Пример #1
0
    def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels):
        if det_bboxes.shape[0] == 0:
            segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
        else:
            aug_masks = []
            for x, img_meta in zip(feats, img_metas):
                img_shape = img_meta[0]['img_shape']
                scale_factor = img_meta[0]['scale_factor']
                flip = img_meta[0]['flip']
                _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
                                       scale_factor, flip)
                mask_rois = bbox2roi([_bboxes])
                mask_feats = self.mask_roi_extractor(
                    x[:len(self.mask_roi_extractor.featmap_strides)],
                    mask_rois)
                if self.with_shared_head:
                    mask_feats = self.shared_head(mask_feats)
                mask_pred = self.mask_head(mask_feats)
                # convert to numpy array to save memory
                aug_masks.append(mask_pred.sigmoid().cpu().numpy())
            merged_masks = merge_aug_masks(aug_masks, img_metas,
                                           self.test_cfg.rcnn)

            ori_shape = img_metas[0][0]['ori_shape']
            segm_result = self.mask_head.get_seg_masks(merged_masks,
                                                       det_bboxes,
                                                       det_labels,
                                                       self.test_cfg.rcnn,
                                                       ori_shape,
                                                       scale_factor=1.0,
                                                       rescale=False)
        return segm_result
Пример #2
0
    def aug_test(self, imgs, img_metas, proposals=None, rescale=False):
        """Test with augmentations.

        If rescale is False, then returned bboxes and masks will fit the scale
        of imgs[0].
        """
        if self.with_semantic:
            semantic_feats = [
                self.semantic_head(feat)[1]
                for feat in self.extract_feats(imgs)
            ]
        else:
            semantic_feats = [None] * len(img_metas)

        # recompute feats to save memory
        proposal_list = self.aug_test_rpn(self.extract_feats(imgs), img_metas,
                                          self.test_cfg.rpn)

        rcnn_test_cfg = self.test_cfg.rcnn
        aug_bboxes = []
        aug_scores = []
        for x, img_meta, semantic in zip(self.extract_feats(imgs), img_metas,
                                         semantic_feats):
            # only one image in the batch
            img_shape = img_meta[0]['img_shape']
            scale_factor = img_meta[0]['scale_factor']
            flip = img_meta[0]['flip']

            proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
                                     scale_factor, flip)
            # "ms" in variable names means multi-stage
            ms_scores = []

            rois = bbox2roi([proposals])
            for i in range(self.num_stages):
                bbox_head = self.bbox_head[i]
                cls_score, bbox_pred = self._bbox_forward_test(
                    i, x, rois, semantic_feat=semantic)
                ms_scores.append(cls_score)

                if i < self.num_stages - 1:
                    bbox_label = cls_score.argmax(dim=1)
                    rois = bbox_head.regress_by_class(rois, bbox_label,
                                                      bbox_pred, img_meta[0])

            cls_score = sum(ms_scores) / float(len(ms_scores))
            bboxes, scores = self.bbox_head[-1].get_det_bboxes(rois,
                                                               cls_score,
                                                               bbox_pred,
                                                               img_shape,
                                                               scale_factor,
                                                               rescale=False,
                                                               cfg=None)
            aug_bboxes.append(bboxes)
            aug_scores.append(scores)

        # after merging, bboxes will be rescaled to the original image size
        merged_bboxes, merged_scores = merge_aug_bboxes(
            aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
        det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
                                                rcnn_test_cfg.score_thr,
                                                rcnn_test_cfg.nms,
                                                rcnn_test_cfg.max_per_img)

        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)

        if self.with_mask:
            if det_bboxes.shape[0] == 0:
                segm_result = [[]
                               for _ in range(self.mask_head[-1].num_classes -
                                              1)]
            else:
                aug_masks = []
                aug_img_metas = []
                for x, img_meta, semantic in zip(self.extract_feats(imgs),
                                                 img_metas, semantic_feats):
                    img_shape = img_meta[0]['img_shape']
                    scale_factor = img_meta[0]['scale_factor']
                    flip = img_meta[0]['flip']
                    _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
                                           scale_factor, flip)
                    mask_rois = bbox2roi([_bboxes])
                    mask_feats = self.mask_roi_extractor[-1](
                        x[:len(self.mask_roi_extractor[-1].featmap_strides)],
                        mask_rois)
                    if self.with_semantic:
                        semantic_feat = semantic
                        mask_semantic_feat = self.semantic_roi_extractor(
                            [semantic_feat], mask_rois)
                        if mask_semantic_feat.shape[-2:] != mask_feats.shape[
                                -2:]:
                            mask_semantic_feat = F.adaptive_avg_pool2d(
                                mask_semantic_feat, mask_feats.shape[-2:])
                        mask_feats += mask_semantic_feat
                    last_feat = None
                    for i in range(self.num_stages):
                        mask_head = self.mask_head[i]
                        if self.mask_info_flow:
                            mask_pred, last_feat = mask_head(
                                mask_feats, last_feat)
                        else:
                            mask_pred = mask_head(mask_feats)
                        aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                        aug_img_metas.append(img_meta)
                merged_masks = merge_aug_masks(aug_masks, aug_img_metas,
                                               self.test_cfg.rcnn)

