for output file names"
        )
        return

    log = get_logger()
    log.info("starting at {}".format(time.asctime()))
    inputs = []
    for filename in args.infile:
        inputs.append(read_fiberflat(filename))

    program = []
    camera = []
    expid = []
    for fflat in inputs:
        program.append(fflat.header["PROGRAM"])
        camera.append(fflat.header["CAMERA"])
        expid.append(fflat.header["EXPID"])
    program = np.array(program)
    camera = np.array(camera)
    expid = np.array(expid)

    ucam = np.unique(camera)
    log.debug("cameras: {}".format(ucam))

    if args.average_per_program:

        uprog = np.unique(program)
        log.info("programs: {}".format(uprog))

        fiberflat_per_program_and_camera = []
        for p in uprog:

            if p.find("CALIB DESI-CALIB-00 to 03") >= 0:
                log.warning("ignore program {}".format(p))
                continue

            log.debug(
                "make sure we have the same list of exposures per camera, for each program"
            )
            common_expid = None
            for c in ucam:
                expid_per_program_and_camera = expid[(program == p)
                                                     & (camera == c)]
                print("expids with camera={} for program={} : {}".format(
                    c, p, expid_per_program_and_camera))
                if common_expid is None:
                    common_expid = expid_per_program_and_camera
                else:
                    common_expid = np.intersect1d(
                        common_expid, expid_per_program_and_camera)

            print("expids with all cameras for program={} : {}".format(
                p, common_expid))

            for c in ucam:
                fflat_to_average = []
                for e in common_expid:
                    ii = np.where((program == p) & (camera == c)
                                  & (expid == e))[0]
                    for i in ii:
                        fflat_to_average.append(inputs[i])
                log.info("averaging {} {} ({} files)".format(
                    p, c, len(fflat_to_average)))
                fiberflat_per_program_and_camera.append(
                    average_fiberflat(fflat_to_average))
        inputs = fiberflat_per_program_and_camera

    else:

        log.debug(
            "make sure we have the same list of exposures per camera, for each program"
        )
        common_expid = None
        for c in ucam:
            expid_per_camera = expid[(camera == c)]
            print("expids with camera={} : {}".format(c, expid_per_camera))
            if common_expid is None:
                common_expid = expid_per_camera
            else:
                common_expid = np.intersect1d(common_expid, expid_per_camera)

        print("expids with all cameras : {}".format(common_expid))
        fflat_to_average = []
        for e in common_expid:
            ii = np.where((expid == e))[0]
            for i in ii:
                fflat_to_average.append(inputs[i])
        inputs = fflat_to_average

    fiberflats = autocalib_fiberflat(inputs)
    for spectro in fiberflats.keys():
        if args.prefix:
            ofilename = "{}{}-autocal.fits".format(args.prefix, spectro)
        else:
            camera = "{}{}".format(args.arm, spectro)
            ofilename = findfile('fiberflatnight', args.night, 0, camera)
        write_fiberflat(ofilename, fiberflats[spectro])
        log.info("successfully wrote %s" % ofilename)
Пример #19
0
def main(args) :
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)"%(args.color,args.delta_color))

    frames={}
    flats={}
    skies={}

    spectrograph=None
    starfibers=None
    starindices=None
    fibermap=None

    # READ DATA
    ############################################

    for filename in args.frames :

        log.info("reading %s"%filename)
        frame=io.read_frame(filename)
        header=fits.getheader(filename, 0)
        frame_fibermap = frame.fibermap
        frame_starindices = np.where(isStdStar(frame_fibermap['DESI_TARGET']))[0]
        
        #- Confirm that all fluxes have entries but trust targeting bits
        #- to get basic magnitude range correct
        keep = np.ones(len(frame_starindices), dtype=bool)

        for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']:  #- and W1 and W2?
            keep &= frame_fibermap[colname][frame_starindices] > 10**((22.5-30)/2.5)
            keep &= frame_fibermap[colname][frame_starindices] < 10**((22.5-0)/2.5)

        frame_starindices = frame_starindices[keep]
        
        camera=safe_read_key(header,"CAMERA").strip().lower()

        if spectrograph is None :
            spectrograph = frame.spectrograph
            fibermap = frame_fibermap
            starindices=frame_starindices
            starfibers=fibermap["FIBER"][starindices]

        elif spectrograph != frame.spectrograph :
            log.error("incompatible spectrographs %d != %d"%(spectrograph,frame.spectrograph))
            raise ValueError("incompatible spectrographs %d != %d"%(spectrograph,frame.spectrograph))
        elif starindices.size != frame_starindices.size or np.sum(starindices!=frame_starindices)>0 :
            log.error("incompatible fibermap")
            raise ValueError("incompatible fibermap")

        if not camera in frames :
            frames[camera]=[]
        frames[camera].append(frame)
 
    for filename in args.skymodels :
        log.info("reading %s"%filename)
        sky=io.read_sky(filename)
        header=fits.getheader(filename, 0)
        camera=safe_read_key(header,"CAMERA").strip().lower()
        if not camera in skies :
            skies[camera]=[]
        skies[camera].append(sky)
        
    for filename in args.fiberflats :
        log.info("reading %s"%filename)
        header=fits.getheader(filename, 0)
        flat=io.read_fiberflat(filename)
        camera=safe_read_key(header,"CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if camera in flats:
            log.warning("cannot handle several flats of same camera (%s), will use only the first one"%camera)
            #raise ValueError("cannot handle several flats of same camera (%s)"%camera)
        else :
            flats[camera]=flat
    

    if starindices.size == 0 :
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")

    log.info("found %d STD stars"%starindices.size)

    log.warning("Not using flux errors for Standard Star fits!")
    
    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    for cam in frames :

        if not cam in skies:
            log.warning("Missing sky for %s"%cam)
            frames.pop(cam)
            continue
        if not cam in flats:
            log.warning("Missing flat for %s"%cam)
            frames.pop(cam)
            continue
        

        flat=flats[cam]
        for frame,sky in zip(frames[cam],skies[cam]) :
            frame.flux = frame.flux[starindices]
            frame.ivar = frame.ivar[starindices]
            frame.ivar *= (frame.mask[starindices] == 0)
            frame.ivar *= (sky.ivar[starindices] != 0)
            frame.ivar *= (sky.mask[starindices] == 0)
            frame.ivar *= (flat.ivar[starindices] != 0)
            frame.ivar *= (flat.mask[starindices] == 0)
            frame.flux *= ( frame.ivar > 0) # just for clean plots
            for star in range(frame.flux.shape[0]) :
                ok=np.where((frame.ivar[star]>0)&(flat.fiberflat[star]!=0))[0]
                if ok.size > 0 :
                    frame.flux[star] = frame.flux[star]/flat.fiberflat[star] - sky.flux[star]
            frame.resolution_data = frame.resolution_data[starindices]

    nstars = starindices.size
    fibermap = Table(fibermap[starindices])

    # READ MODELS
    ############################################
    log.info("reading star models in %s"%args.starmodels)
    stdwave,stdflux,templateid,teff,logg,feh=io.read_stdstar_templates(args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################

    #- Support older fibermaps
    if 'PHOTSYS' not in fibermap.colnames:
        log.warning('Old fibermap format; using defaults for missing columns')
        log.warning("    PHOTSYS = 'S'")
        log.warning("    MW_TRANSMISSION_G/R/Z = 1.0")
        log.warning("    EBV = 0.0")
        fibermap['PHOTSYS'] = 'S'
        fibermap['MW_TRANSMISSION_G'] = 1.0
        fibermap['MW_TRANSMISSION_R'] = 1.0
        fibermap['MW_TRANSMISSION_Z'] = 1.0
        fibermap['EBV'] = 0.0

    model_filters = dict()
    if 'S' in fibermap['PHOTSYS']:
        for filter_name in ['DECAM_G', 'DECAM_R', 'DECAM_Z']:
            model_filters[filter_name] = load_filter(filter_name)

    if 'N' in fibermap['PHOTSYS']:
        for filter_name in ['BASS_G', 'BASS_R', 'MZLS_Z']:
            model_filters[filter_name] = load_filter(filter_name)

    if len(model_filters) == 0:
        raise ValueError("No filters loaded; neither 'N' nor 'S' in PHOTSYS?")

    log.info("computing model mags for %s"%sorted(model_filters.keys()))
    model_mags = dict()
    fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom
    for filter_name, filter_response in model_filters.items():
        model_mags[filter_name] = filter_response.get_ab_magnitude(stdflux*fluxunits,stdwave)
    log.info("done computing model mags")

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    linear_coefficients=np.zeros((nstars,stdflux.shape[0]))
    chi2dof=np.zeros((nstars))
    redshift=np.zeros((nstars))
    normflux=[]

    star_mags = dict()
    star_unextincted_mags = dict()
    for band in ['G', 'R', 'Z']:
        star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_'+band])
        star_unextincted_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_'+band] / fibermap['MW_TRANSMISSION_'+band])

    star_colors = dict()
    star_colors['G-R'] = star_mags['G'] - star_mags['R']
    star_colors['R-Z'] = star_mags['R'] - star_mags['Z']

    star_unextincted_colors = dict()
    star_unextincted_colors['G-R'] = star_unextincted_mags['G'] - star_unextincted_mags['R']
    star_unextincted_colors['R-Z'] = star_unextincted_mags['R'] - star_unextincted_mags['Z']

    fitted_model_colors = np.zeros(nstars)

    for star in range(nstars) :

        log.info("finding best model for observed star #%d"%star)

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames :
            for i,frame in enumerate(frames[camera]) :
                identifier="%s-%d"%(camera,i)
                wave[identifier]=frame.wave
                flux[identifier]=frame.flux[star]
                ivar[identifier]=frame.ivar[star]
                resolution_data[identifier]=frame.resolution_data[star]

        # preselect models based on magnitudes
        if fibermap['PHOTSYS'][star] == 'N':
            if args.color == 'G-R':
                model_colors = model_mags['BASS_G'] - model_mags['BASS_R']
            elif args.color == 'R-Z':
                model_colors = model_mags['BASS_R'] - model_mags['MZLS_Z']
            else:
                raise ValueError('Unknown color {}'.format(args.color))
        else:
            if args.color == 'G-R':
                model_colors = model_mags['DECAM_G'] - model_mags['DECAM_R']
            elif args.color == 'R-Z':
                model_colors = model_mags['DECAM_R'] - model_mags['DECAM_Z']
            else:
                raise ValueError('Unknown color {}'.format(args.color))

        color_diff = model_colors - star_unextincted_colors[args.color][star]
        selection = np.abs(color_diff) < args.delta_color

        # smallest cube in parameter space including this selection (needed for interpolation)
        new_selection = (teff>=np.min(teff[selection]))&(teff<=np.max(teff[selection]))
        new_selection &= (logg>=np.min(logg[selection]))&(logg<=np.max(logg[selection]))
        new_selection &= (feh>=np.min(feh[selection]))&(feh<=np.max(feh[selection]))
        selection = np.where(new_selection)[0]

        log.info("star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d"%(
            star, starfibers[star], args.color, star_unextincted_colors[args.color][star],
            selection.size, stdflux.shape[0]))
        
        # Match unextincted standard stars to data
        coefficients, redshift[star], chi2dof[star] = match_templates(
            wave, flux, ivar, resolution_data,
            stdwave, stdflux[selection],
            teff[selection], logg[selection], feh[selection],
            ncpu=args.ncpu, z_max=args.z_max, z_res=args.z_res,
            template_error=args.template_error
            )
        
        linear_coefficients[star,selection] = coefficients
        
        log.info('Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}'.format(
            starfibers[star],
            np.inner(teff,linear_coefficients[star]),
            np.inner(logg,linear_coefficients[star]),
            np.inner(feh,linear_coefficients[star]),
            redshift[star],
            chi2dof[star])
            )
        
        # Apply redshift to original spectrum at full resolution
        model=np.zeros(stdwave.size)
        redshifted_stdwave = stdwave*(1+redshift[star])
        for i,c in enumerate(linear_coefficients[star]) :
            if c != 0 :
                model += c*np.interp(stdwave,redshifted_stdwave,stdflux[i])

        # Apply dust extinction to the model
        model *= dust_transmission(stdwave, fibermap['EBV'][star])

        # Compute final color of dust-extincted model
        if fibermap['PHOTSYS'][star] == 'N':
            if args.color == 'G-R':
                model_mag1 = model_filters['BASS_G'].get_ab_magnitude(model*fluxunits, stdwave)
                model_mag2 = model_filters['BASS_R'].get_ab_magnitude(model*fluxunits, stdwave)
                model_magr = model_mag2
            elif args.color == 'R-Z':
                model_mag1 = model_filters['BASS_R'].get_ab_magnitude(model*fluxunits, stdwave)
                model_mag2 = model_filters['MZLS_Z'].get_ab_magnitude(model*fluxunits, stdwave)
                model_magr = model_mag1
            else:
                raise ValueError('Unknown color {}'.format(args.color))
        else:
            if args.color == 'G-R':
                model_mag1 = model_filters['DECAM_G'].get_ab_magnitude(model*fluxunits, stdwave)
                model_mag2 = model_filters['DECAM_R'].get_ab_magnitude(model*fluxunits, stdwave)
                model_magr = model_mag2
            elif args.color == 'R-Z':
                model_mag1 = model_filters['DECAM_R'].get_ab_magnitude(model*fluxunits, stdwave)
                model_mag2 = model_filters['DECAM_Z'].get_ab_magnitude(model*fluxunits, stdwave)
                model_magr = model_mag1
            else:
                raise ValueError('Unknown color {}'.format(args.color))

        fitted_model_colors[star] = model_mag1 - model_mag2
        
        #- TODO: move this back into normalize_templates, at the cost of
        #- recalculating a model magnitude?

        # Normalize the best model using reported magnitude
        scalefac=10**((model_magr - star_mags['R'][star])/2.5)

        log.info('scaling R mag {} to {} using scale {}'.format(model_magr, star_mags['R'][star], scalefac))
        normflux.append(model*scalefac)

    # Now write the normalized flux for all best models to a file
    normflux=np.array(normflux)
    data={}
    data['LOGG']=linear_coefficients.dot(logg)
    data['TEFF']= linear_coefficients.dot(teff)
    data['FEH']= linear_coefficients.dot(feh)
    data['CHI2DOF']=chi2dof
    data['REDSHIFT']=redshift
    data['COEFF']=linear_coefficients
    data['DATA_%s'%args.color]=star_colors[args.color]
    data['MODEL_%s'%args.color]=fitted_model_colors
    io.write_stdstar_models(args.outfile,normflux,stdwave,starfibers,data)
Пример #20
0
def main(args):
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)" %
             (args.color, args.delta_color))

    frames = {}
    flats = {}
    skies = {}

    spectrograph = None
    starfibers = None
    starindices = None
    fibermap = None

    # READ DATA
    ############################################

    for filename in args.frames:

        log.info("reading %s" % filename)
        frame = io.read_frame(filename)
        header = fits.getheader(filename, 0)
        frame_fibermap = frame.fibermap
        frame_starindices = np.where(isStdStar(frame_fibermap))[0]

        #- Confirm that all fluxes have entries but trust targeting bits
        #- to get basic magnitude range correct
        keep = np.ones(len(frame_starindices), dtype=bool)

        for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']:  #- and W1 and W2?
            keep &= frame_fibermap[colname][frame_starindices] > 10**(
                (22.5 - 30) / 2.5)
            keep &= frame_fibermap[colname][frame_starindices] < 10**(
                (22.5 - 0) / 2.5)

        frame_starindices = frame_starindices[keep]

        camera = safe_read_key(header, "CAMERA").strip().lower()

        if spectrograph is None:
            spectrograph = frame.spectrograph
            fibermap = frame_fibermap
            starindices = frame_starindices
            starfibers = fibermap["FIBER"][starindices]

        elif spectrograph != frame.spectrograph:
            log.error("incompatible spectrographs %d != %d" %
                      (spectrograph, frame.spectrograph))
            raise ValueError("incompatible spectrographs %d != %d" %
                             (spectrograph, frame.spectrograph))
        elif starindices.size != frame_starindices.size or np.sum(
                starindices != frame_starindices) > 0:
            log.error("incompatible fibermap")
            raise ValueError("incompatible fibermap")

        if not camera in frames:
            frames[camera] = []
        frames[camera].append(frame)

    for filename in args.skymodels:
        log.info("reading %s" % filename)
        sky = io.read_sky(filename)
        header = fits.getheader(filename, 0)
        camera = safe_read_key(header, "CAMERA").strip().lower()
        if not camera in skies:
            skies[camera] = []
        skies[camera].append(sky)

    for filename in args.fiberflats:
        log.info("reading %s" % filename)
        header = fits.getheader(filename, 0)
        flat = io.read_fiberflat(filename)
        camera = safe_read_key(header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if camera in flats:
            log.warning(
                "cannot handle several flats of same camera (%s), will use only the first one"
                % camera)
            #raise ValueError("cannot handle several flats of same camera (%s)"%camera)
        else:
            flats[camera] = flat

    if starindices.size == 0:
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")

    log.info("found %d STD stars" % starindices.size)

    log.warning("Not using flux errors for Standard Star fits!")

