Пример #1
0
def get_detector(model, weight_file, config):
    assert model in ['all-in-one', 'two-stage']
    if model == 'all-in-one':
        from detection.core.tensorpack_detector import TensorPackDetector
    else:
        from detection.tensorpacks.tensorpack_detector_dev import TensorPackDetector
    from detection.config.tensorpack_config import config as cfg
    if config:
        cfg.update_args(config)
    return TensorPackDetector(weight_file)
Пример #2
0
    def get_class_ids(self):
        return set(range(1, cfg.DATA.NUM_CATEGORY + 1))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--config',
        default='',
        type=str,
        help='Configurations of object detection model',
        nargs='+'
    )
    args = parser.parse_args()
    if args.config:
        cfg.update_args(args.config)

    obj_detector = TensorPackDetector('/root/datasets/figmarcnn/checkpoint')
    img = cv2.imread('/root/datasets/img-folder/a.png', cv2.IMREAD_COLOR)

    results = obj_detector.detect(img, rgb=False)
    final = draw_final_outputs(img, results)  # image contain boxes,labels and scores
    viz = np.concatenate((img, final), axis=1)
    tpviz.interactive_imshow(viz)



'''
--image
/root/datasets/myimage/8.jpeg
--cam