                ori_shape = img_metas[0][0]['ori_shape']
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks,
                    det_bboxes,
                    det_labels,
                    rcnn_test_cfg,
                    ori_shape,
                    scale_factor=1.0,
                    rescale=False)
            return bbox_result, segm_result
        else:
            return bbox_result
Пример #3
0
    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        if self.with_semantic:
            _, semantic_feat = self.semantic_head(x)
        else:
            semantic_feat = None

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
        ms_bbox_result = {}
        ms_segm_result = {}
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_head = self.bbox_head[i]
            cls_score, bbox_pred = self._bbox_forward_test(
                i, x, rois, semantic_feat=semantic_feat)
            ms_scores.append(cls_score)

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

        cls_score = sum(ms_scores) / float(len(ms_scores))
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
            cfg=rcnn_test_cfg)
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
        ms_bbox_result['ensemble'] = bbox_result

        if self.with_mask:
            if det_bboxes.shape[0] == 0:
                mask_classes = self.mask_head[-1].num_classes - 1
                segm_result = [[] for _ in range(mask_classes)]
            else:
                _bboxes = (det_bboxes[:, :4] *
                           scale_factor if rescale else det_bboxes)

                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                mask_roi_extractor = self.mask_roi_extractor[-1]
                mask_feats = mask_roi_extractor(
                    x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
                if self.with_semantic and 'mask' in self.semantic_fusion:
                    mask_semantic_feat = self.semantic_roi_extractor(
                        [semantic_feat], mask_rois)
                    mask_feats += mask_semantic_feat
                last_feat = None
                for i in range(self.num_stages):
                    mask_head = self.mask_head[i]
                    if self.mask_info_flow:
                        mask_pred, last_feat = mask_head(mask_feats, last_feat)
                    else:
                        mask_pred = mask_head(mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
                                               [img_meta] * self.num_stages,
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
            ms_segm_result['ensemble'] = segm_result

        if self.with_mask:
            results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble'])
        else:
            results = ms_bbox_result['ensemble']

        return results
Пример #4
0
    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        """Run inference on a single image.

        Args:
            img (Tensor): must be in shape (N, C, H, W)
            img_meta (list[dict]): a list with one dictionary element.
                See `mmdet/datasets/pipelines/formatting.py:Collect` for
                details of meta dicts.
            proposals : if specified overrides rpn proposals
            rescale (bool): if True returns boxes in original image space

        Returns:
            dict: results
        """
        x = self.extract_feat(img)

        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
        ms_bbox_result = {}
        ms_segm_result = {}
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            bbox_feats = bbox_roi_extractor(
                x[:len(bbox_roi_extractor.featmap_strides)], rois)
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)

            cls_score, bbox_pred = bbox_head(bbox_feats)
            ms_scores.append(cls_score)

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

        cls_score = sum(ms_scores) / self.num_stages
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
            cfg=rcnn_test_cfg)
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
        ms_bbox_result['ensemble'] = bbox_result

        if self.with_mask:
            if det_bboxes.shape[0] == 0:
                mask_classes = self.mask_head[-1].num_classes - 1
                segm_result = [[] for _ in range(mask_classes)]
            else:
                if isinstance(scale_factor, float):  # aspect ratio fixed
                    _bboxes = (
                        det_bboxes[:, :4] *
                        scale_factor if rescale else det_bboxes)
                else:
                    _bboxes = (
                        det_bboxes[:, :4] *
                        torch.from_numpy(scale_factor).to(det_bboxes.device)
                        if rescale else det_bboxes)

                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                for i in range(self.num_stages):
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_feats = mask_roi_extractor(
                        x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
                    mask_pred = self.mask_head[i](mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
                                               [img_meta] * self.num_stages,
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
            ms_segm_result['ensemble'] = segm_result

        if self.with_mask:
            results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble'])
        else:
            results = ms_bbox_result['ensemble']

        return results