    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    for cam in frames:

        if not cam in skies:
            log.warning("Missing sky for %s" % cam)
            frames.pop(cam)
            continue
        if not cam in flats:
            log.warning("Missing flat for %s" % cam)
            frames.pop(cam)
            continue

        flat = flats[cam]
        for frame, sky in zip(frames[cam], skies[cam]):
            frame.flux = frame.flux[starindices]
            frame.ivar = frame.ivar[starindices]
            frame.ivar *= (frame.mask[starindices] == 0)
            frame.ivar *= (sky.ivar[starindices] != 0)
            frame.ivar *= (sky.mask[starindices] == 0)
            frame.ivar *= (flat.ivar[starindices] != 0)
            frame.ivar *= (flat.mask[starindices] == 0)
            frame.flux *= (frame.ivar > 0)  # just for clean plots
            for star in range(frame.flux.shape[0]):
                ok = np.where((frame.ivar[star] > 0)
                              & (flat.fiberflat[star] != 0))[0]
                if ok.size > 0:
                    frame.flux[star] = frame.flux[star] / flat.fiberflat[
                        star] - sky.flux[star]
            frame.resolution_data = frame.resolution_data[starindices]

    nstars = starindices.size
    fibermap = Table(fibermap[starindices])

    # READ MODELS
    ############################################
    log.info("reading star models in %s" % args.starmodels)
    stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates(
        args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################

    #- Support older fibermaps
    if 'PHOTSYS' not in fibermap.colnames:
        log.warning('Old fibermap format; using defaults for missing columns')
        log.warning("    PHOTSYS = 'S'")
        log.warning("    MW_TRANSMISSION_G/R/Z = 1.0")
        log.warning("    EBV = 0.0")
        fibermap['PHOTSYS'] = 'S'
        fibermap['MW_TRANSMISSION_G'] = 1.0
        fibermap['MW_TRANSMISSION_R'] = 1.0
        fibermap['MW_TRANSMISSION_Z'] = 1.0
        fibermap['EBV'] = 0.0

    model_filters = dict()
    if 'S' in fibermap['PHOTSYS']:
        for filter_name in ['DECAM_G', 'DECAM_R', 'DECAM_Z']:
            model_filters[filter_name] = load_filter(filter_name)

    if 'N' in fibermap['PHOTSYS']:
        for filter_name in ['BASS_G', 'BASS_R', 'MZLS_Z']:
            model_filters[filter_name] = load_filter(filter_name)

    if len(model_filters) == 0:
        raise ValueError("No filters loaded; neither 'N' nor 'S' in PHOTSYS?")

    log.info("computing model mags for %s" % sorted(model_filters.keys()))
    model_mags = dict()
    fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom
    for filter_name, filter_response in model_filters.items():
        model_mags[filter_name] = filter_response.get_ab_magnitude(
            stdflux * fluxunits, stdwave)
    log.info("done computing model mags")

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    linear_coefficients = np.zeros((nstars, stdflux.shape[0]))
    chi2dof = np.zeros((nstars))
    redshift = np.zeros((nstars))
    normflux = []

    star_mags = dict()
    star_unextincted_mags = dict()
    for band in ['G', 'R', 'Z']:
        star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_' + band])
        star_unextincted_mags[band] = 22.5 - 2.5 * np.log10(
            fibermap['FLUX_' + band] / fibermap['MW_TRANSMISSION_' + band])

    star_colors = dict()
    star_colors['G-R'] = star_mags['G'] - star_mags['R']
    star_colors['R-Z'] = star_mags['R'] - star_mags['Z']

    star_unextincted_colors = dict()
    star_unextincted_colors[
        'G-R'] = star_unextincted_mags['G'] - star_unextincted_mags['R']
    star_unextincted_colors[
        'R-Z'] = star_unextincted_mags['R'] - star_unextincted_mags['Z']

    fitted_model_colors = np.zeros(nstars)

    for star in range(nstars):

        log.info("finding best model for observed star #%d" % star)

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames:
            for i, frame in enumerate(frames[camera]):
                identifier = "%s-%d" % (camera, i)
                wave[identifier] = frame.wave
                flux[identifier] = frame.flux[star]
                ivar[identifier] = frame.ivar[star]
                resolution_data[identifier] = frame.resolution_data[star]

        # preselect models based on magnitudes
        if fibermap['PHOTSYS'][star] == 'N':
            if args.color == 'G-R':
                model_colors = model_mags['BASS_G'] - model_mags['BASS_R']
            elif args.color == 'R-Z':
                model_colors = model_mags['BASS_R'] - model_mags['MZLS_Z']
            else:
                raise ValueError('Unknown color {}'.format(args.color))
        else:
            if args.color == 'G-R':
                model_colors = model_mags['DECAM_G'] - model_mags['DECAM_R']
            elif args.color == 'R-Z':
                model_colors = model_mags['DECAM_R'] - model_mags['DECAM_Z']
            else:
                raise ValueError('Unknown color {}'.format(args.color))

        color_diff = model_colors - star_unextincted_colors[args.color][star]
        selection = np.abs(color_diff) < args.delta_color

        # smallest cube in parameter space including this selection (needed for interpolation)
        new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max(
            teff[selection]))
        new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max(
            logg[selection]))
        new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max(
            feh[selection]))
        selection = np.where(new_selection)[0]

        log.info(
            "star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d"
            % (star, starfibers[star], args.color,
               star_unextincted_colors[args.color][star], selection.size,
               stdflux.shape[0]))

        # Match unextincted standard stars to data
        coefficients, redshift[star], chi2dof[star] = match_templates(
            wave,
            flux,
            ivar,
            resolution_data,
            stdwave,
            stdflux[selection],
            teff[selection],
            logg[selection],
            feh[selection],
            ncpu=args.ncpu,
            z_max=args.z_max,
            z_res=args.z_res,
            template_error=args.template_error)

        linear_coefficients[star, selection] = coefficients

        log.info(
            'Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}'
            .format(starfibers[star], np.inner(teff,
                                               linear_coefficients[star]),
                    np.inner(logg, linear_coefficients[star]),
                    np.inner(feh, linear_coefficients[star]), redshift[star],
                    chi2dof[star]))

        # Apply redshift to original spectrum at full resolution
        model = np.zeros(stdwave.size)
        redshifted_stdwave = stdwave * (1 + redshift[star])
        for i, c in enumerate(linear_coefficients[star]):
            if c != 0:
                model += c * np.interp(stdwave, redshifted_stdwave, stdflux[i])

        # Apply dust extinction to the model
        model *= dust_transmission(stdwave, fibermap['EBV'][star])

        # Compute final color of dust-extincted model
        if fibermap['PHOTSYS'][star] == 'N':
            if args.color == 'G-R':
                model_mag1 = model_filters['BASS_G'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_mag2 = model_filters['BASS_R'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_magr = model_mag2
            elif args.color == 'R-Z':
                model_mag1 = model_filters['BASS_R'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_mag2 = model_filters['MZLS_Z'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_magr = model_mag1
            else:
                raise ValueError('Unknown color {}'.format(args.color))
        else:
            if args.color == 'G-R':
                model_mag1 = model_filters['DECAM_G'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_mag2 = model_filters['DECAM_R'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_magr = model_mag2
            elif args.color == 'R-Z':
                model_mag1 = model_filters['DECAM_R'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_mag2 = model_filters['DECAM_Z'].get_ab_magnitude(
                    model * fluxunits, stdwave)
                model_magr = model_mag1
            else:
                raise ValueError('Unknown color {}'.format(args.color))

        fitted_model_colors[star] = model_mag1 - model_mag2

        #- TODO: move this back into normalize_templates, at the cost of
        #- recalculating a model magnitude?

        # Normalize the best model using reported magnitude
        scalefac = 10**((model_magr - star_mags['R'][star]) / 2.5)

        log.info('scaling R mag {} to {} using scale {}'.format(
            model_magr, star_mags['R'][star], scalefac))
        normflux.append(model * scalefac)

    # Now write the normalized flux for all best models to a file
    normflux = np.array(normflux)
    data = {}
    data['LOGG'] = linear_coefficients.dot(logg)
    data['TEFF'] = linear_coefficients.dot(teff)
    data['FEH'] = linear_coefficients.dot(feh)
    data['CHI2DOF'] = chi2dof
    data['REDSHIFT'] = redshift
    data['COEFF'] = linear_coefficients
    data['DATA_%s' % args.color] = star_colors[args.color]
    data['MODEL_%s' % args.color] = fitted_model_colors
    io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers, data)
Пример #21
0
def preproc(rawimage,
            header,
            primary_header,
            bias=True,
            dark=True,
            pixflat=True,
            mask=True,
            bkgsub=False,
            nocosmic=False,
            cosmics_nsig=6,
            cosmics_cfudge=3.,
            cosmics_c2fudge=0.5,
            ccd_calibration_filename=None,
            nocrosstalk=False,
            nogain=False,
            overscan_per_row=False,
            use_overscan_row=False,
            use_savgol=None,
            nodarktrail=False,
            remove_scattered_light=False,
            psf_filename=None,
            bias_img=None,
            model_variance=False):
    '''
    preprocess image using metadata in header

    image = ((rawimage-bias-overscan)*gain)/pixflat

    Args:
        rawimage : 2D numpy array directly from raw data file
        header : dict-like metadata, e.g. from FITS header, with keywords
            CAMERA, BIASSECx, DATASECx, CCDSECx
            where x = A, B, C, D for each of the 4 amplifiers
            (also supports old naming convention 1, 2, 3, 4).
        primary_header: dict-like metadata fit keywords EXPTIME, DOSVER
            DATE-OBS is also required if bias, pixflat, or mask=True

    Optional bias, pixflat, and mask can each be:
        False: don't apply that step
        True: use default calibration data for that night
        ndarray: use that array
        filename (str or unicode): read HDU 0 and use that

    Optional overscan features:
        overscan_per_row : bool,  Subtract the overscan_col values
            row by row from the data.
        use_overscan_row : bool,  Subtract off the overscan_row
            from the data (default: False).  Requires ORSEC in
            the Header
        use_savgol : bool,  Specify whether to use Savitsky-Golay filter for
            the overscan.   (default: False).  Requires use_overscan_row=True
            to have any effect.

    Optional variance model if model_variance=True
    Optional background subtraction with median filtering if bkgsub=True

    Optional disabling of cosmic ray rejection if nocosmic=True
    Optional disabling of dark trail correction if nodarktrail=True

    Optional bias image (testing only) may be provided by bias_img=

    Optional tuning of cosmic ray rejection parameters:
        cosmics_nsig: number of sigma above background required
        cosmics_cfudge: number of sigma inconsistent with PSF required
        cosmics_c2fudge:  fudge factor applied to PSF

    Optional fit and subtraction of scattered light

    Returns Image object with member variables:
        pix : 2D preprocessed image in units of electrons per pixel
        ivar : 2D inverse variance of image
        mask : 2D mask of image (0=good)
        readnoise : 2D per-pixel readnoise of image
        meta : metadata dictionary
        TODO: define what keywords are included

    preprocessing includes the following steps:
        - bias image subtraction
        - overscan subtraction (from BIASSEC* keyword defined regions)
        - readnoise estimation (from BIASSEC* keyword defined regions)
        - gain correction (from GAIN* keywords)
        - pixel flat correction
        - cosmic ray masking
        - propagation of input known bad pixel mask
        - inverse variance estimation

    Notes:

    The bias image is subtracted before any other calculation to remove any
    non-uniformities in the overscan regions prior to calculating overscan
    levels and readnoise.

    The readnoise is an image not just one number per amp, because the pixflat
    image also affects the interpreted readnoise.

    The inverse variance is estimated from the readnoise and the image itself,
    and thus is biased.
    '''
    log = get_logger()

    header = header.copy()
    depend.setdep(header, 'DESI_SPECTRO_CALIB',
                  os.getenv('DESI_SPECTRO_CALIB'))

    for key in ['DESI_SPECTRO_REDUX', 'SPECPROD']:
        if key in os.environ:
            depend.setdep(header, key, os.environ[key])

    cfinder = None

    if ccd_calibration_filename is not False:
        cfinder = CalibFinder([header, primary_header],
                              yaml_file=ccd_calibration_filename)

    #- TODO: Check for required keywords first

    #- Subtract bias image
    camera = header['CAMERA'].lower()

    #- convert rawimage to float64 : this is the output format of read_image
    rawimage = rawimage.astype(np.float64)

    # Savgol
    if cfinder and cfinder.haskey("USE_ORSEC"):
        use_overscan_row = cfinder.value("USE_ORSEC")
    if cfinder and cfinder.haskey("SAVGOL"):
        use_savgol = cfinder.value("SAVGOL")

    # Set bias image, as desired
    if bias_img is None:
        bias = get_calibration_image(cfinder, "BIAS", bias, header)
    else:
        bias = bias_img

    #- Check if this file uses amp names 1,2,3,4 (old) or A,B,C,D (new)
    amp_ids = get_amp_ids(header)
    #- Double check that we have the necessary keywords
    missing_keywords = list()
    for prefix in ['CCDSEC', 'BIASSEC']:
        for amp in amp_ids:
            key = prefix + amp
            if not key in header:
                log.error('No {} keyword in header'.format(key))
                missing_keywords.append(key)

    if len(missing_keywords) > 0:
        raise KeyError("Missing keywords {}".format(
            ' '.join(missing_keywords)))

    #- Output arrays
    ny = 0
    nx = 0
    for amp in amp_ids:
        yy, xx = parse_sec_keyword(header['CCDSEC%s' % amp])
        ny = max(ny, yy.stop)
        nx = max(nx, xx.stop)
    image = np.zeros((ny, nx))

    readnoise = np.zeros_like(image)

    #- Load dark
    if cfinder and cfinder.haskey("DARK") and (dark is not False):

        #- Exposure time
        if cfinder and cfinder.haskey("EXPTIMEKEY"):
            exptime_key = cfinder.value("EXPTIMEKEY")
            log.info("Using exposure time keyword %s for dark normalization" %
                     exptime_key)
        else:
            exptime_key = "EXPTIME"
        exptime = primary_header[exptime_key]
        log.info(
            "Use exptime = {} sec to compute the dark current".format(exptime))

        dark_filename = cfinder.findfile("DARK")
        depend.setdep(header, 'CCD_CALIB_DARK',
                      shorten_filename(dark_filename))
        log.info(f'Using DARK model from {dark_filename}')
        # dark is multipled by exptime, or we use the non-linear dark model in the routine
        dark = read_dark(filename=dark_filename, exptime=exptime)

        if dark.shape == image.shape:
            log.info("dark is trimmed")
            trimmed_dark_in_electrons = dark
            dark_is_trimmed = True
        elif dark.shape == rawimage.shape:
            log.info("dark is not trimmed")
            trimmed_dark_in_electrons = np.zeros_like(image)
            dark_is_trimmed = False
        else:
            message = "incompatible dark shape={} when raw shape={} and preproc shape={}".format(
                dark.shape, rawimage.shape, image.shape)
            log.error(message)
            raise ValueError(message)

    else:
        dark = False

    if bias is not False:  #- it's an array
        if bias.shape == rawimage.shape:
            log.info("subtracting bias")
            rawimage = rawimage - bias
        else:
            raise ValueError('shape mismatch bias {} != rawimage {}'.format(
                bias.shape, rawimage.shape))

    #- Load mask
    mask = get_calibration_image(cfinder, "MASK", mask, header)

    if mask is False:
        mask = np.zeros(image.shape, dtype=np.int32)
    else:
        if mask.shape != image.shape:
            raise ValueError('shape mismatch mask {} != image {}'.format(
                mask.shape, image.shape))

    for amp in amp_ids:
        # Grab the sections
        ov_col = parse_sec_keyword(header['BIASSEC' + amp])
        if 'ORSEC' + amp in header.keys():
            ov_row = parse_sec_keyword(header['ORSEC' + amp])
        elif use_overscan_row:
            log.error('No ORSEC{} keyword; not using overscan_row'.format(amp))
            use_overscan_row = False

        if nogain:
            gain = 1.
        else:
            #- Initial teststand data may be missing GAIN* keywords; don't crash
            if 'GAIN' + amp in header:
                gain = header['GAIN' + amp]  #- gain = electrons / ADU
            else:
                if cfinder and cfinder.haskey('GAIN' + amp):
                    gain = float(cfinder.value('GAIN' + amp))
                    log.info('Using GAIN{}={} from calibration data'.format(
                        amp, gain))
                else:
                    gain = 1.0
                    log.warning(
                        'Missing keyword GAIN{} in header and nothing in calib data; using {}'
                        .format(amp, gain))

        #- Record what gain value was actually used
        header['GAIN' + amp] = gain

        #- Add saturation level
        if 'SATURLEV' + amp in header:
            saturlev_adu = header['SATURLEV' + amp]  # in ADU
        else:
            if cfinder and cfinder.haskey('SATURLEV' + amp):
                saturlev_adu = float(cfinder.value('SATURLEV' + amp))
                log.info('Using SATURLEV{}={} from calibration data'.format(
                    amp, saturlev_adu))
            else:
                saturlev_adu = 2**16 - 1  # 65535 is the max value in the images
                log.warning(
                    'Missing keyword SATURLEV{} in header and nothing in calib data; using {} ADU'
                    .format(amp, saturlev_adu))
        header['SATULEV' +
               amp] = (saturlev_adu,
                       "saturation or non lin. level, in ADU, inc. bias")

        # Generate the overscan images
        raw_overscan_col = rawimage[ov_col].copy()

        if use_overscan_row:
            raw_overscan_row = rawimage[ov_row].copy()
            overscan_row = np.zeros_like(raw_overscan_row)

            # Remove overscan_col from overscan_row
            raw_overscan_squared = rawimage[ov_row[0], ov_col[1]].copy()
            for row in range(raw_overscan_row.shape[0]):
                o, r = _overscan(raw_overscan_squared[row])
                overscan_row[row] = raw_overscan_row[row] - o

        # Now remove the overscan_col
        nrows = raw_overscan_col.shape[0]
        log.info("nrows in overscan=%d" % nrows)
        overscan_col = np.zeros(nrows)
        rdnoise = np.zeros(nrows)
        if (cfinder and cfinder.haskey('OVERSCAN' + amp)
                and cfinder.value("OVERSCAN" + amp).upper()
                == "PER_ROW") or overscan_per_row:
            log.info(
                "Subtracting overscan per row for amplifier %s of camera %s" %
                (amp, camera))
            for j in range(nrows):
                if np.isnan(np.sum(overscan_col[j])):
                    log.warning(
                        "NaN values in row %d of overscan of amplifier %s of camera %s"
                        % (j, amp, camera))
                    continue
                o, r = _overscan(raw_overscan_col[j])
                #log.info("%d %f %f"%(j,o,r))
                overscan_col[j] = o
                rdnoise[j] = r
        else:
            log.info(
                "Subtracting average overscan for amplifier %s of camera %s" %
                (amp, camera))
            o, r = _overscan(raw_overscan_col)
            overscan_col += o
            rdnoise += r
            if bias is not False:
                jj = parse_sec_keyword(header['DATASEC' + amp])
                o, biasnoise = _overscan(bias[jj])
                new_rdnoise = np.sqrt(rdnoise**2 + biasnoise**2)
                log.info(
                    "Master bias noise for AMP %s = %4.3f ADU, rdnoise %4.3f -> %4.3f ADU"
                    % (amp, biasnoise, np.mean(rdnoise), np.mean(new_rdnoise)))
                rdnoise = new_rdnoise
        rdnoise *= gain
        median_rdnoise = np.median(rdnoise)
        median_overscan = np.median(overscan_col)
        log.info("Median rdnoise and overscan= %f %f" %
                 (median_rdnoise, median_overscan))

        kk = parse_sec_keyword(header['CCDSEC' + amp])
        for j in range(nrows):
            readnoise[kk][j] = rdnoise[j]

        header['OVERSCN' + amp] = (median_overscan, 'ADUs (gain not applied)')
        if gain != 1:
            rdnoise_message = 'electrons (gain is applied)'
            gain_message = 'e/ADU (gain applied to image)'
        else:
            rdnoise_message = 'ADUs (gain not applied)'
            gain_message = 'gain not applied to image'
        header['OBSRDN' + amp] = (median_rdnoise, rdnoise_message)
        header['GAIN' + amp] = (gain, gain_message)

        #- Warn/error if measured readnoise is very different from expected if exists
        if 'RDNOISE' + amp in header:
            expected_readnoise = header['RDNOISE' + amp]
            if median_rdnoise < 0.5 * expected_readnoise:
                log.error(
                    'Amp {} measured readnoise {:.2f} < 0.5 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise < 0.9 * expected_readnoise:
                log.warning(
                    'Amp {} measured readnoise {:.2f} < 0.9 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise > 2.0 * expected_readnoise:
                log.error(
                    'Amp {} measured readnoise {:.2f} > 2 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise > 1.2 * expected_readnoise:
                log.warning(
                    'Amp {} measured readnoise {:.2f} > 1.2 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
        #else:
        #    log.warning('Expected readnoise keyword {} missing'.format('RDNOISE'+amp))

        log.info("Measured readnoise for AMP %s = %f" % (amp, median_rdnoise))

        #- subtract overscan from data region and apply gain
        jj = parse_sec_keyword(header['DATASEC' + amp])

        data = rawimage[jj].copy()
        # Subtract columns
        for k in range(nrows):
            data[k] -= overscan_col[k]

        saturlev_elec = gain * (saturlev_adu - np.mean(overscan_col))
        header['SATUELE' +
               amp] = (saturlev_elec,
                       "saturation or non lin. level, in electrons")

        # And now the rows
        if use_overscan_row:
            # Savgol?
            if use_savgol:
                log.info("Using savgol")
                collapse_oscan_row = np.zeros(overscan_row.shape[1])
                for col in range(overscan_row.shape[1]):
                    o, _ = _overscan(overscan_row[:, col])
                    collapse_oscan_row[col] = o
                oscan_row = _savgol_clipped(collapse_oscan_row, niter=0)
                oimg_row = np.outer(np.ones(data.shape[0]), oscan_row)
                data -= oimg_row
            else:
                o, r = _overscan(overscan_row)
                data -= o

        #- apply saturlev (defined in ADU), prior to multiplication by gain
        saturated = (rawimage[jj] >= saturlev_adu)
        mask[kk][saturated] |= ccdmask.SATURATED

        #- ADC to electrons
        image[kk] = data * gain

        if dark is not False:
            if not dark_is_trimmed:
                trimmed_dark_in_electrons[kk] = dark[jj] * gain

    if not nocrosstalk:
        #- apply cross-talk

        # the ccd looks like :
        # C D
        # A B
        # for cross talk, we need a symmetric 4x4 flip_matrix
        # of coordinates ABCD giving flip of both axis
        # when computing crosstalk of
        #    A   B   C   D
        #
        # A  AA  AB  AC  AD
        # B  BA  BB  BC  BD
        # C  CA  CB  CC  CD
        # D  DA  DB  DC  BB
        # orientation_matrix_defines change of orientation
        #
        fip_axis_0 = np.array([[1, 1, -1, -1], [1, 1, -1, -1], [-1, -1, 1, 1],
                               [-1, -1, 1, 1]])
        fip_axis_1 = np.array([[1, -1, 1, -1], [-1, 1, -1, 1], [1, -1, 1, -1],
                               [-1, 1, -1, 1]])

        for a1 in range(len(amp_ids)):
            amp1 = amp_ids[a1]
            ii1 = parse_sec_keyword(header['CCDSEC' + amp1])
            a1flux = image[ii1]
            #a1mask=mask[ii1]

            for a2 in range(len(amp_ids)):
                if a1 == a2:
                    continue
                amp2 = amp_ids[a2]
                if cfinder is None: continue
                if not cfinder.haskey("CROSSTALK%s%s" % (amp1, amp2)): continue
                crosstalk = cfinder.value("CROSSTALK%s%s" % (amp1, amp2))
                if crosstalk == 0.: continue
                log.info("Correct for crosstalk=%f from AMP %s into %s" %
                         (crosstalk, amp1, amp2))
                a12flux = crosstalk * a1flux.copy()
                #a12mask=a1mask.copy()
                if fip_axis_0[a1, a2] == -1:
                    a12flux = a12flux[::-1]
                    #a12mask=a12mask[::-1]
                if fip_axis_1[a1, a2] == -1:
                    a12flux = a12flux[:, ::-1]
                    #a12mask=a12mask[:,::-1]
                ii2 = parse_sec_keyword(header['CCDSEC' + amp2])
                image[ii2] -= a12flux
                # mask[ii2]  |= a12mask (not sure we really need to propagate the mask)

    #- Poisson noise variance (prior to dark subtraction and prior to pixel flat field)
    #- This is biasing, but that's what we have for now
    poisson_var = image.clip(0)

    #- subtract dark after multiplication by gain
    if dark is not False:
        log.info("subtracting dark")
        image -= trimmed_dark_in_electrons
        # measure its noise
        new_readnoise = np.zeros(readnoise.shape)
        for amp in amp_ids:
            kk = parse_sec_keyword(header['CCDSEC' + amp])
            o, darknoise = _overscan(trimmed_dark_in_electrons[kk])
            new_readnoise[kk] = np.sqrt(readnoise[kk]**2 + darknoise**2)
            log.info(
                "Master dark noise for AMP %s = %4.3f elec, rdnoise %4.3f -> %4.3f elec"
                % (amp, darknoise, np.mean(
                    readnoise[kk]), np.mean(new_readnoise[kk])))
        readnoise = new_readnoise

    #- Correct for dark trails if any
    if not nodarktrail and cfinder is not None:
        for amp in amp_ids:
            if cfinder.haskey("DARKTRAILAMP%s" % amp):
                amplitude = cfinder.value("DARKTRAILAMP%s" % amp)
                width = cfinder.value("DARKTRAILWIDTH%s" % amp)
                ii = _parse_sec_keyword(header["CCDSEC" + amp])
                log.info(
                    "Removing dark trails for amplifier %s with width=%3.1f and amplitude=%5.4f"
                    % (amp, width, amplitude))
                correct_dark_trail(image,
                                   ii,
                                   left=((amp == "B") | (amp == "D")),
                                   width=width,
                                   amplitude=amplitude)

    #- Divide by pixflat image
    pixflat = get_calibration_image(cfinder, "PIXFLAT", pixflat, header)
    if pixflat is not False:
        if pixflat.shape != image.shape:
            raise ValueError('shape mismatch pixflat {} != image {}'.format(
                pixflat.shape, image.shape))

        almost_zero = 0.001

        if np.all(pixflat > almost_zero):
            image /= pixflat
            readnoise /= pixflat
            poisson_var /= pixflat**2
        else:
            good = (pixflat > almost_zero)
            image[good] /= pixflat[good]
            readnoise[good] /= pixflat[good]
            poisson_var[good] /= pixflat[good]**2
            mask[~good] |= ccdmask.PIXFLATZERO

        lowpixflat = (0 < pixflat) & (pixflat < 0.1)
        if np.any(lowpixflat):
            mask[lowpixflat] |= ccdmask.PIXFLATLOW

    #- Inverse variance, estimated directly from the data (BEWARE: biased!)
    var = poisson_var + readnoise**2
    ivar = np.zeros(var.shape)
    ivar[var > 0] = 1.0 / var[var > 0]

    #- Ridiculously high readnoise is bad
    mask[readnoise > 100] |= ccdmask.BADREADNOISE

    if bkgsub:
        bkg = _background(image, header)
        image -= bkg

    img = Image(image,
                ivar=ivar,
                mask=mask,
                meta=header,
                readnoise=readnoise,
                camera=camera)

    #- update img.mask to mask cosmic rays
    if not nocosmic:
        cosmics.reject_cosmic_rays(img,
                                   nsig=cosmics_nsig,
                                   cfudge=cosmics_cfudge,
                                   c2fudge=cosmics_c2fudge)
        mask = img.mask

    xyset = None

    if model_variance:

        psf = None
        if psf_filename is None:
            psf_filename = cfinder.findfile("PSF")

        depend.setdep(header, 'CCD_CALIB_PSF', shorten_filename(psf_filename))
        xyset = read_xytraceset(psf_filename)

        fiberflat = None
        with_spectral_smoothing = True
        with_sky_model = True

        if with_sky_model:
            log.debug("Will use a sky model to model the spectra")
            fiberflat_filename = cfinder.findfile("FIBERFLAT")
            depend.setdep(header, 'CCD_CALIB_FIBERFLAT',
                          shorten_filename(fiberflat_filename))
            if fiberflat_filename is not None:
                fiberflat = read_fiberflat(fiberflat_filename)

        log.info("compute an image model after dark correction and pixel flat")
        nsig = 5.
        mimage = compute_image_model(
            img,
            xyset,
            fiberflat=fiberflat,
            with_spectral_smoothing=with_spectral_smoothing,
            with_sky_model=with_sky_model,
            spectral_smoothing_nsig=nsig,
            psf=psf)

        # here we bring back original image for large outliers
        # this allows to have a correct ivar for cosmic rays and bright sources
        eps = 0.1
        out = (((ivar > 0) * (image - mimage)**2 /
                (1. / (ivar + (ivar == 0)) + (0.1 * mimage)**2)) > nsig**2)
        # out &= (image>mimage) # could request this to be conservative on the variance ... but this could cause other issues
        mimage[out] = image[out]

        log.info("use image model to compute variance")
        if bkgsub:
            mimage += bkg
        if pixflat is not False:
            # undo pixflat
            mimage *= pixflat
        if dark is not False:
            mimage += dark
        poisson_var = mimage.clip(0)
        if pixflat is not False:
            if np.all(pixflat > almost_zero):
                poisson_var /= pixflat**2
            else:
                poisson_var[good] /= pixflat[good]**2
        var = poisson_var + readnoise**2
        ivar[var > 0] = 1.0 / var[var > 0]

        # regenerate img object
        img = Image(image,
                    ivar=ivar,
                    mask=mask,
                    meta=header,
                    readnoise=readnoise,
                    camera=camera)

    if remove_scattered_light:
        if xyset is None:
            if psf_filename is None:
                psf_filename = cfinder.findfile("PSF")
                depend.setdep(header, 'SCATTERED_LIGHT_PSF',
                              shorten_filename(psf_filename))
            xyset = read_xytraceset(psf_filename)
        img.pix -= model_scattered_light(img, xyset)

    #- Extend header with primary header keywords too
    addkeys(img.meta, primary_header)

    return img
Пример #22
0
def main(args):

    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is
                                                            None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    frame = read_frame(args.infile)

    #- Raw scores already added in extraction, but just in case they weren't
    #- it is harmless to rerun to make sure we have them.
    compute_and_append_frame_scores(frame, suffix="RAW")

    if args.cosmics_nsig > 0 and args.sky == None:  # Reject cosmics (otherwise do it after sky subtraction)
        log.info("cosmics ray 1D rejection")
        reject_cosmic_rays_1d(frame, args.cosmics_nsig)

    if args.fiberflat != None:
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to all fibers
        apply_fiberflat(frame, fiberflat)
        compute_and_append_frame_scores(frame, suffix="FFLAT")

    if args.sky != None:

        # read sky
        skymodel = read_sky(args.sky)

        if args.cosmics_nsig > 0:

            # first subtract sky without throughput correction
            subtract_sky(frame, skymodel, throughput_correction=False)

            # then find cosmics
            log.info("cosmics ray 1D rejection after sky subtraction")
            reject_cosmic_rays_1d(frame, args.cosmics_nsig)

            if args.sky_throughput_correction:
                # and (re-)subtract sky, but just the correction term
                subtract_sky(frame,
                             skymodel,
                             throughput_correction=True,
                             default_throughput_correction=0.)

        else:
            # subtract sky
            subtract_sky(frame,
                         skymodel,
                         throughput_correction=args.sky_throughput_correction)

        compute_and_append_frame_scores(frame, suffix="SKYSUB")

    if args.calib != None:
        log.info("calibrate")
        # read calibration
        fluxcalib = read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)
        compute_and_append_frame_scores(frame, suffix="CALIB")

    # save output
    write_frame(args.outfile, frame, units='1e-17 erg/(s cm2 Angstrom)')

    log.info("successfully wrote %s" % args.outfile)
Пример #23
0
#exp='00054444'
#night='20191115'
#exp='00028364'

#f0=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera0+'-'+exp+'.fits'
#f1=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera1+'-'+exp+'.fits'
#f2=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera2+'-'+exp+'.fits'
#f3=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera3+'-'+exp+'.fits'
#f4=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera4+'-'+exp+'.fits'
#f5=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera5+'-'+exp+'.fits'
#f6=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera6+'-'+exp+'.fits'
#f7=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera7+'-'+exp+'.fits'
#f8=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera8+'-'+exp+'.fits'
#f9=data_dir+'/'+night+'/'+exp+'/fiberflat-'+camera9+'-'+exp+'.fits'
try:
    d0 = read_fiberflat(f0)
except:
    pass
try:
    d1 = read_fiberflat(f1)
except:
    pass
try:
    d2 = read_fiberflat(f2)
except:
    pass
try:
    d3 = read_fiberflat(f3)
except:
    pass
try:
Пример #24
0
def main() :
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--fiberflatexpid', type = int, help = 'fiberflat exposure ID')
    parser.add_argument('--fibermap', type = str, help = 'path of fibermap file')
    parser.add_argument('--models', type = str, help = 'path of spectro-photometric stellar spectra fits')
    parser.add_argument('--spectrograph', type = int, default = 0, help = 'spectrograph number, can go 0-9')
    parser.add_argument('--outfile', type = str, help = 'output file for normalized stdstar model flux')

    args = parser.parse_args()
    log = get_logger()
    # Call necessary environment variables. No need if add argument to give full file path.
    if 'DESI_SPECTRO_REDUX' not in os.environ:
        raise RuntimeError('Set environment DESI_SPECTRO_REDUX. It is needed to read the needed datafiles')

    DESI_SPECTRO_REDUX=os.environ['DESI_SPECTRO_REDUX']
    PRODNAME=os.environ['PRODNAME']
    if 'DESISIM' not in os.environ:
        raise RuntimeError('Set environment DESISIM. It will be neede to read the filter transmission files for calibration')

    DESISIM=os.environ['DESISIM']   # to read the filter transmission files

    if args.fibermap is None or args.models is None or \
       args.spectrograph is None or args.outfile is None or \
       args.fiberflatexpid is None:
        log.critical('Missing a required argument')
        parser.print_help()
        sys.exit(12)

    # read Standard Stars from the fibermap file
    # returns the Fiber id, filter names and mags for the standard stars

    fiber_tbdata,fiber_header=io.read_fibermap(args.fibermap, header=True)

    #- Trim to just fibers on this spectrograph
    ii =  (500*args.spectrograph <= fiber_tbdata["FIBER"])
    ii &= (fiber_tbdata["FIBER"] < 500*(args.spectrograph+1))
    fiber_tbdata = fiber_tbdata[ii]

    #- Get info for the standard stars
    refStarIdx=np.where(fiber_tbdata["OBJTYPE"]=="STD")
    refFibers=fiber_tbdata["FIBER"][refStarIdx]
    refFilters=fiber_tbdata["FILTER"][refStarIdx]
    refMags=fiber_tbdata["MAG"]

    fibers={"FIBER":refFibers,"FILTER":refFilters,"MAG":refMags}

    NIGHT=fiber_header['NIGHT']
    EXPID=fiber_header['EXPID']
    filters=fibers["FILTER"]
    if 'DESISIM' not in os.environ:
        raise RuntimeError('Set environment DESISIM. Can not find filter response files')
    basepath=DESISIM+"/data/"

    #now load all the skyfiles, framefiles, fiberflatfiles etc
    # all three channels files are simultaneously treated for model fitting
    skyfile={}
    framefile={}
    fiberflatfile={}
    for i in ["b","r","z"]:
        camera = i+str(args.spectrograph)
        skyfile[i] = io.findfile('sky', NIGHT, EXPID, camera)
        framefile[i] = io.findfile('frame', NIGHT, EXPID, camera)
        fiberflatfile[i] = io.findfile('fiberflat', NIGHT, args.fiberflatexpid, camera)

    #Read Frames, Flats and Sky files
    frameFlux={}
    frameIvar={}
    frameWave={}
    frameResolution={}
    framehdr={}
    fiberFlat={}
    ivarFlat={}
    maskFlat={}
    meanspecFlat={}
    waveFlat={}
    headerFlat={}
    sky={}
    skyivar={}
    skymask={}
    skywave={}
    skyhdr={}

    for i in ["b","r","z"]:
       #arg=(night,expid,'%s%s'%(i,spectrograph))
       #- minimal code change for refactored I/O, while not taking advantage of simplified structure
       frame = io.read_frame(framefile[i])
       frameFlux[i] = frame.flux
       frameIvar[i] = frame.ivar
       frameWave[i] = frame.wave
       frameResolution[i] = frame.resolution_data
       framehdr[i] = frame.header

       ff = io.read_fiberflat(fiberflatfile[i])
       fiberFlat[i] = ff.fiberflat
       ivarFlat[i] = ff.ivar
       maskFlat[i] = ff.mask
       meanspecFlat[i] = ff.meanspec
       waveFlat[i] = ff.wave
       headerFlat[i] = ff.header

       skymodel = io.read_sky(skyfile[i])
       sky[i] = skymodel.flux
       skyivar[i] = skymodel.ivar
       skymask[i] = skymodel.mask
       skywave[i] = skymodel.wave
       skyhdr[i] = skymodel.header

    # Convolve Sky with Detector Resolution, so as to subtract from data. Convolve for all 500 specs. Subtracting sky this way should be equivalent to sky_subtract

    convolvedsky={"b":sky["b"], "r":sky["r"], "z":sky["z"]}

    # Read the standard Star data and divide by flat and subtract sky

    stars=[]
    ivars=[]
    for i in fibers["FIBER"]:
        #flat and sky should have same wavelength binning as data, otherwise should be rebinned.

        stars.append((i,{"b":[frameFlux["b"][i]/fiberFlat["b"][i]-convolvedsky["b"][i],frameWave["b"]],
                         "r":[frameFlux["r"][i]/fiberFlat["r"][i]-convolvedsky["r"][i],frameWave["r"]],
                         "z":[frameFlux["z"][i]/fiberFlat["z"][i]-convolvedsky["z"][i],frameWave]},fibers["MAG"][i]))
        ivars.append((i,{"b":[frameIvar["b"][i]],"r":[frameIvar["r"][i,:]],"z":[frameIvar["z"][i,:]]}))


    stdwave,stdflux,templateid=io.read_stdstar_templates(args.models)

    #- Trim standard star wavelengths to just the range we need
    minwave = min([min(w) for w in frameWave.values()])
    maxwave = max([max(w) for w in frameWave.values()])
    ii = (minwave-10 < stdwave) & (stdwave < maxwave+10)
    stdwave = stdwave[ii]
    stdflux = stdflux[:, ii]

    log.info('Number of Standard Stars in this frame: {0:d}'.format(len(stars)))
    if len(stars) == 0:
        log.critical("No standard stars!  Exiting")
        sys.exit(1)

    # Now for each star, find the best model and normalize.

    normflux=[]
    bestModelIndex=np.arange(len(stars))
    templateID=np.arange(len(stars))
    chi2dof=np.zeros(len(stars))

    #- TODO: don't use 'l' as a variable name.  Can look like a '1'
    for k,l in enumerate(stars):
        log.info("checking best model for star {0}".format(l[0]))

        starindex=l[0]
        mags=l[2]
        filters=fibers["FILTER"][k]
        rflux=stars[k][1]["r"][0]
        bflux=stars[k][1]["b"][0]
        zflux=stars[k][1]["z"][0]
        flux={"b":bflux,"r":rflux,"z":zflux}

        #print ivars
        rivar=ivars[k][1]["r"][0]
        bivar=ivars[k][1]["b"][0]
        zivar=ivars[k][1]["z"][0]
        ivar={"b":bivar,"r":rivar,"z":zivar}

        resol_star={"r":frameResolution["r"][l[0]],"b":frameResolution["b"][l[0]],"z":frameResolution["z"][l[0]]}

        # Now find the best Model

        bestModelIndex[k],bestmodelWave,bestModelFlux,chi2dof[k]=match_templates(frameWave,flux,ivar,resol_star,stdwave,stdflux)

        log.info('Star Fiber: {0}; Best Model Fiber: {1}; TemplateID: {2}; Chisq/dof: {3}'.format(l[0],bestModelIndex[k],templateid[bestModelIndex[k]],chi2dof[k]))
        # Normalize the best model using reported magnitude
        modelwave,normalizedflux=normalize_templates(stdwave,stdflux[bestModelIndex[k]],mags,filters,basepath)
        normflux.append(normalizedflux)

    # Now write the normalized flux for all best models to a file
    normflux=np.array(normflux)
    stdfibers=fibers["FIBER"]
    data={}
    data['BESTMODEL']=bestModelIndex
    data['CHI2DOF']=chi2dof
    data['TEMPLATEID']=templateid[bestModelIndex]
    norm_model_file=args.outfile
    io.write_stdstar_model(norm_model_file,normflux,stdwave,stdfibers,data)
Пример #25
0
def main(args):
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)" %
             (args.color, args.delta_color))

    frames = {}
    flats = {}
    skies = {}

    spectrograph = None
    starfibers = None
    starindices = None
    fibermap = None

    # READ DATA
    ############################################

    for filename in args.frames:

        log.info("reading %s" % filename)
        frame = io.read_frame(filename)
        header = fits.getheader(filename, 0)
        frame_fibermap = frame.fibermap
        frame_starindices = np.where(frame_fibermap["OBJTYPE"] == "STD")[0]
        camera = safe_read_key(header, "CAMERA").strip().lower()

        if spectrograph is None:
            spectrograph = frame.spectrograph
            fibermap = frame_fibermap
            starindices = frame_starindices
            starfibers = fibermap["FIBER"][starindices]

        elif spectrograph != frame.spectrograph:
            log.error("incompatible spectrographs %d != %d" %
                      (spectrograph, frame.spectrograph))
            raise ValueError("incompatible spectrographs %d != %d" %
                             (spectrograph, frame.spectrograph))
        elif starindices.size != frame_starindices.size or np.sum(
                starindices != frame_starindices) > 0:
            log.error("incompatible fibermap")
            raise ValueError("incompatible fibermap")

        if frames.has_key(camera):
            log.error(
                "cannot handle for now several frame of same camera (%s)" %
                camera)
            raise ValueError(
                "cannot handle for now several frame of same camera (%s)" %
                camera)

        frames[camera] = frame

    for filename in args.skymodels:
        log.info("reading %s" % filename)
        sky = io.read_sky(filename)
        header = fits.getheader(filename, 0)
        camera = safe_read_key(header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if skies.has_key(camera):
            log.error("cannot handle several skymodels of same camera (%s)" %
                      camera)
            raise ValueError(
                "cannot handle several skymodels of same camera (%s)" % camera)

        skies[camera] = sky

    for filename in args.fiberflats:
        log.info("reading %s" % filename)
        header = fits.getheader(filename, 0)
        flat = io.read_fiberflat(filename)
        camera = safe_read_key(header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if flats.has_key(camera):
            log.error("cannot handle several flats of same camera (%s)" %
                      camera)
            raise ValueError(
                "cannot handle several flats of same camera (%s)" % camera)
        flats[camera] = flat

    if starindices.size == 0:
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")

    log.info("found %d STD stars" % starindices.size)

    imaging_filters = fibermap["FILTER"][starindices]
    imaging_mags = fibermap["MAG"][starindices]

    log.warning(
        "NO MAG ERRORS IN FIBERMAP, I AM IGNORING MEASUREMENT ERRORS !!")
    log.warning(
        "NO EXTINCTION VALUES IN FIBERMAP, I AM IGNORING THIS FOR NOW !!")

    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    for cam in frames:

        if not skies.has_key(cam):
            log.warning("Missing sky for %s" % cam)
            frames.pop(cam)
            continue
        if not flats.has_key(cam):
            log.warning("Missing flat for %s" % cam)
            frames.pop(cam)
            continue

        frames[cam].flux = frames[cam].flux[starindices]
        frames[cam].ivar = frames[cam].ivar[starindices]

        frames[cam].ivar *= (frames[cam].mask[starindices] == 0)
        frames[cam].ivar *= (skies[cam].ivar[starindices] != 0)
        frames[cam].ivar *= (skies[cam].mask[starindices] == 0)
        frames[cam].ivar *= (flats[cam].ivar[starindices] != 0)
        frames[cam].ivar *= (flats[cam].mask[starindices] == 0)
        frames[cam].flux *= (frames[cam].ivar > 0)  # just for clean plots
        for star in range(frames[cam].flux.shape[0]):
            ok = np.where((frames[cam].ivar[star] > 0)
                          & (flats[cam].fiberflat[star] != 0))[0]
            if ok.size > 0:
                frames[cam].flux[star] = frames[cam].flux[star] / flats[
                    cam].fiberflat[star] - skies[cam].flux[star]
    nstars = starindices.size
    starindices = None  # we don't need this anymore

    # READ MODELS
    ############################################
    log.info("reading star models in %s" % args.starmodels)
    stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates(
        args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################
    model_filters = []
    for tmp in np.unique(imaging_filters):
        if len(tmp) > 0:  # can be one empty entry
            model_filters.append(tmp)

    log.info("computing model mags %s" % model_filters)
    model_mags = np.zeros((stdflux.shape[0], len(model_filters)))
    fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom
    for index in range(len(model_filters)):
        filter_response = load_filter(model_filters[index])
        for m in range(stdflux.shape[0]):
            model_mags[m, index] = filter_response.get_ab_magnitude(
                stdflux[m] * fluxunits, stdwave)
    log.info("done computing model mags")

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    bestModelIndex = np.arange(nstars)
    templateID = np.arange(nstars)
    chi2dof = np.zeros((nstars))
    redshift = np.zeros((nstars))
    normflux = []

    for star in range(nstars):

        log.info("finding best model for observed star #%d" % star)

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames:
            band = camera[0]
            wave[band] = frames[camera].wave
            flux[band] = frames[camera].flux[star]
            ivar[band] = frames[camera].ivar[star]
            resolution_data[band] = frames[camera].resolution_data[star]

        # preselec models based on magnitudes

        # compute star color
        index1, index2 = get_color_filter_indices(imaging_filters[star],
                                                  args.color)
        if index1 < 0 or index2 < 0:
            log.error("cannot compute '%s' color from %s" %
                      (color_name, filters))
        filter1 = imaging_filters[star][index1]
        filter2 = imaging_filters[star][index2]
        star_color = imaging_mags[star][index1] - imaging_mags[star][index2]

        # compute models color
        model_index1 = -1
        model_index2 = -1
        for i, fname in enumerate(model_filters):
            if fname == filter1:
                model_index1 = i
            elif fname == filter2:
                model_index2 = i

        if model_index1 < 0 or model_index2 < 0:
            log.error("cannot compute '%s' model color from %s" %
                      (color_name, filters))
        model_colors = model_mags[:, model_index1] - model_mags[:,
                                                                model_index2]

        # selection
        selection = np.where(
            np.abs(model_colors - star_color) < args.delta_color)[0]

        log.info(
            "star#%d fiber #%d, %s = %s-%s = %f, number of pre-selected models = %d/%d"
            % (star, starfibers[star], args.color, filter1, filter2,
               star_color, selection.size, stdflux.shape[0]))

        index_in_selection, redshift[star], chi2dof[star] = match_templates(
            wave,
            flux,
            ivar,
            resolution_data,
            stdwave,
            stdflux[selection],
            teff[selection],
            logg[selection],
            feh[selection],
            ncpu=args.ncpu,
            z_max=args.z_max,
            z_res=args.z_res)

        bestModelIndex[star] = selection[index_in_selection]

        log.info(
            'Star Fiber: {0}; TemplateID: {1}; Redshift: {2}; Chisq/dof: {3}'.
            format(starfibers[star], bestModelIndex[star], redshift[star],
                   chi2dof[star]))
        # Apply redshift to original spectrum at full resolution
        tmp = np.interp(stdwave, stdwave / (1 + redshift[star]),
                        stdflux[bestModelIndex[star]])
        # Normalize the best model using reported magnitude
        normalizedflux = normalize_templates(stdwave, tmp, imaging_mags[star],
                                             imaging_filters[star])
        normflux.append(normalizedflux)

    # Now write the normalized flux for all best models to a file
    normflux = np.array(normflux)
    data = {}
    data['BESTMODEL'] = bestModelIndex
    data['TEMPLATEID'] = bestModelIndex  # IS THAT IT?
    data['CHI2DOF'] = chi2dof
    data['REDSHIFT'] = redshift
    norm_model_file = args.outfile
    io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers, data)
Пример #26
0
def main(args):

    log = get_logger()

    cmd = [
        'desi_compute_fluxcalibration',
    ]
    for key, value in args.__dict__.items():
        if value is not None:
            cmd += ['--' + key, str(value)]
    cmd = ' '.join(cmd)
    log.info(cmd)

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    # Set fibermask flagged spectra to have 0 flux and variance
    frame = get_fiberbitmasked_frame(frame,
                                     bitmask='flux',
                                     ivar_framemask=True)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel = read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models(
        args.models)

    ok = np.ones(len(model_metadata), dtype=bool)

    if args.chi2cut > 0:
        log.info("apply cut CHI2DOF<{}".format(args.chi2cut))
        good = (model_metadata["CHI2DOF"] < args.chi2cut)
        bad = ~good
        ok &= good
        if np.any(bad):
            log.info(" discard {} stars with CHI2DOF= {}".format(
                np.sum(bad), list(model_metadata["CHI2DOF"][bad])))

    legacy_filters = ('G-R', 'R-Z')
    gaia_filters = ('GAIA-BP-RP', 'GAIA-G-RP')
    model_column_list = model_metadata.columns.names
    if args.color is None:
        if 'MODEL_G-R' in model_column_list:
            color = 'G-R'
        elif 'MODEL_GAIA-BP-RP' in model_column_list:
            log.info('Using Gaia filters')
            color = 'GAIA-BP-RP'
        else:
            log.error(
                "Can't find either G-R or BP-RP color in the model file.")
            sys.exit(15)
    else:
        if args.color not in legacy_filters and args.color not in gaia_filters:
            log.error(
                'Color name {} is not allowed, must be one of {} {}'.format(
                    args.color, legacy_filters, gaia_filters))
            sys.exit(14)
        color = args.color
        if color not in model_column_list:
            # This should't happen
            log.error(
                'The color {} was not computed in the models'.format(color))
            sys.exit(16)

    if args.delta_color_cut > 0:
        log.info("apply cut |delta color|<{}".format(args.delta_color_cut))
        good = (np.abs(model_metadata["MODEL_" + color] -
                       model_metadata["DATA_" + color]) < args.delta_color_cut)
        bad = ok & (~good)
        ok &= good
        if np.any(bad):
            vals = model_metadata["MODEL_" +
                                  color][bad] - model_metadata["DATA_" +
                                                               color][bad]
            log.info(" discard {} stars with dcolor= {}".format(
                np.sum(bad), list(vals)))

    if args.min_color is not None:
        log.info("apply cut DATA_{}>{}".format(color, args.min_color))
        good = (model_metadata["DATA_{}".format(color)] > args.min_color)
        bad = ok & (~good)
        ok &= good
        if np.any(bad):
            vals = model_metadata["DATA_{}".format(color)][bad]
            log.info(" discard {} stars with {}= {}".format(
                np.sum(bad), color, list(vals)))

    if args.chi2cut_nsig > 0:
        # automatically reject stars that ar chi2 outliers
        mchi2 = np.median(model_metadata["CHI2DOF"])
        rmschi2 = np.std(model_metadata["CHI2DOF"])
        maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2
        log.info("apply cut CHI2DOF<{} based on chi2cut_nsig={}".format(
            maxchi2, args.chi2cut_nsig))
        good = (model_metadata["CHI2DOF"] <= maxchi2)
        bad = ok & (~good)
        ok &= good
        if np.any(bad):
            log.info(" discard {} stars with CHI2DOF={}".format(
                np.sum(bad), list(model_metadata["CHI2DOF"][bad])))

    ok = np.where(ok)[0]
    if ok.size == 0:
        log.error("selection cuts discarded all stars")
        sys.exit(12)
    nstars = model_flux.shape[0]
    nbad = nstars - ok.size
    if nbad > 0:
        log.warning("discarding %d star(s) out of %d because of cuts" %
                    (nbad, nstars))
        model_flux = model_flux[ok]
        model_fibers = model_fibers[ok]
        model_metadata = model_metadata[:][ok]

    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap

    ## check whether star fibers from args.models are consistent with fibers from fibermap
    ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit
    fibermap_std_indices = np.where(isStdStar(fibermap))[0]
    if np.any(~np.in1d(model_fibers % 500, fibermap_std_indices)):
        target_colnames, target_masks, survey = main_cmx_or_sv(fibermap)
        colname = target_colnames[0]
        for i in model_fibers % 500:
            log.error(
                "inconsistency with spectrum {}, OBJTYPE={}, {}={} in fibermap"
                .format(i, fibermap["OBJTYPE"][i], colname,
                        fibermap[colname][i]))
        sys.exit(12)

    # Make sure the fibers of interest aren't entirely masked.
    if np.sum(
            np.sum(frame.ivar[model_fibers % 500, :] == 0, axis=1) ==
            frame.nwave) == len(model_fibers):
        log.warning('All standard-star spectra are masked!')
        return

    fluxcalib = compute_flux_calibration(
        frame,
        model_wave,
        model_flux,
        model_fibers % 500,
        highest_throughput_nstars=args.highest_throughput,
        exposure_seeing_fwhm=args.seeing_fwhm)

    # QA
    if (args.qafile is not None):

        from desispec.io import write_qa_frame
        from desispec.io.qa import load_qa_frame
        from desispec.qa import qa_plots

        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame_meta=frame.meta,
                                flavor=frame.meta['FLAVOR'])
        # Run
        #import pdb; pdb.set_trace()
        qaframe.run_qa('FLUXCALIB', (frame, fluxcalib))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib)

    # record inputs
    frame.meta['IN_FRAME'] = shorten_filename(args.infile)
    frame.meta['IN_SKY'] = shorten_filename(args.sky)
    frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat)
    frame.meta['STDMODEL'] = shorten_filename(args.models)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s" % args.outfile)
Пример #27
0
def main(args):

    log = get_logger()

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel = read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models(
        args.models)

    if args.chi2cut > 0:
        ok = np.where(model_metadata["CHI2DOF"] < args.chi2cut)[0]
        if ok.size == 0:
            log.error("chi2cut has discarded all stars")
            sys.exit(12)
        nstars = model_flux.shape[0]
        nbad = nstars - ok.size
        if nbad > 0:
            log.warning("discarding %d star(s) out of %d because of chi2cut" %
                        (nbad, nstars))
            model_flux = model_flux[ok]
            model_fibers = model_fibers[ok]
            model_metadata = model_metadata[:][ok]

    if args.delta_color_cut > 0:
        ok = np.where(
            np.abs(model_metadata["MODEL_G-R"] -
                   model_metadata["DATA_G-R"]) < args.delta_color_cut)[0]
        nstars = model_flux.shape[0]
        nbad = nstars - ok.size
        if nbad > 0:
            log.warning(
                "discarding %d star(s) out of %d because |delta_color|>%f" %
                (nbad, nstars, args.delta_color_cut))
            model_flux = model_flux[ok]
            model_fibers = model_fibers[ok]
            model_metadata = model_metadata[:][ok]

    # automatically reject stars that ar chi2 outliers
    if args.chi2cut_nsig > 0:
        mchi2 = np.median(model_metadata["CHI2DOF"])
        rmschi2 = np.std(model_metadata["CHI2DOF"])
        maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2
        ok = np.where(model_metadata["CHI2DOF"] <= maxchi2)[0]
        nstars = model_flux.shape[0]
        nbad = nstars - ok.size
        if nbad > 0:
            log.warning(
                "discarding %d star(s) out of %d because reduced chi2 outliers (at %d sigma, giving rchi2<%f )"
                % (nbad, nstars, args.chi2cut_nsig, maxchi2))
            model_flux = model_flux[ok]
            model_fibers = model_fibers[ok]
            model_metadata = model_metadata[:][ok]

    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap

    ## check whether star fibers from args.models are consistent with fibers from fibermap
    ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit
    w = np.where(fibermap["OBJTYPE"][model_fibers % 500] != 'STD')[0]

    if len(w) > 0:
        for i in model_fibers % 500:
            log.error(
                "inconsistency with spectrum %d, OBJTYPE='%s' in fibermap" %
                (i, fibermap["OBJTYPE"][i]))
        sys.exit(12)

    fluxcalib = compute_flux_calibration(frame, model_wave, model_flux,
                                         model_fibers % 500)

    # QA
    if (args.qafile is not None):
        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame,
                                flavor=frame.meta['FLAVOR'])
        # Run
        #import pdb; pdb.set_trace()
        qaframe.run_qa('FLUXCALIB', (frame, fluxcalib))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s" % args.outfile)
Пример #28
0
def main(args):

    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    frame = read_frame(args.infile)

    #- Raw scores already added in extraction, but just in case they weren't
    #- it is harmless to rerun to make sure we have them.
    compute_and_append_frame_scores(frame,suffix="RAW")

    if args.cosmics_nsig>0 and args.sky==None : # Reject cosmics (otherwise do it after sky subtraction)
        log.info("cosmics ray 1D rejection")
        reject_cosmic_rays_1d(frame,args.cosmics_nsig)

    if args.fiberflat!=None :
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to all fibers
        apply_fiberflat(frame, fiberflat)
        compute_and_append_frame_scores(frame,suffix="FFLAT")

    if args.sky!=None :

        # read sky
        skymodel=read_sky(args.sky)

        if args.cosmics_nsig>0 :

            # use a copy the frame (not elegant but robust)
            copied_frame = copy.deepcopy(frame)
            
            # first subtract sky without throughput correction
            subtract_sky(copied_frame, skymodel, apply_throughput_correction = False)

            # then find cosmics
            log.info("cosmics ray 1D rejection after sky subtraction")
            reject_cosmic_rays_1d(copied_frame,args.cosmics_nsig)

            # copy mask
            frame.mask = copied_frame.mask
            
            # and (re-)subtract sky, but just the correction term
            subtract_sky(frame, skymodel, apply_throughput_correction = (not args.no_sky_throughput_correction) )

        else :
            # subtract sky
            subtract_sky(frame, skymodel, apply_throughput_correction = (not args.no_sky_throughput_correction) )

        compute_and_append_frame_scores(frame,suffix="SKYSUB")

    if args.calib!=None :
        log.info("calibrate")
        # read calibration
        fluxcalib=read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)

        # Ensure that ivars are set to 0 for all values if any designated
        # fibermask bit is set. Also flips a bits for each frame.mask value using specmask.BADFIBER
        frame = get_fiberbitmasked_frame(frame,bitmask="flux",ivar_framemask=True)
        compute_and_append_frame_scores(frame,suffix="CALIB")


    # save output
    write_frame(args.outfile, frame, units='10**-17 erg/(s cm2 Angstrom)')
    log.info("successfully wrote %s"%args.outfile)
Пример #29
0
def main():

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--infile',
                        type=str,
                        default=None,
                        required=True,
                        help='path of DESI exposure frame fits file')
    parser.add_argument('--fiberflat',
                        type=str,
                        default=None,
                        help='path of DESI fiberflat fits file')
    parser.add_argument('--sky',
                        type=str,
                        default=None,
                        help='path of DESI sky fits file')
    parser.add_argument('--calib',
                        type=str,
                        default=None,
                        help='path of DESI calibration fits file')
    parser.add_argument('--outfile',
                        type=str,
                        default=None,
                        required=True,
                        help='path of DESI sky fits file')
    # add calibration here when exists

    args = parser.parse_args()
    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is
                                                            None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    frame = read_frame(args.infile)

    if args.fiberflat != None:
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to sky fibers
        apply_fiberflat(frame, fiberflat)

    if args.sky != None:
        log.info("subtract sky")
        # read sky
        skymodel = read_sky(args.sky)
        # subtract sky
        subtract_sky(frame, skymodel)

    if args.calib != None:
        log.info("calibrate")
        # read calibration
        fluxcalib = read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)

    # save output
    write_frame(args.outfile, frame)

    log.info("successfully wrote %s" % args.outfile)
Пример #30
0
def main(args):
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)" %
             (args.color, args.delta_color))

    frames = {}
    flats = {}
    skies = {}

    spectrograph = None
    starfibers = None
    starindices = None
    fibermap = None

    # READ DATA
    ############################################

    for filename in args.frames:

        log.info("reading %s" % filename)
        frame = io.read_frame(filename)
        header = fits.getheader(filename, 0)
        frame_fibermap = frame.fibermap
        frame_starindices = np.where(frame_fibermap["OBJTYPE"] == "STD")[0]

        # check magnitude are well defined or discard stars
        tmp = []
        for i in frame_starindices:
            mags = frame_fibermap["MAG"][i]
            ok = np.sum((mags > 0) & (mags < 30))
            if np.sum((mags > 0) & (mags < 30)) == mags.size:
                tmp.append(i)
        frame_starindices = np.array(tmp).astype(int)

        camera = safe_read_key(header, "CAMERA").strip().lower()

        if spectrograph is None:
            spectrograph = frame.spectrograph
            fibermap = frame_fibermap
            starindices = frame_starindices
            starfibers = fibermap["FIBER"][starindices]

        elif spectrograph != frame.spectrograph:
            log.error("incompatible spectrographs %d != %d" %
                      (spectrograph, frame.spectrograph))
            raise ValueError("incompatible spectrographs %d != %d" %
                             (spectrograph, frame.spectrograph))
        elif starindices.size != frame_starindices.size or np.sum(
                starindices != frame_starindices) > 0:
            log.error("incompatible fibermap")
            raise ValueError("incompatible fibermap")

        if not camera in frames:
            frames[camera] = []
        frames[camera].append(frame)

    for filename in args.skymodels:
        log.info("reading %s" % filename)
        sky = io.read_sky(filename)
        header = fits.getheader(filename, 0)
        camera = safe_read_key(header, "CAMERA").strip().lower()
        if not camera in skies:
            skies[camera] = []
        skies[camera].append(sky)

    for filename in args.fiberflats:
        log.info("reading %s" % filename)
        header = fits.getheader(filename, 0)
        flat = io.read_fiberflat(filename)
        camera = safe_read_key(header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if camera in flats:

            log.warning(
                "cannot handle several flats of same camera (%s), will use only the first one"
                % camera)
            #raise ValueError("cannot handle several flats of same camera (%s)"%camera)
        else:
            flats[camera] = flat

    if starindices.size == 0:
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")

    log.info("found %d STD stars" % starindices.size)

    imaging_filters = fibermap["FILTER"][starindices]
    imaging_mags = fibermap["MAG"][starindices]

    log.warning(
        "NO MAG ERRORS IN FIBERMAP, I AM IGNORING MEASUREMENT ERRORS !!")

    ebv = np.zeros(starindices.size)
    if "SFD_EBV" in fibermap.columns.names:
        log.info("Using 'SFD_EBV' from fibermap")
        ebv = fibermap["SFD_EBV"][starindices]
    else:
        log.warning("NO EXTINCTION VALUES IN FIBERMAP!!")

    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    for cam in frames:

        if not cam in skies:
            log.warning("Missing sky for %s" % cam)
            frames.pop(cam)
            continue
        if not cam in flats:
            log.warning("Missing flat for %s" % cam)
            frames.pop(cam)
            continue

        flat = flats[cam]
        for frame, sky in zip(frames[cam], skies[cam]):
            frame.flux = frame.flux[starindices]
            frame.ivar = frame.ivar[starindices]
            frame.ivar *= (frame.mask[starindices] == 0)
            frame.ivar *= (sky.ivar[starindices] != 0)
            frame.ivar *= (sky.mask[starindices] == 0)
            frame.ivar *= (flat.ivar[starindices] != 0)
            frame.ivar *= (flat.mask[starindices] == 0)
            frame.flux *= (frame.ivar > 0)  # just for clean plots
            for star in range(frame.flux.shape[0]):
                ok = np.where((frame.ivar[star] > 0)
                              & (flat.fiberflat[star] != 0))[0]
                if ok.size > 0:
                    frame.flux[star] = frame.flux[star] / flat.fiberflat[
                        star] - sky.flux[star]
            frame.resolution_data = frame.resolution_data[starindices]

    nstars = starindices.size
    starindices = None  # we don't need this anymore

    # READ MODELS
    ############################################
    log.info("reading star models in %s" % args.starmodels)
    stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates(
        args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################
    model_filters = []
    for tmp in np.unique(imaging_filters):
        if len(tmp) > 0:  # can be one empty entry
            model_filters.append(tmp)

    log.info("computing model mags %s" % model_filters)
    model_mags = np.zeros((stdflux.shape[0], len(model_filters)))
    fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom

    for index in range(len(model_filters)):
        if model_filters[index].startswith('WISE'):
            log.warning('not computing stdstar {} mags'.format(
                model_filters[index]))
            continue

        filter_response = load_filter(model_filters[index])
        for m in range(stdflux.shape[0]):
            model_mags[m, index] = filter_response.get_ab_magnitude(
                stdflux[m] * fluxunits, stdwave)
    log.info("done computing model mags")

    mean_extinction_delta_mags = None
    mean_ebv = np.mean(ebv)
    if mean_ebv > 0:
        log.info(
            "Compute a mean delta_color from average E(B-V) = %3.2f based on canonial model star"
            % mean_ebv)
        # compute a mean delta_color from mean_ebv based on canonial model star
        #######################################################################
        # will then use this color offset in the model pre-selection
        # find canonical f-type model: Teff=6000, logg=4, Fe/H=-1.5
        canonical_model = np.argmin((teff - 6000.0)**2 + (logg - 4.0)**2 +
                                    (feh + 1.5)**2)
        canonical_model_mags_without_extinction = model_mags[canonical_model]
        canonical_model_mags_with_extinction = np.zeros(
            canonical_model_mags_without_extinction.shape)

        canonical_model_reddened_flux = stdflux[
            canonical_model] * dust_transmission(stdwave, mean_ebv)
        for index in range(len(model_filters)):
            if model_filters[index].startswith('WISE'):
                log.warning('not computing stdstar {} mags'.format(
                    model_filters[index]))
                continue
            filter_response = load_filter(model_filters[index])
            canonical_model_mags_with_extinction[
                index] = filter_response.get_ab_magnitude(
                    canonical_model_reddened_flux * fluxunits, stdwave)

        mean_extinction_delta_mags = canonical_model_mags_with_extinction - canonical_model_mags_without_extinction

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    linear_coefficients = np.zeros((nstars, stdflux.shape[0]))
    chi2dof = np.zeros((nstars))
    redshift = np.zeros((nstars))
    normflux = []

    star_colors_array = np.zeros((nstars))
    model_colors_array = np.zeros((nstars))

    for star in range(nstars):

        log.info("finding best model for observed star #%d" % star)

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames:

            for i, frame in enumerate(frames[camera]):
                identifier = "%s-%d" % (camera, i)
                wave[identifier] = frame.wave
                flux[identifier] = frame.flux[star]
                ivar[identifier] = frame.ivar[star]
                resolution_data[identifier] = frame.resolution_data[star]

        # preselec models based on magnitudes

        # compute star color
        index1, index2 = get_color_filter_indices(imaging_filters[star],
                                                  args.color)
        if index1 < 0 or index2 < 0:
            log.error("cannot compute '%s' color from %s" %
                      (color_name, filters))
        filter1 = imaging_filters[star][index1]
        filter2 = imaging_filters[star][index2]
        star_color = imaging_mags[star][index1] - imaging_mags[star][index2]
        star_colors_array[star] = star_color

        # compute models color
        model_index1 = -1
        model_index2 = -1
        for i, fname in enumerate(model_filters):
            if fname == filter1:
                model_index1 = i
            elif fname == filter2:
                model_index2 = i

        if model_index1 < 0 or model_index2 < 0:
            log.error("cannot compute '%s' model color from %s" %
                      (color_name, filters))
        model_colors = model_mags[:, model_index1] - model_mags[:,
                                                                model_index2]

        # apply extinction here
        # use the colors derived from the cannonical model with the mean ebv of the stars
        # and simply apply a scaling factor based on the ebv of this star
        # this is sufficiently precise for the broad model pre-selection we are doing here
        # the exact reddening of the star to each pre-selected model is
        # apply afterwards
        if mean_extinction_delta_mags is not None and mean_ebv != 0:
            delta_color = (mean_extinction_delta_mags[model_index1] -
                           mean_extinction_delta_mags[model_index2]
                           ) * ebv[star] / mean_ebv
            model_colors += delta_color
            log.info(
                "Apply a %s-%s color offset = %4.3f to the models for star with E(B-V)=%4.3f"
                % (model_filters[model_index1], model_filters[model_index2],
                   delta_color, ebv[star]))
        # selection

        selection = np.abs(model_colors - star_color) < args.delta_color
        # smallest cube in parameter space including this selection (needed for interpolation)
        new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max(
            teff[selection]))
        new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max(
            logg[selection]))
        new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max(
            feh[selection]))
        selection = np.where(new_selection)[0]

        log.info(
            "star#%d fiber #%d, %s = %s-%s = %f, number of pre-selected models = %d/%d"
            % (star, starfibers[star], args.color, filter1, filter2,
               star_color, selection.size, stdflux.shape[0]))

        # apply extinction to selected_models
        dust_transmission_of_this_star = dust_transmission(stdwave, ebv[star])
        selected_reddened_stdflux = stdflux[
            selection] * dust_transmission_of_this_star

        coefficients, redshift[star], chi2dof[star] = match_templates(
            wave,
            flux,
            ivar,
            resolution_data,
            stdwave,
            selected_reddened_stdflux,
            teff[selection],
            logg[selection],
            feh[selection],
            ncpu=args.ncpu,
            z_max=args.z_max,
            z_res=args.z_res,
            template_error=args.template_error)

        linear_coefficients[star, selection] = coefficients

        log.info(
            'Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}'
            .format(starfibers[star], np.inner(teff,
                                               linear_coefficients[star]),
                    np.inner(logg, linear_coefficients[star]),
                    np.inner(feh, linear_coefficients[star]), redshift[star],
                    chi2dof[star]))

        # Apply redshift to original spectrum at full resolution
        model = np.zeros(stdwave.size)
        for i, c in enumerate(linear_coefficients[star]):
            if c != 0:
                model += c * np.interp(stdwave, stdwave *
                                       (1 + redshift[star]), stdflux[i])

        # Apply dust extinction
        model *= dust_transmission_of_this_star

        # Compute final model color
        mag1 = load_filter(model_filters[model_index1]).get_ab_magnitude(
            model * fluxunits, stdwave)
        mag2 = load_filter(model_filters[model_index2]).get_ab_magnitude(
            model * fluxunits, stdwave)
        model_colors_array[star] = mag1 - mag2

        # Normalize the best model using reported magnitude
        normalizedflux = normalize_templates(stdwave, model,
                                             imaging_mags[star],
                                             imaging_filters[star])
        normflux.append(normalizedflux)

    # Now write the normalized flux for all best models to a file
    normflux = np.array(normflux)
    data = {}
    data['LOGG'] = linear_coefficients.dot(logg)
    data['TEFF'] = linear_coefficients.dot(teff)
    data['FEH'] = linear_coefficients.dot(feh)
    data['CHI2DOF'] = chi2dof
    data['REDSHIFT'] = redshift
    data['COEFF'] = linear_coefficients
    data['DATA_%s' % args.color] = star_colors_array
    data['MODEL_%s' % args.color] = model_colors_array
    norm_model_file = args.outfile
    io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers, data)
Пример #31
0
def main(args):

    log = get_logger()

    # precompute convolution kernels
    kernels = compute_crosstalk_kernels()

    A = None
    B = None
    out_wave = None

    dfiber = np.array([-2, -1, 1, 2])
    #dfiber=np.array([-1,1])

    npar = dfiber.size
    with_cst = True  # to marginalize over residual background (should not change much)
    if with_cst:
        npar += 1

    # one measurement per fiber bundle
    nfiber_per_bundle = 25
    nbundles = 500 // nfiber_per_bundle

    xtalks = []

    previous_psf_filename = None
    previous_fiberflat_filename = None

    for filename in args.infile:

        # read a frame and fiber the sky fibers
        frame = read_frame(filename)

        if out_wave is None:
            dwave = (frame.wave[-1] - frame.wave[0]) / 40
            out_wave = np.linspace(frame.wave[0] + dwave / 2,
                                   frame.wave[-1] - dwave / 2, 40)

        # find fiberflat
        if "FIBERFLT" in frame.meta.keys():
            flatname = frame.meta["FIBERFLT"]
            if flatname.find("SPCALIB") >= 0:
                flatname = flatname.replace(
                    "SPCALIB", os.environ["DESI_SPECTRO_CALIB"] + "/")
            if flatname.find("SPECPROD") >= 0:
                # this one is harder :-(
                dirname = os.path.dirname(
                    os.path.dirname(os.path.dirname(
                        os.path.dirname(filename))))
                flatname = flatname.replace("SPECPROD", dirname + "/")

        else:
            flatname = findcalibfile([
                frame.meta,
            ], "FIBERFLAT")
        if flatname is not None:
            if previous_fiberflat_filename is not None and previous_fiberflat_filename == flatname:
                log.info("Using same fiberflat")
            else:
                if not os.path.isfile(flatname):
                    log.error("Cannot open fiberflat file {}".format(flatname))
                    raise IOError(
                        "Cannot open fiberflat file {}".format(flatname))
                log.info("Using fiberflat {}".format(flatname))
                fiberflat = read_fiberflat(flatname)
                medflat = np.median(fiberflat.fiberflat, axis=1)
                previous_fiberflat_filename = flatname
        else:
            medflat = None
            log.warning("No fiberflat")

        skyfibers = np.where((frame.fibermap["OBJTYPE"] == "SKY")
                             & (frame.fibermap["FIBERSTATUS"] == 0))[0]
        log.info("{} sky fibers in {}".format(skyfibers.size, filename))

        frame.ivar *= (
            (frame.mask == 0) | (frame.mask == specmask.BADFIBER)
        )  # ignore BADFIBER which is a statement on the positioning

        # also open trace set to determine the shift
        # to apply to adjacent spectra
        psf_filename = findcalibfile([
            frame.meta,
        ], "PSF")

        # only reread if necessary
        if previous_psf_filename is None or previous_psf_filename != psf_filename:
            tset = read_xytraceset(psf_filename)
            previous_psf_filename = psf_filename

        # will use this y
        central_y = tset.npix_y // 2

        mwave = np.mean(frame.wave)

        if A is None:
            A = np.zeros((nbundles, npar, npar, out_wave.size))
            B = np.zeros((nbundles, npar, out_wave.size))
            fA = np.zeros((npar, npar, out_wave.size))
            fB = np.zeros((npar, out_wave.size))
            ninput = np.zeros((nbundles, dfiber.size))

        for skyfiber in skyfibers:
            cflux = np.zeros((dfiber.size, out_wave.size))
            skyfiberbundle = skyfiber // nfiber_per_bundle

            nbad = np.sum(frame.ivar[skyfiber] == 0)
            if nbad > 200:
                if nbad < 2000:
                    log.warning(
                        "ignore skyfiber {} from {} with {} masked pixel".
                        format(skyfiber, filename, nbad))
                continue

            skyfiber_central_wave = tset.wave_vs_y(skyfiber, central_y)

            should_consider = False
            must_exclude = False
            fA *= 0.
            fB *= 0.

            use_median_filter = False  # not needed
            median_filter_width = 30
            skyfiberflux, skyfiberivar = resample_flux(out_wave, frame.wave,
                                                       frame.flux[skyfiber],
                                                       frame.ivar[skyfiber])
            if medflat is not None:
                skyfiberflux *= medflat[
                    skyfiber]  # apply relative transmission of fiber, i.e. undo the fiberflat correction

            if use_median_filter:
                good = (skyfiberivar > 0)
                skyfiberflux = np.interp(out_wave, out_wave[good],
                                         skyfiberflux[good])
                skyfiberflux = scipy.ndimage.filters.median_filter(
                    skyfiberflux, median_filter_width, mode='constant')

            for i, df in enumerate(dfiber):
                otherfiber = df + skyfiber
                if otherfiber < 0: continue
                if otherfiber >= frame.nspec: continue
                if otherfiber // nfiber_per_bundle != skyfiberbundle:
                    continue  # not same bundle

                snr = np.sqrt(frame.ivar[otherfiber]) * frame.flux[otherfiber]
                medsnr = np.median(snr)
                if medsnr > 2:  # need good SNR to model cross talk
                    should_consider = True  # in which case we need all of the contaminants to the sky fiber ...

                nbad = np.sum(snr == 0)
                if nbad > 200:
                    if nbad < 2000:
                        log.warning(
                            "ignore fiber {} from {} with {} masked pixel".
                            format(otherfiber, filename, nbad))
                    must_exclude = True  # because 1 bad fiber
                    break

                if np.any(snr > 1000.):
                    log.error(
                        "signal to noise is suspiciously too high in fiber {} from {}"
                        .format(otherfiber, filename))
                    must_exclude = True  # because 1 bad fiber
                    break

                # interpolate over masked pixels or low snr pixels and shift
                medivar = np.median(frame.ivar[otherfiber])
                good = (frame.ivar[otherfiber] > 0.01 * medivar
                        )  # interpolate over brigh sky lines

                # account for change of wavelength for same y coordinate
                otherfiber_central_wave = tset.wave_vs_y(otherfiber, central_y)
                flux = np.interp(
                    frame.wave +
                    (otherfiber_central_wave - skyfiber_central_wave),
                    frame.wave[good], frame.flux[otherfiber][good])
                if medflat is not None:
                    flux *= medflat[
                        otherfiber]  # apply relative transmission of fiber, i.e. undo the fiberflat correction

                if use_median_filter:
                    flux = scipy.ndimage.filters.median_filter(
                        flux, median_filter_width, mode='constant')
                kern = kernels[np.abs(df)]
                tmp = fftconvolve(flux, kern, mode="same")
                cflux[i] = resample_flux(out_wave, frame.wave, tmp)

                fB[i] = skyfiberivar * cflux[i] * skyfiberflux
                for j in range(i + 1):
                    fA[i, j] = skyfiberivar * cflux[i] * cflux[j]

            if should_consider and (not must_exclude):

                scflux = np.sum(cflux, axis=0)
                mscflux = np.sum(skyfiberivar * scflux) / np.sum(skyfiberivar)
                if mscflux < 100:
                    continue

                if with_cst:
                    i = dfiber.size
                    fA[i, i] = skyfiberivar  # constant term
                    fB[i] = skyfiberivar * skyfiberflux
                    for j in range(i):
                        fA[i, j] = skyfiberivar * cflux[j]

                # just stack all wavelength to get 1 number for this fiber
                scflux = np.sum(cflux[np.abs(dfiber) == 1], axis=0)
                a = np.sum(skyfiberivar * scflux**2)
                b = np.sum(skyfiberivar * scflux * skyfiberflux)
                xtalk = b / a
                err = 1. / np.sqrt(a)
                msky = np.sum(
                    skyfiberivar * skyfiberflux) / np.sum(skyfiberivar)
                ra = frame.fibermap["TARGET_RA"][skyfiber]
                dec = frame.fibermap["TARGET_DEC"][skyfiber]

                if np.abs(xtalk) > 0.02 and np.abs(xtalk) / err > 5:
                    log.warning(
                        "discard skyfiber = {}, xtalk = {:4.3f} +- {:4.3f}, ra = {:5.4f} , dec = {:5.4f}, sky fiber flux= {:4.3f}, cont= {:4.3f}"
                        .format(skyfiber, xtalk, err, ra, dec, msky, mscflux))
                    continue

                if err < 0.01 / 5.:
                    xtalks.append(xtalk)

                for i in range(dfiber.size):
                    ninput[skyfiberbundle,
                           i] += int(np.sum(fB[i]) != 0)  # to monitor
                B[skyfiberbundle] += fB
                A[skyfiberbundle] += fA

    for bundle in range(nbundles):
        for i in range(npar):
            for j in range(i):
                A[bundle, j, i] = A[bundle, i, j]

    # now solve
    crosstalk = np.zeros((nbundles, dfiber.size, out_wave.size))
    crosstalk_ivar = np.zeros((nbundles, dfiber.size, out_wave.size))
    for bundle in range(nbundles):
        for j in range(out_wave.size):
            try:
                Ai = np.linalg.inv(A[bundle, :, :, j])
                if with_cst:
                    crosstalk[bundle, :, j] = Ai.dot(
                        B[bundle, :, j])[:-1]  # last coefficient is constant
                    crosstalk_ivar[bundle, :, j] = 1. / np.diag(Ai)[:-1]
                else:
                    crosstalk[bundle, :, j] = Ai.dot(B[bundle, :, j])
                    crosstalk_ivar[bundle, :, j] = 1. / np.diag(Ai)

            except np.linalg.LinAlgError as e:
                pass

    table = Table()
    table["WAVELENGTH"] = out_wave
    for bundle in range(nbundles):
        for i, df in enumerate(dfiber):
            key = "CROSSTALK-B{:02d}-F{:+d}".format(bundle, df)
            table[key] = crosstalk[bundle, i]
            key = "CROSSTALKIVAR-B{:02d}-F{:+d}".format(bundle, df)
            table[key] = crosstalk_ivar[bundle, i]
            key = "NINPUT-B{:02d}-F{:+d}".format(bundle, df)
            table[key] = np.repeat(ninput[bundle, i], out_wave.size)

    table.write(args.outfile, overwrite=True)
    log.info("wrote {}".format(args.outfile))

    log.info("number of sky fibers used per bundle:")
    for bundle in range(nbundles):
        log.info("bundle {}: {}".format(bundle, ninput[bundle]))

    if args.plot:
        for bundle in range(nbundles):
            for i, df in enumerate(dfiber):
                err = 1. / np.sqrt(crosstalk_ivar[bundle, i] +
                                   (crosstalk_ivar[bundle, i] == 0))
                plt.errorbar(wave,
                             crosstalk[bundle, i],
                             err,
                             fmt="o-",
                             label="bundle = {:02d} dfiber = {:+d}".format(
                                 bundle, df))
        plt.grid()
        plt.legend()
        plt.show()
Пример #32
0
def main(args, comm=None):
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)" %
             (args.color, args.delta_color))

    if args.mpi or comm is not None:
        from mpi4py import MPI
        if comm is None:
            comm = MPI.COMM_WORLD
        size = comm.Get_size()
        rank = comm.Get_rank()
        if rank == 0:
            log.info('mpi parallelizing with {} ranks'.format(size))
    else:
        comm = None
        rank = 0
        size = 1

    # disable multiprocess by forcing ncpu = 1 when using MPI
    if comm is not None:
        ncpu = 1
        if rank == 0:
            log.info('disabling multiprocess (forcing ncpu = 1)')
    else:
        ncpu = args.ncpu

    if ncpu > 1:
        if rank == 0:
            log.info(
                'multiprocess parallelizing with {} processes'.format(ncpu))

    if args.ignore_gpu and desispec.fluxcalibration.use_gpu:
        # Opt-out of GPU usage
        desispec.fluxcalibration.use_gpu = False
        if rank == 0:
            log.info('ignoring GPU')
    elif desispec.fluxcalibration.use_gpu:
        # Nothing to do here, GPU is used by default if available
        if rank == 0:
            log.info('using GPU')
    else:
        if rank == 0:
            log.info('GPU not available')

    std_targetids = None
    if args.std_targetids is not None:
        std_targetids = args.std_targetids

    # READ DATA
    ############################################
    # First loop through and group by exposure and spectrograph
    frames_by_expid = {}
    rows = list()
    for filename in args.frames:
        log.info("reading %s" % filename)
        frame = io.read_frame(filename)
        night = safe_read_key(frame.meta, "NIGHT")
        expid = safe_read_key(frame.meta, "EXPID")
        camera = safe_read_key(frame.meta, "CAMERA").strip().lower()
        rows.append((night, expid, camera))
        spec = camera[1]
        uniq_key = (expid, spec)
        if uniq_key in frames_by_expid.keys():
            frames_by_expid[uniq_key][camera] = frame
        else:
            frames_by_expid[uniq_key] = {camera: frame}

    input_frames_table = Table(rows=rows, names=('NIGHT', 'EXPID', 'TILEID'))

    frames = {}
    flats = {}
    skies = {}

    spectrograph = None
    starfibers = None
    starindices = None
    fibermap = None
    # For each unique expid,spec pair, get the logical OR of the FIBERSTATUS for all
    # cameras and then proceed with extracting the frame information
    # once we modify the fibermap FIBERSTATUS
    for (expid, spec), camdict in frames_by_expid.items():

        fiberstatus = None
        for frame in camdict.values():
            if fiberstatus is None:
                fiberstatus = frame.fibermap['FIBERSTATUS'].data.copy()
            else:
                fiberstatus |= frame.fibermap['FIBERSTATUS']

        for camera, frame in camdict.items():
            frame.fibermap['FIBERSTATUS'] |= fiberstatus
            # Set fibermask flagged spectra to have 0 flux and variance
            frame = get_fiberbitmasked_frame(frame,
                                             bitmask='stdstars',
                                             ivar_framemask=True)
            frame_fibermap = frame.fibermap
            if std_targetids is None:
                frame_starindices = np.where(isStdStar(frame_fibermap))[0]
            else:
                frame_starindices = np.nonzero(
                    np.isin(frame_fibermap['TARGETID'], std_targetids))[0]

            #- Confirm that all fluxes have entries but trust targeting bits
            #- to get basic magnitude range correct
            keep_legacy = np.ones(len(frame_starindices), dtype=bool)

            for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']:  #- and W1 and W2?
                keep_legacy &= frame_fibermap[colname][
                    frame_starindices] > 10**((22.5 - 30) / 2.5)
                keep_legacy &= frame_fibermap[colname][
                    frame_starindices] < 10**((22.5 - 0) / 2.5)
            keep_gaia = np.ones(len(frame_starindices), dtype=bool)

            for colname in ['G', 'BP', 'RP']:  #- and W1 and W2?
                keep_gaia &= frame_fibermap[
                    'GAIA_PHOT_' + colname +
                    '_MEAN_MAG'][frame_starindices] > 10
                keep_gaia &= frame_fibermap[
                    'GAIA_PHOT_' + colname +
                    '_MEAN_MAG'][frame_starindices] < 20
            n_legacy_std = keep_legacy.sum()
            n_gaia_std = keep_gaia.sum()
            keep = keep_legacy | keep_gaia
            # accept both types of standards for the time being

            # keep the indices for gaia/legacy subsets
            gaia_indices = keep_gaia[keep]
            legacy_indices = keep_legacy[keep]

            frame_starindices = frame_starindices[keep]

            if spectrograph is None:
                spectrograph = frame.spectrograph
                fibermap = frame_fibermap
                starindices = frame_starindices
                starfibers = fibermap["FIBER"][starindices]

            elif spectrograph != frame.spectrograph:
                log.error("incompatible spectrographs {} != {}".format(
                    spectrograph, frame.spectrograph))
                raise ValueError("incompatible spectrographs {} != {}".format(
                    spectrograph, frame.spectrograph))
            elif starindices.size != frame_starindices.size or np.sum(
                    starindices != frame_starindices) > 0:
                log.error("incompatible fibermap")
                raise ValueError("incompatible fibermap")

            if not camera in frames:
                frames[camera] = []

            frames[camera].append(frame)

    # possibly cleanup memory
    del frames_by_expid

    for filename in args.skymodels:
        log.info("reading %s" % filename)
        sky = io.read_sky(filename)
        camera = safe_read_key(sky.header, "CAMERA").strip().lower()
        if not camera in skies:
            skies[camera] = []
        skies[camera].append(sky)

    for filename in args.fiberflats:
        log.info("reading %s" % filename)
        flat = io.read_fiberflat(filename)
        camera = safe_read_key(flat.header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if camera in flats:
            log.warning(
                "cannot handle several flats of same camera (%s), will use only the first one"
                % camera)
            #raise ValueError("cannot handle several flats of same camera (%s)"%camera)
        else:
            flats[camera] = flat

    # if color is not specified we decide on the fly
    color = args.color
    if color is not None:
        if color[:4] == 'GAIA':
            legacy_color = False
            gaia_color = True
        else:
            legacy_color = True
            gaia_color = False
        if n_legacy_std == 0 and legacy_color:
            raise Exception(
                'Specified Legacy survey color, but no legacy standards')
        if n_gaia_std == 0 and gaia_color:
            raise Exception('Specified gaia color, but no gaia stds')

    if starindices.size == 0:
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")
    log.info("found %d STD stars" % starindices.size)

    if n_legacy_std == 0:
        gaia_std = True
        if color is None:
            color = 'GAIA-BP-RP'
    else:
        gaia_std = False
        if color is None:
            color = 'G-R'
        if n_gaia_std > 0:
            log.info('Gaia standards found but not used')

    if gaia_std:
        # The name of the reference filter to which we normalize the flux
        ref_mag_name = 'GAIA-G'
        color_band1, color_band2 = ['GAIA-' + _ for _ in color[5:].split('-')]
        log.info(
            "Using Gaia standards with color {} and normalizing to {}".format(
                color, ref_mag_name))
        # select appropriate subset of standards
        starindices = starindices[gaia_indices]
        starfibers = starfibers[gaia_indices]
    else:
        ref_mag_name = 'R'
        color_band1, color_band2 = color.split('-')
        log.info("Using Legacy standards with color {} and normalizing to {}".
                 format(color, ref_mag_name))
        # select appropriate subset of standards
        starindices = starindices[legacy_indices]
        starfibers = starfibers[legacy_indices]

    # excessive check but just in case
    if not color in ['G-R', 'R-Z', 'GAIA-BP-RP', 'GAIA-G-RP']:
        raise ValueError('Unknown color {}'.format(color))

    # log.warning("Not using flux errors for Standard Star fits!")

    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    # since poping dict, we need to copy keys to iterate over to avoid
    # RuntimeError due to changing dict
    frame_cams = list(frames.keys())
    for cam in frame_cams:

        if not cam in skies:
            log.warning("Missing sky for %s" % cam)
            frames.pop(cam)
            continue
        if not cam in flats:
            log.warning("Missing flat for %s" % cam)
            frames.pop(cam)
            continue

        flat = flats[cam]
        for frame, sky in zip(frames[cam], skies[cam]):
            frame.flux = frame.flux[starindices]
            frame.ivar = frame.ivar[starindices]
            frame.ivar *= (frame.mask[starindices] == 0)
            frame.ivar *= (sky.ivar[starindices] != 0)
            frame.ivar *= (sky.mask[starindices] == 0)
            frame.ivar *= (flat.ivar[starindices] != 0)
            frame.ivar *= (flat.mask[starindices] == 0)
            frame.flux *= (frame.ivar > 0)  # just for clean plots
            for star in range(frame.flux.shape[0]):
                ok = np.where((frame.ivar[star] > 0)
                              & (flat.fiberflat[star] != 0))[0]
                if ok.size > 0:
                    frame.flux[star] = frame.flux[star] / flat.fiberflat[
                        star] - sky.flux[star]
            frame.resolution_data = frame.resolution_data[starindices]

        nframes = len(frames[cam])
        if nframes > 1:
            # optimal weights for the coaddition = ivar*throughput, not directly ivar,
            # we estimate the relative throughput with median fluxes at this stage
            medflux = np.zeros(nframes)
            for i, frame in enumerate(frames[cam]):
                if np.sum(frame.ivar > 0) == 0:
                    log.error(
                        "ivar=0 for all std star spectra in frame {}-{:08d}".
                        format(cam, frame.meta["EXPID"]))
                else:
                    medflux[i] = np.median(frame.flux[frame.ivar > 0])
            log.debug("medflux = {}".format(medflux))
            medflux *= (medflux > 0)
            if np.sum(medflux > 0) == 0:
                log.error(
                    "mean median flux = 0, for all stars in fibers {}".format(
                        list(frames[cam][0].fibermap["FIBER"][starindices])))
                sys.exit(12)
            mmedflux = np.mean(medflux[medflux > 0])
            weights = medflux / mmedflux
            log.info("coadding {} exposures in cam {}, w={}".format(
                nframes, cam, weights))

            sw = np.zeros(frames[cam][0].flux.shape)
            swf = np.zeros(frames[cam][0].flux.shape)
            swr = np.zeros(frames[cam][0].resolution_data.shape)

            for i, frame in enumerate(frames[cam]):
                sw += weights[i] * frame.ivar
                swf += weights[i] * frame.ivar * frame.flux
                swr += weights[i] * frame.ivar[:,
                                               None, :] * frame.resolution_data
            coadded_frame = frames[cam][0]
            coadded_frame.ivar = sw
            coadded_frame.flux = swf / (sw + (sw == 0))
            coadded_frame.resolution_data = swr / ((sw +
                                                    (sw == 0))[:, None, :])
            frames[cam] = [coadded_frame]

    # CHECK S/N
    ############################################
    # for each band in 'brz', record quadratic sum of median S/N across wavelength
    snr = dict()
    for band in ['b', 'r', 'z']:
        snr[band] = np.zeros(starindices.size)
    for cam in frames:
        band = cam[0].lower()
        for frame in frames[cam]:
            msnr = np.median(frame.flux * np.sqrt(frame.ivar) /
                             np.sqrt(np.gradient(frame.wave)),
                             axis=1)  # median SNR per sqrt(A.)
            msnr *= (msnr > 0)
            snr[band] = np.sqrt(snr[band]**2 + msnr**2)
    log.info("SNR(B) = {}".format(snr['b']))

    ###############################
    max_number_of_stars = 50
    min_blue_snr = 4.
    ###############################
    indices = np.argsort(snr['b'])[::-1][:max_number_of_stars]

    validstars = np.where(snr['b'][indices] > min_blue_snr)[0]

    #- TODO: later we filter on models based upon color, thus throwing
    #- away very blue stars for which we don't have good models.

    log.info("Number of stars with median stacked blue S/N > {} /sqrt(A) = {}".
             format(min_blue_snr, validstars.size))
    if validstars.size == 0:
        log.error("No valid star")
        sys.exit(12)

    validstars = indices[validstars]

    for band in ['b', 'r', 'z']:
        snr[band] = snr[band][validstars]

    log.info("BLUE SNR of selected stars={}".format(snr['b']))

    for cam in frames:
        for frame in frames[cam]:
            frame.flux = frame.flux[validstars]
            frame.ivar = frame.ivar[validstars]
            frame.resolution_data = frame.resolution_data[validstars]
    starindices = starindices[validstars]
    starfibers = starfibers[validstars]
    nstars = starindices.size
    fibermap = Table(fibermap[starindices])

    # MASK OUT THROUGHPUT DIP REGION
    ############################################
    mask_throughput_dip_region = True
    if mask_throughput_dip_region:
        wmin = 4300.
        wmax = 4500.
        log.warning(
            "Masking out the wavelength region [{},{}]A in the standard star fit"
            .format(wmin, wmax))
    for cam in frames:
        for frame in frames[cam]:
            ii = np.where((frame.wave >= wmin) & (frame.wave <= wmax))[0]
            if ii.size > 0:
                frame.ivar[:, ii] = 0

    # READ MODELS
    ############################################
    log.info("reading star models in %s" % args.starmodels)
    stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates(
        args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################

    #- Support older fibermaps
    if 'PHOTSYS' not in fibermap.colnames:
        log.warning('Old fibermap format; using defaults for missing columns')
        log.warning("    PHOTSYS = 'S'")
        log.warning("    EBV = 0.0")
        fibermap['PHOTSYS'] = 'S'
        fibermap['EBV'] = 0.0

    if not np.in1d(np.unique(fibermap['PHOTSYS']), ['', 'N', 'S', 'G']).all():
        log.error('Unknown PHOTSYS found')
        raise Exception('Unknown PHOTSYS found')
    # Fetching Filter curves
    model_filters = dict()
    for band in ["G", "R", "Z"]:
        for photsys in np.unique(fibermap['PHOTSYS']):
            if photsys in ['N', 'S']:
                model_filters[band + photsys] = load_legacy_survey_filter(
                    band=band, photsys=photsys)
    if len(model_filters) == 0:
        log.info('No Legacy survey photometry identified in fibermap')

    # I will always load gaia data even if we are fitting LS standards only
    for band in ["G", "BP", "RP"]:
        model_filters["GAIA-" + band] = load_gaia_filter(band=band, dr=2)

    # Compute model mags on rank 0 and bcast result to other ranks
    # This sidesteps an OOM event on Cori Haswell with "-c 2"
    model_mags = None
    if rank == 0:
        log.info("computing model mags for %s" % sorted(model_filters.keys()))
        model_mags = dict()
        for filter_name in model_filters.keys():
            model_mags[filter_name] = get_magnitude(stdwave, stdflux,
                                                    model_filters, filter_name)
        log.info("done computing model mags")
    if comm is not None:
        model_mags = comm.bcast(model_mags, root=0)

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    star_mags = dict()
    star_unextincted_mags = dict()

    if gaia_std and (fibermap['EBV'] == 0).all():
        log.info("Using E(B-V) from SFD rather than FIBERMAP")
        # when doing gaia standards, on old tiles the
        # EBV is not set so we fetch from SFD (in original SFD scaling)
        ebv = SFDMap(scaling=1).ebv(
            acoo.SkyCoord(ra=fibermap['TARGET_RA'] * units.deg,
                          dec=fibermap['TARGET_DEC'] * units.deg))
    else:
        ebv = fibermap['EBV']

    photometric_systems = np.unique(fibermap['PHOTSYS'])
    if not gaia_std:
        for band in ['G', 'R', 'Z']:
            star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_' + band])
            star_unextincted_mags[band] = np.zeros(star_mags[band].shape)
            for photsys in photometric_systems:
                r_band = extinction_total_to_selective_ratio(
                    band, photsys)  # dimensionless
                # r_band = a_band / E(B-V)
                # E(B-V) is a difference of magnitudes (dimensionless)
                # a_band = -2.5*log10(effective dust transmission) , dimensionless
                # effective dust transmission =
                #                  integral( SED(lambda) * filter_transmission(lambda,band) * dust_transmission(lambda,E(B-V)) dlamdba)
                #                / integral( SED(lambda) * filter_transmission(lambda,band) dlamdba)
                selection = (fibermap['PHOTSYS'] == photsys)
                a_band = r_band * ebv[selection]  # dimensionless
                star_unextincted_mags[band][selection] = 22.5 - 2.5 * np.log10(
                    fibermap['FLUX_' + band][selection]) - a_band

    for band in ['G', 'BP', 'RP']:
        star_mags['GAIA-' + band] = fibermap['GAIA_PHOT_' + band + '_MEAN_MAG']

    for band, extval in gaia_extinction(star_mags['GAIA-G'],
                                        star_mags['GAIA-BP'],
                                        star_mags['GAIA-RP'], ebv).items():
        star_unextincted_mags['GAIA-' +
                              band] = star_mags['GAIA-' + band] - extval

    star_colors = dict()
    star_unextincted_colors = dict()

    # compute the colors and define the unextincted colors
    # the unextincted colors are filled later
    if not gaia_std:
        for c1, c2 in ['GR', 'RZ']:
            star_colors[c1 + '-' + c2] = star_mags[c1] - star_mags[c2]
            star_unextincted_colors[c1 + '-' +
                                    c2] = (star_unextincted_mags[c1] -
                                           star_unextincted_mags[c2])
    for c1, c2 in [('BP', 'RP'), ('G', 'RP')]:
        star_colors['GAIA-' + c1 + '-' + c2] = (star_mags['GAIA-' + c1] -
                                                star_mags['GAIA-' + c2])
        star_unextincted_colors['GAIA-' + c1 + '-' +
                                c2] = (star_unextincted_mags['GAIA-' + c1] -
                                       star_unextincted_mags['GAIA-' + c2])

    linear_coefficients = np.zeros((nstars, stdflux.shape[0]))
    chi2dof = np.zeros((nstars))
    redshift = np.zeros((nstars))
    normflux = np.zeros((nstars, stdwave.size))
    fitted_model_colors = np.zeros(nstars)

    local_comm, head_comm = None, None
    if comm is not None:
        # All ranks in local_comm work on the same stars
        local_comm = comm.Split(rank % nstars, rank)
        # The color 1 in head_comm contains all ranks that are have rank 0 in local_comm
        head_comm = comm.Split(rank < nstars, rank)

    for star in range(rank % nstars, nstars, size):

        log.info("rank %d: finding best model for observed star #%d" %
                 (rank, star))

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames:
            for i, frame in enumerate(frames[camera]):
                identifier = "%s-%d" % (camera, i)
                wave[identifier] = frame.wave
                flux[identifier] = frame.flux[star]
                ivar[identifier] = frame.ivar[star]
                resolution_data[identifier] = frame.resolution_data[star]

        # preselect models based on magnitudes
        photsys = fibermap['PHOTSYS'][star]

        if gaia_std:
            model_colors = model_mags[color_band1] - model_mags[color_band2]
        else:
            model_colors = model_mags[color_band1 +
                                      photsys] - model_mags[color_band2 +
                                                            photsys]

        color_diff = model_colors - star_unextincted_colors[color][star]
        selection = np.abs(color_diff) < args.delta_color
        if np.sum(selection) == 0:
            log.warning("no model in the selected color range for this star")
            continue

        # smallest cube in parameter space including this selection (needed for interpolation)
        new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max(
            teff[selection]))
        new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max(
            logg[selection]))
        new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max(
            feh[selection]))
        selection = np.where(new_selection)[0]

        log.info(
            "star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d"
            % (star, starfibers[star], color,
               star_unextincted_colors[color][star], selection.size,
               stdflux.shape[0]))

        # Match unextincted standard stars to data
        match_templates_result = match_templates(
            wave,
            flux,
            ivar,
            resolution_data,
            stdwave,
            stdflux[selection],
            teff[selection],
            logg[selection],
            feh[selection],
            ncpu=ncpu,
            z_max=args.z_max,
            z_res=args.z_res,
            template_error=args.template_error,
            comm=local_comm)

        # Only local rank 0 can perform the remaining work
        if local_comm is not None and local_comm.Get_rank() != 0:
            continue

        coefficients, redshift[star], chi2dof[star] = match_templates_result
        linear_coefficients[star, selection] = coefficients
        log.info(
            'Star Fiber: {}; TEFF: {:.3f}; LOGG: {:.3f}; FEH: {:.3f}; Redshift: {:g}; Chisq/dof: {:.3f}'
            .format(starfibers[star], np.inner(teff,
                                               linear_coefficients[star]),
                    np.inner(logg, linear_coefficients[star]),
                    np.inner(feh, linear_coefficients[star]), redshift[star],
                    chi2dof[star]))

        # Apply redshift to original spectrum at full resolution
        model = np.zeros(stdwave.size)
        redshifted_stdwave = stdwave * (1 + redshift[star])
        for i, c in enumerate(linear_coefficients[star]):
            if c != 0:
                model += c * np.interp(stdwave, redshifted_stdwave, stdflux[i])

        # Apply dust extinction to the model
        log.info("Applying MW dust extinction to star {} with EBV = {}".format(
            star, ebv[star]))
        model *= dust_transmission(stdwave, ebv[star])

        # Compute final color of dust-extincted model
        photsys = fibermap['PHOTSYS'][star]

        if not gaia_std:
            model_mag1, model_mag2 = [
                get_magnitude(stdwave, model, model_filters, _ + photsys)
                for _ in [color_band1, color_band2]
            ]
        else:
            model_mag1, model_mag2 = [
                get_magnitude(stdwave, model, model_filters, _)
                for _ in [color_band1, color_band2]
            ]

        if color_band1 == ref_mag_name:
            model_magr = model_mag1
        elif color_band2 == ref_mag_name:
            model_magr = model_mag2
        else:
            # if the reference magnitude is not among colours
            # I'm fetching it separately. This will happen when
            # colour is BP-RP and ref magnitude is G
            if gaia_std:
                model_magr = get_magnitude(stdwave, model, model_filters,
                                           ref_mag_name)
            else:
                model_magr = get_magnitude(stdwave, model, model_filters,
                                           ref_mag_name + photsys)
        fitted_model_colors[star] = model_mag1 - model_mag2

        #- TODO: move this back into normalize_templates, at the cost of
        #- recalculating a model magnitude?

        cur_refmag = star_mags[ref_mag_name][star]

        # Normalize the best model using reported magnitude
        scalefac = 10**((model_magr - cur_refmag) / 2.5)

        log.info('scaling {} mag {:.3f} to {:.3f} using scale {}'.format(
            ref_mag_name, model_magr, cur_refmag, scalefac))
        normflux[star] = model * scalefac

    if head_comm is not None and rank < nstars:  # head_comm color is 1
        linear_coefficients = head_comm.reduce(linear_coefficients,
                                               op=MPI.SUM,
                                               root=0)
        redshift = head_comm.reduce(redshift, op=MPI.SUM, root=0)
        chi2dof = head_comm.reduce(chi2dof, op=MPI.SUM, root=0)
        fitted_model_colors = head_comm.reduce(fitted_model_colors,
                                               op=MPI.SUM,
                                               root=0)
        normflux = head_comm.reduce(normflux, op=MPI.SUM, root=0)

    # Check at least one star was fit. The check is peformed on rank 0 and
    # the result is bcast to other ranks so that all ranks exit together if
    # the check fails.
    atleastonestarfit = False
    if rank == 0:
        fitted_stars = np.where(chi2dof != 0)[0]
        atleastonestarfit = fitted_stars.size > 0
    if comm is not None:
        atleastonestarfit = comm.bcast(atleastonestarfit, root=0)
    if not atleastonestarfit:
        log.error("No star has been fit.")
        sys.exit(12)

    # Now write the normalized flux for all best models to a file
    if rank == 0:

        # get the fibermap from any input frame for the standard stars
        fibermap = Table(frame.fibermap)
        keep = np.isin(fibermap['FIBER'], starfibers[fitted_stars])
        fibermap = fibermap[keep]

        # drop fibermap columns specific to exposures instead of targets
        for col in [
                'DELTA_X', 'DELTA_Y', 'EXPTIME', 'NUM_ITER', 'FIBER_RA',
                'FIBER_DEC', 'FIBER_X', 'FIBER_Y'
        ]:
            if col in fibermap.colnames:
                fibermap.remove_column(col)

        data = {}
        data['LOGG'] = linear_coefficients[fitted_stars, :].dot(logg)
        data['TEFF'] = linear_coefficients[fitted_stars, :].dot(teff)
        data['FEH'] = linear_coefficients[fitted_stars, :].dot(feh)
        data['CHI2DOF'] = chi2dof[fitted_stars]
        data['REDSHIFT'] = redshift[fitted_stars]
        data['COEFF'] = linear_coefficients[fitted_stars, :]
        data['DATA_%s' % color] = star_colors[color][fitted_stars]
        data['MODEL_%s' % color] = fitted_model_colors[fitted_stars]
        data['BLUE_SNR'] = snr['b'][fitted_stars]
        data['RED_SNR'] = snr['r'][fitted_stars]
        data['NIR_SNR'] = snr['z'][fitted_stars]
        io.write_stdstar_models(args.outfile, normflux, stdwave,
                                starfibers[fitted_stars], data, fibermap,
                                input_frames_table)
Пример #33
0
def main(args):

    log = get_logger()

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel = read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux, model_wave, model_fibers = read_stdstar_models(args.models)
    model_tuple = model_flux, model_wave, model_fibers

    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap
    model_fibers = model_fibers % 500
    if np.any(fibermap['OBJTYPE'][model_fibers] != 'STD'):
        for i in model_fibers:
            log.error(
                "inconsistency with spectrum %d, OBJTYPE='%s' in fibermap" %
                (i, fibermap["OBJTYPE"][i]))
        sys.exit(12)

    #fluxcalib, indiv_stars = compute_flux_calibration(frame, model_wave, model_flux)
    fluxcalib = compute_flux_calibration(frame, model_wave, model_flux)

    # QA
    if (args.qafile is not None):
        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame,
                                flavor=frame.meta['FLAVOR'])
        # Run
        qaframe.run_qa('FLUXCALIB',
                       (frame, fluxcalib, model_tuple))  #, indiv_stars))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib,
                                     model_tuple)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s" % args.outfile)
Пример #34
0
def main(args):
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)" %
             (args.color, args.delta_color))
    log.info('multiprocess parallelizing with {} processes'.format(args.ncpu))

    # READ DATA
    ############################################
    # First loop through and group by exposure and spectrograph
    frames_by_expid = {}
    for filename in args.frames:
        log.info("reading %s" % filename)
        frame = io.read_frame(filename)
        expid = safe_read_key(frame.meta, "EXPID")
        camera = safe_read_key(frame.meta, "CAMERA").strip().lower()
        spec = camera[1]
        uniq_key = (expid, spec)
        if uniq_key in frames_by_expid.keys():
            frames_by_expid[uniq_key][camera] = frame
        else:
            frames_by_expid[uniq_key] = {camera: frame}

    frames = {}
    flats = {}
    skies = {}

    spectrograph = None
    starfibers = None
    starindices = None
    fibermap = None

    # For each unique expid,spec pair, get the logical OR of the FIBERSTATUS for all
    # cameras and then proceed with extracting the frame information
    # once we modify the fibermap FIBERSTATUS
    for (expid, spec), camdict in frames_by_expid.items():

        fiberstatus = None
        for frame in camdict.values():
            if fiberstatus is None:
                fiberstatus = frame.fibermap['FIBERSTATUS'].data.copy()
            else:
                fiberstatus |= frame.fibermap['FIBERSTATUS']

        for camera, frame in camdict.items():
            frame.fibermap['FIBERSTATUS'] |= fiberstatus
            # Set fibermask flagged spectra to have 0 flux and variance
            frame = get_fiberbitmasked_frame(frame,
                                             bitmask='stdstars',
                                             ivar_framemask=True)
            frame_fibermap = frame.fibermap
            frame_starindices = np.where(isStdStar(frame_fibermap))[0]

            #- Confirm that all fluxes have entries but trust targeting bits
            #- to get basic magnitude range correct
            keep = np.ones(len(frame_starindices), dtype=bool)

            for colname in ['FLUX_G', 'FLUX_R', 'FLUX_Z']:  #- and W1 and W2?
                keep &= frame_fibermap[colname][frame_starindices] > 10**(
                    (22.5 - 30) / 2.5)
                keep &= frame_fibermap[colname][frame_starindices] < 10**(
                    (22.5 - 0) / 2.5)

            frame_starindices = frame_starindices[keep]

            if spectrograph is None:
                spectrograph = frame.spectrograph
                fibermap = frame_fibermap
                starindices = frame_starindices
                starfibers = fibermap["FIBER"][starindices]

            elif spectrograph != frame.spectrograph:
                log.error("incompatible spectrographs %d != %d" %
                          (spectrograph, frame.spectrograph))
                raise ValueError("incompatible spectrographs %d != %d" %
                                 (spectrograph, frame.spectrograph))
            elif starindices.size != frame_starindices.size or np.sum(
                    starindices != frame_starindices) > 0:
                log.error("incompatible fibermap")
                raise ValueError("incompatible fibermap")

            if not camera in frames:
                frames[camera] = []

            frames[camera].append(frame)

    # possibly cleanup memory
    del frames_by_expid

    for filename in args.skymodels:
        log.info("reading %s" % filename)
        sky = io.read_sky(filename)
        camera = safe_read_key(sky.header, "CAMERA").strip().lower()
        if not camera in skies:
            skies[camera] = []
        skies[camera].append(sky)

    for filename in args.fiberflats:
        log.info("reading %s" % filename)
        flat = io.read_fiberflat(filename)
        camera = safe_read_key(flat.header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if camera in flats:
            log.warning(
                "cannot handle several flats of same camera (%s), will use only the first one"
                % camera)
            #raise ValueError("cannot handle several flats of same camera (%s)"%camera)
        else:
            flats[camera] = flat

    if starindices.size == 0:
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")

    log.info("found %d STD stars" % starindices.size)

    log.warning("Not using flux errors for Standard Star fits!")

    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    # since poping dict, we need to copy keys to iterate over to avoid
    # RuntimeError due to changing dict
    frame_cams = list(frames.keys())
    for cam in frame_cams:

        if not cam in skies:
            log.warning("Missing sky for %s" % cam)
            frames.pop(cam)
            continue
        if not cam in flats:
            log.warning("Missing flat for %s" % cam)
            frames.pop(cam)
            continue

        flat = flats[cam]
        for frame, sky in zip(frames[cam], skies[cam]):
            frame.flux = frame.flux[starindices]
            frame.ivar = frame.ivar[starindices]
            frame.ivar *= (frame.mask[starindices] == 0)
            frame.ivar *= (sky.ivar[starindices] != 0)
            frame.ivar *= (sky.mask[starindices] == 0)
            frame.ivar *= (flat.ivar[starindices] != 0)
            frame.ivar *= (flat.mask[starindices] == 0)
            frame.flux *= (frame.ivar > 0)  # just for clean plots
            for star in range(frame.flux.shape[0]):
                ok = np.where((frame.ivar[star] > 0)
                              & (flat.fiberflat[star] != 0))[0]
                if ok.size > 0:
                    frame.flux[star] = frame.flux[star] / flat.fiberflat[
                        star] - sky.flux[star]
            frame.resolution_data = frame.resolution_data[starindices]

    # CHECK S/N
    ############################################
    # for each band in 'brz', record quadratic sum of median S/N across wavelength
    snr = dict()
    for band in ['b', 'r', 'z']:
        snr[band] = np.zeros(starindices.size)
    for cam in frames:
        band = cam[0].lower()
        for frame in frames[cam]:
            msnr = np.median(frame.flux * np.sqrt(frame.ivar) /
                             np.sqrt(np.gradient(frame.wave)),
                             axis=1)  # median SNR per sqrt(A.)
            msnr *= (msnr > 0)
            snr[band] = np.sqrt(snr[band]**2 + msnr**2)
    log.info("SNR(B) = {}".format(snr['b']))

    ###############################
    max_number_of_stars = 50
    min_blue_snr = 4.
    ###############################
    indices = np.argsort(snr['b'])[::-1][:max_number_of_stars]

    validstars = np.where(snr['b'][indices] > min_blue_snr)[0]

    #- TODO: later we filter on models based upon color, thus throwing
    #- away very blue stars for which we don't have good models.

    log.info("Number of stars with median stacked blue S/N > {} /sqrt(A) = {}".
             format(min_blue_snr, validstars.size))
    if validstars.size == 0:
        log.error("No valid star")
        sys.exit(12)

    validstars = indices[validstars]

    for band in ['b', 'r', 'z']:
        snr[band] = snr[band][validstars]

    log.info("BLUE SNR of selected stars={}".format(snr['b']))

    for cam in frames:
        for frame in frames[cam]:
            frame.flux = frame.flux[validstars]
            frame.ivar = frame.ivar[validstars]
            frame.resolution_data = frame.resolution_data[validstars]
    starindices = starindices[validstars]
    starfibers = starfibers[validstars]
    nstars = starindices.size
    fibermap = Table(fibermap[starindices])

    # MASK OUT THROUGHPUT DIP REGION
    ############################################
    mask_throughput_dip_region = True
    if mask_throughput_dip_region:
        wmin = 4300.
        wmax = 4500.
        log.warning(
            "Masking out the wavelength region [{},{}]A in the standard star fit"
            .format(wmin, wmax))
    for cam in frames:
        for frame in frames[cam]:
            ii = np.where((frame.wave >= wmin) & (frame.wave <= wmax))[0]
            if ii.size > 0:
                frame.ivar[:, ii] = 0

    # READ MODELS
    ############################################
    log.info("reading star models in %s" % args.starmodels)
    stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates(
        args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################

    #- Support older fibermaps
    if 'PHOTSYS' not in fibermap.colnames:
        log.warning('Old fibermap format; using defaults for missing columns')
        log.warning("    PHOTSYS = 'S'")
        log.warning("    MW_TRANSMISSION_G/R/Z = 1.0")
        log.warning("    EBV = 0.0")
        fibermap['PHOTSYS'] = 'S'
        fibermap['MW_TRANSMISSION_G'] = 1.0
        fibermap['MW_TRANSMISSION_R'] = 1.0
        fibermap['MW_TRANSMISSION_Z'] = 1.0
        fibermap['EBV'] = 0.0

    model_filters = dict()
    for band in ["G", "R", "Z"]:
        for photsys in np.unique(fibermap['PHOTSYS']):
            model_filters[band + photsys] = load_legacy_survey_filter(
                band=band, photsys=photsys)

    log.info("computing model mags for %s" % sorted(model_filters.keys()))
    model_mags = dict()
    fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom
    for filter_name, filter_response in model_filters.items():
        model_mags[filter_name] = filter_response.get_ab_magnitude(
            stdflux * fluxunits, stdwave)
    log.info("done computing model mags")

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    linear_coefficients = np.zeros((nstars, stdflux.shape[0]))
    chi2dof = np.zeros((nstars))
    redshift = np.zeros((nstars))
    normflux = []

    star_mags = dict()
    star_unextincted_mags = dict()
    for band in ['G', 'R', 'Z']:
        star_mags[band] = 22.5 - 2.5 * np.log10(fibermap['FLUX_' + band])
        star_unextincted_mags[band] = 22.5 - 2.5 * np.log10(
            fibermap['FLUX_' + band] / fibermap['MW_TRANSMISSION_' + band])

    star_colors = dict()
    star_colors['G-R'] = star_mags['G'] - star_mags['R']
    star_colors['R-Z'] = star_mags['R'] - star_mags['Z']

    star_unextincted_colors = dict()
    star_unextincted_colors[
        'G-R'] = star_unextincted_mags['G'] - star_unextincted_mags['R']
    star_unextincted_colors[
        'R-Z'] = star_unextincted_mags['R'] - star_unextincted_mags['Z']

    fitted_model_colors = np.zeros(nstars)

    for star in range(nstars):

        log.info("finding best model for observed star #%d" % star)

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames:
            for i, frame in enumerate(frames[camera]):
                identifier = "%s-%d" % (camera, i)
                wave[identifier] = frame.wave
                flux[identifier] = frame.flux[star]
                ivar[identifier] = frame.ivar[star]
                resolution_data[identifier] = frame.resolution_data[star]

        # preselect models based on magnitudes
        photsys = fibermap['PHOTSYS'][star]
        if not args.color in ['G-R', 'R-Z']:
            raise ValueError('Unknown color {}'.format(args.color))
        bands = args.color.split("-")
        model_colors = model_mags[bands[0] + photsys] - model_mags[bands[1] +
                                                                   photsys]

        color_diff = model_colors - star_unextincted_colors[args.color][star]
        selection = np.abs(color_diff) < args.delta_color
        if np.sum(selection) == 0:
            log.warning("no model in the selected color range for this star")
            continue

        # smallest cube in parameter space including this selection (needed for interpolation)
        new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max(
            teff[selection]))
        new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max(
            logg[selection]))
        new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max(
            feh[selection]))
        selection = np.where(new_selection)[0]

        log.info(
            "star#%d fiber #%d, %s = %f, number of pre-selected models = %d/%d"
            % (star, starfibers[star], args.color,
               star_unextincted_colors[args.color][star], selection.size,
               stdflux.shape[0]))

        # Match unextincted standard stars to data
        coefficients, redshift[star], chi2dof[star] = match_templates(
            wave,
            flux,
            ivar,
            resolution_data,
            stdwave,
            stdflux[selection],
            teff[selection],
            logg[selection],
            feh[selection],
            ncpu=args.ncpu,
            z_max=args.z_max,
            z_res=args.z_res,
            template_error=args.template_error)

        linear_coefficients[star, selection] = coefficients

        log.info(
            'Star Fiber: {}; TEFF: {:.3f}; LOGG: {:.3f}; FEH: {:.3f}; Redshift: {:g}; Chisq/dof: {:.3f}'
            .format(starfibers[star], np.inner(teff,
                                               linear_coefficients[star]),
                    np.inner(logg, linear_coefficients[star]),
                    np.inner(feh, linear_coefficients[star]), redshift[star],
                    chi2dof[star]))

        # Apply redshift to original spectrum at full resolution
        model = np.zeros(stdwave.size)
        redshifted_stdwave = stdwave * (1 + redshift[star])
        for i, c in enumerate(linear_coefficients[star]):
            if c != 0:
                model += c * np.interp(stdwave, redshifted_stdwave, stdflux[i])

        # Apply dust extinction to the model
        log.info("Applying MW dust extinction to star {} with EBV = {}".format(
            star, fibermap['EBV'][star]))
        model *= dust_transmission(stdwave, fibermap['EBV'][star])

        # Compute final color of dust-extincted model
        photsys = fibermap['PHOTSYS'][star]
        if not args.color in ['G-R', 'R-Z']:
            raise ValueError('Unknown color {}'.format(args.color))
        bands = args.color.split("-")
        model_mag1 = model_filters[bands[0] + photsys].get_ab_magnitude(
            model * fluxunits, stdwave)
        model_mag2 = model_filters[bands[1] + photsys].get_ab_magnitude(
            model * fluxunits, stdwave)
        fitted_model_colors[star] = model_mag1 - model_mag2
        if bands[0] == "R":
            model_magr = model_mag1
        elif bands[1] == "R":
            model_magr = model_mag2

        #- TODO: move this back into normalize_templates, at the cost of
        #- recalculating a model magnitude?

        # Normalize the best model using reported magnitude
        scalefac = 10**((model_magr - star_mags['R'][star]) / 2.5)

        log.info('scaling R mag {:.3f} to {:.3f} using scale {}'.format(
            model_magr, star_mags['R'][star], scalefac))
        normflux.append(model * scalefac)

    # Now write the normalized flux for all best models to a file
    normflux = np.array(normflux)

    fitted_stars = np.where(chi2dof != 0)[0]
    if fitted_stars.size == 0:
        log.error("No star has been fit.")
        sys.exit(12)

    data = {}
    data['LOGG'] = linear_coefficients[fitted_stars, :].dot(logg)
    data['TEFF'] = linear_coefficients[fitted_stars, :].dot(teff)
    data['FEH'] = linear_coefficients[fitted_stars, :].dot(feh)
    data['CHI2DOF'] = chi2dof[fitted_stars]
    data['REDSHIFT'] = redshift[fitted_stars]
    data['COEFF'] = linear_coefficients[fitted_stars, :]
    data['DATA_%s' % args.color] = star_colors[args.color][fitted_stars]
    data['MODEL_%s' % args.color] = fitted_model_colors[fitted_stars]
    data['BLUE_SNR'] = snr['b'][fitted_stars]
    data['RED_SNR'] = snr['r'][fitted_stars]
    data['NIR_SNR'] = snr['z'][fitted_stars]
    io.write_stdstar_models(args.outfile, normflux, stdwave,
                            starfibers[fitted_stars], data)
Пример #35
0
def main(args) :

    log=get_logger()

    cmd = ['desi_compute_fluxcalibration',]
    for key, value in args.__dict__.items():
        if value is not None:
            cmd += ['--'+key, str(value)]
    cmd = ' '.join(cmd)
    log.info(cmd)

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel=read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux,model_wave,model_fibers,model_metadata=read_stdstar_models(args.models)

    if args.chi2cut > 0 :
        ok = np.where(model_metadata["CHI2DOF"]<args.chi2cut)[0]
        if ok.size == 0 :
            log.error("chi2cut has discarded all stars")
            sys.exit(12)
        nstars=model_flux.shape[0]
        nbad=nstars-ok.size
        if nbad>0 :
            log.warning("discarding %d star(s) out of %d because of chi2cut"%(nbad,nstars))
            model_flux=model_flux[ok]
            model_fibers=model_fibers[ok]
            model_metadata=model_metadata[:][ok]
    
    if args.delta_color_cut > 0 :
        ok = np.where(np.abs(model_metadata["MODEL_G-R"]-model_metadata["DATA_G-R"])<args.delta_color_cut)[0]
        nstars=model_flux.shape[0]
        nbad=nstars-ok.size
        if nbad>0 :
            log.warning("discarding %d star(s) out of %d because |delta_color|>%f"%(nbad,nstars,args.delta_color_cut))
            model_flux=model_flux[ok]
            model_fibers=model_fibers[ok]
            model_metadata=model_metadata[:][ok]
    

    # automatically reject stars that ar chi2 outliers
    if args.chi2cut_nsig > 0 :
        mchi2=np.median(model_metadata["CHI2DOF"])
        rmschi2=np.std(model_metadata["CHI2DOF"])
        maxchi2=mchi2+args.chi2cut_nsig*rmschi2
        ok=np.where(model_metadata["CHI2DOF"]<=maxchi2)[0]
        nstars=model_flux.shape[0]
        nbad=nstars-ok.size
        if nbad>0 :
            log.warning("discarding %d star(s) out of %d because reduced chi2 outliers (at %d sigma, giving rchi2<%f )"%(nbad,nstars,args.chi2cut_nsig,maxchi2))
            model_flux=model_flux[ok]
            model_fibers=model_fibers[ok]
            model_metadata=model_metadata[:][ok]
    
    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap

    ## check whether star fibers from args.models are consistent with fibers from fibermap
    ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit
    fibermap_std_indices = np.where(isStdStar(fibermap['DESI_TARGET']))[0]
    if np.any(~np.in1d(model_fibers%500, fibermap_std_indices)):
        for i in model_fibers%500:
            log.error("inconsistency with spectrum {}, OBJTYPE='{}', DESI_TARGET={} in fibermap".format(
                (i, fibermap["OBJTYPE"][i], fibermap["DESI_TARGET"][i])))
        sys.exit(12)

    fluxcalib = compute_flux_calibration(frame, model_wave, model_flux, model_fibers%500)

    # QA
    if (args.qafile is not None):
        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR'])
        # Run
        #import pdb; pdb.set_trace()
        qaframe.run_qa('FLUXCALIB', (frame, fluxcalib))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s"%args.outfile)
Пример #36
0
def main(args):

    log = get_logger()

    cmd = [
        'desi_compute_fluxcalibration',
    ]
    for key, value in args.__dict__.items():
        if value is not None:
            cmd += ['--' + key, str(value)]
    cmd = ' '.join(cmd)
    log.info(cmd)

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    # Set fibermask flagged spectra to have 0 flux and variance
    frame = get_fiberbitmasked_frame(frame,
                                     bitmask='flux',
                                     ivar_framemask=True)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel = read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models(
        args.models)

    ok = np.ones(len(model_metadata), dtype=bool)

    if args.chi2cut > 0:
        log.info("Apply cut CHI2DOF<{}".format(args.chi2cut))
        ok &= (model_metadata["CHI2DOF"] < args.chi2cut)
    if args.delta_color_cut > 0:
        log.info("Apply cut |delta color|<{}".format(args.delta_color_cut))
        ok &= (np.abs(model_metadata["MODEL_G-R"] - model_metadata["DATA_G-R"])
               < args.delta_color_cut)
    if args.min_color is not None:
        log.info("Apply cut DATA_G-R>{}".format(args.min_color))
        ok &= (model_metadata["DATA_G-R"] > args.min_color)
    if args.chi2cut_nsig > 0:
        # automatically reject stars that ar chi2 outliers
        mchi2 = np.median(model_metadata["CHI2DOF"])
        rmschi2 = np.std(model_metadata["CHI2DOF"])
        maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2
        log.info("Apply cut CHI2DOF<{} based on chi2cut_nsig={}".format(
            maxchi2, args.chi2cut_nsig))
        ok &= (model_metadata["CHI2DOF"] <= maxchi2)

    ok = np.where(ok)[0]
    if ok.size == 0:
        log.error("cuts discarded all stars")
        sys.exit(12)
    nstars = model_flux.shape[0]
    nbad = nstars - ok.size
    if nbad > 0:
        log.warning("discarding %d star(s) out of %d because of cuts" %
                    (nbad, nstars))
        model_flux = model_flux[ok]
        model_fibers = model_fibers[ok]
        model_metadata = model_metadata[:][ok]

    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap

    ## check whether star fibers from args.models are consistent with fibers from fibermap
    ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit
    fibermap_std_indices = np.where(isStdStar(fibermap))[0]
    if np.any(~np.in1d(model_fibers % 500, fibermap_std_indices)):
        target_colnames, target_masks, survey = main_cmx_or_sv(fibermap)
        colname = target_colnames[0]
        for i in model_fibers % 500:
            log.error(
                "inconsistency with spectrum {}, OBJTYPE={}, {}={} in fibermap"
                .format(i, fibermap["OBJTYPE"][i], colname,
                        fibermap[colname][i]))
        sys.exit(12)

    # Make sure the fibers of interest aren't entirely masked.
    if np.sum(
            np.sum(frame.ivar[model_fibers % 500, :] == 0, axis=1) ==
            frame.nwave) == len(model_fibers):
        log.warning('All standard-star spectra are masked!')
        return

    fluxcalib = compute_flux_calibration(
        frame,
        model_wave,
        model_flux,
        model_fibers % 500,
        highest_throughput_nstars=args.highest_throughput)

    # QA
    if (args.qafile is not None):
        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame_meta=frame.meta,
                                flavor=frame.meta['FLAVOR'])
        # Run
        #import pdb; pdb.set_trace()
        qaframe.run_qa('FLUXCALIB', (frame, fluxcalib))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s" % args.outfile)
Пример #37
0
def main(args):
    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is
                                                            None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    if (not args.no_tsnr) and (args.calib is None):
        log.critical(
            'need --fiberflat --sky and --calib to compute template SNR')
        sys.exit(12)

    frame = read_frame(args.infile)

    if not args.no_tsnr:
        # tsnr alpha calc. requires uncalibrated + no substraction rame.
        uncalibrated_frame = copy.deepcopy(frame)

    #- Raw scores already added in extraction, but just in case they weren't
    #- it is harmless to rerun to make sure we have them.
    compute_and_append_frame_scores(frame, suffix="RAW")

    if args.cosmics_nsig > 0 and args.sky == None:  # Reject cosmics (otherwise do it after sky subtraction)
        log.info("cosmics ray 1D rejection")
        reject_cosmic_rays_1d(frame, args.cosmics_nsig)

    if args.fiberflat != None:
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to all fibers
        apply_fiberflat(frame, fiberflat)
        compute_and_append_frame_scores(frame, suffix="FFLAT")
    else:
        fiberflat = None

    if args.no_xtalk:
        zero_ivar = (not args.no_zero_ivar)
    else:
        zero_ivar = False

    if args.sky != None:

        # read sky
        skymodel = read_sky(args.sky)

        if args.cosmics_nsig > 0:

            # use a copy the frame (not elegant but robust)
            copied_frame = copy.deepcopy(frame)

            # first subtract sky without throughput correction
            subtract_sky(copied_frame,
                         skymodel,
                         apply_throughput_correction=False,
                         zero_ivar=zero_ivar)

            # then find cosmics
            log.info("cosmics ray 1D rejection after sky subtraction")
            reject_cosmic_rays_1d(copied_frame, args.cosmics_nsig)

            # copy mask
            frame.mask = copied_frame.mask

            # and (re-)subtract sky, but just the correction term
            subtract_sky(frame,
                         skymodel,
                         apply_throughput_correction=(
                             not args.no_sky_throughput_correction),
                         zero_ivar=zero_ivar)

        else:
            # subtract sky
            subtract_sky(frame,
                         skymodel,
                         apply_throughput_correction=(
                             not args.no_sky_throughput_correction),
                         zero_ivar=zero_ivar)

        compute_and_append_frame_scores(frame, suffix="SKYSUB")

    if not args.no_xtalk:
        log.info("fiber crosstalk correction")
        correct_fiber_crosstalk(frame, fiberflat)

        if not args.no_zero_ivar:
            frame.ivar *= (frame.mask == 0)

    if args.calib != None:
        log.info("calibrate")
        # read calibration
        fluxcalib = read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)

        # Ensure that ivars are set to 0 for all values if any designated
        # fibermask bit is set. Also flips a bits for each frame.mask value using specmask.BADFIBER
        frame = get_fiberbitmasked_frame(
            frame, bitmask="flux", ivar_framemask=(not args.no_zero_ivar))
        compute_and_append_frame_scores(frame, suffix="CALIB")

    if not args.no_tsnr:
        log.info("calculating tsnr")
        results, alpha = calc_tsnr2(uncalibrated_frame,
                                    fiberflat=fiberflat,
                                    skymodel=skymodel,
                                    fluxcalib=fluxcalib,
                                    alpha_only=args.alpha_only)

        frame.meta['TSNRALPH'] = alpha

        comments = {k: "from calc_frame_tsnr" for k in results.keys()}
        append_frame_scores(frame, results, comments, overwrite=True)

    # record inputs
    frame.meta['IN_FRAME'] = shorten_filename(args.infile)
    frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat)
    frame.meta['IN_SKY'] = shorten_filename(args.sky)
    frame.meta['IN_CALIB'] = shorten_filename(args.calib)

    # save output
    write_frame(args.outfile, frame, units='10**-17 erg/(s cm2 Angstrom)')
    log.info("successfully wrote %s" % args.outfile)