def main():
    """
    Full Jetson Detector Program
    """

    parser = argparse.ArgumentParser(description="Inference Program")
    parser.add_argument(
        '--config_file',
        help=
        f'json configuration file containint params to initialize the jetson',
        type=str)
    args = parser.parse_args()

    try:
        global objectDetector
        if not os.path.exists(args.config_file):
            raise ValueError(
                f'Cannot find configuration file "{args.config_file}"')
        with open(args.config_file, 'r') as f:
            robotJetsonConfiguration = json.load(f)

        log.warning(LOGGER_OBJECT_DETECTOR_STARTUP,
                    msg='Launching object detector now.')
        loop = asyncio.get_event_loop()
        # loop.set_debug(enabled=True)
        loop.set_exception_handler(handle_exception)
        log.warning(LOGGER_OBJECT_DETECTOR_STARTUP, msg='Launching runner.')
        signals = (signal.SIGINT, signal.SIGTERM)
        for s in signals:
            loop.add_signal_handler(s,
                                    lambda s=s: loop.create_task(
                                        objectDetector.graceful_shutdown(s)))
        objectDetector = ObjectDetector(robotJetsonConfiguration, loop)
        loop.create_task(objectDetector.run())
        loop.run_forever()

    except SystemExit:
        log.info(LOGGER_OBJECT_DETECTOR_STARTUP, 'Caught SystemExit...')
    except Exception:
        log.critical(LOGGER_OBJECT_DETECTOR_STARTUP,
                     'Crash in startup : {}'.format(traceback.print_exc()))
    finally:
        # loop.stop()
        loop.close()
        logging.shutdown()
Пример #2
0
class TrafficSignDetector(object):
    def __init__(self):
        self.detector = ObjectDetector()
        self.classifier = Classifier()

    def detect(self, image):
        objects = time.measure(lambda: self.detector.predict(image),
                               'detection')
        extend_bounding_boxes(objects, 0.15)
        images = time.measure(
            lambda: prepare_for_classification(objects, image),
            'image preprocessing')
        labels = time.measure(lambda: self.classifier.predict(images),
                              'classification')
        print(objects, labels)
        return objects, labels

    def detect_multiple(self, images):
        objects, preprocessed_images, box_scales = time.measure(
            lambda: self.detector.predict_multiple(images), 'detection')
        if len(objects[0]) == 0:
            return [[]], [[]]
        preprocessed = time.measure(
            lambda: resize_for_classification(objects, preprocessed_images,
                                              images), 'preprocessing')
        labels = time.measure(lambda: self.classifier.predict(preprocessed),
                              'classification')

        results = []
        j = 0
        for i in range(0, len(images)):
            results.append([labels[k] for k in range(j, j + len(objects[i]))])
            j += len(objects[i])

        r_objects = []
        for i in range(0, len(objects)):
            r_objects.append([])
            objs = objects[i]
            r_objects[i] = [[obj[0], *obj[1:] * box_scales[i]] for obj in objs]
        print(r_objects, results)
        return r_objects, results
Пример #3
0
    def __init__(self, model_path, model_name):
        self.model_name = model_name

        nms_thresh = 0.3
        conf_thresh = 0.5
        cfg_path = glob(os.path.join(model_path, '*cfg'))[0]
        weight_path = glob(os.path.join(model_path, '*weights'))[0]
        self.det = ObjectDetector(cfg_path, weight_path, conf_thresh,
                                  nms_thresh, 0)

        name_path = glob(os.path.join(model_path, '*names'))[0]
        self.class_names = open(name_path).read().splitlines()
Пример #4
0
def main(model_number):
    model = models[model_number]

    cfg = get_config(model['model_cfg'])

    detector = ObjectDetector(
        cfg,
        os.path.join(
            'resource',
            model['checkpoint']
        ),
        device_id=0
    )

    image = cv2.imread('image.jpg')

    for _ in trange(NUM_WARM, desc='Warm-up'):
        detector.predict(image, threshold=0.3)

    start = time.time()
    for _ in trange(NUM_RUNS, desc='Benches'):
        detector.predict(image, threshold=0.3)
    torch.cuda.synchronize()
    total = time.time() - start

    print(f'Performance: {NUM_RUNS / total:0.2f} rps')
def main(args):
    # 1) get value from sample calibration image
    files_to_check = HT.getFilesInDirectory(args['directory'], '.jpg')
    logger.info(f"Looking at {len(files_to_check)} jpg images")
    results = []
    # option to use calibration
    if args['use_calibration']:
        calib = CI.Image.open(args['calibration_image'])
        calib_result = SD.calibratePlaque(calib)
        area = calib_result.get('contour_area')
        # ratio = calib_result.get('ratio')
        bl, tl, tr, br = calib_result.get('bl_tl_tr_br')
        # 3) loop over images in a directory, outputting the names of positive and negative images
        # TODO: below steps can be optimized with text recognition happpening over the returned list
        # we get a dict of file names, with each filename having a list of metadata
        for f in tqdm(files_to_check,
                      desc=f"finding plaques with area {area}"):
            results.extend(
                SD.get_plaques_matching_ratio(
                    f,
                    good_area=area,
                    save_directory=args['save_directory'],
                    _debug_mode=args['debug'],
                    cutoff_ratio=float(args['cutoff_ratio'])))
    # option to use object detection
    elif args['use_hog']:
        detector = ObjectDetector(loadPath=args["detector"])
        for f in tqdm(files_to_check, desc="finding plaques with HOG"):
            plaque_details_list = SD.get_plaques_with_hog(
                f,
                hog=detector,
                save_directory=args['save_directory'],
                _debug_mode=args['debug'])
            logger.debug(
                f"How many results for {f}: {len(plaque_details_list)}")
            results.extend(plaque_details_list)

    # 4) after successfull plaque grabbing, use open and image stuff to get a bounding box around just the words, and send that to ocr
    # for idx, meta in tqdm(enumerate(results), desc="reading text from cropped images"):
    #     results[idx].text, results[idx].thresheld_image = TR.tess_from_image(results[idx].image)

    # 5) plot the results
    # plot_multiple_images(results)
    # with open('/home/johnny/Documents/performance_metrics_3-6/hog_results.pkl', 'wb') as p:
    #     pickle.dump(results, p)
    # 6) evaluate performance for images with matching calb image and those with mismatched calibrtation image
    evaluate_performance(results)
Пример #6
0
def detector_thread(object_detector: ObjectDetector, to_detect: Queue,
                    to_track: Queue, progressbar: tqdm):
    classes = load_classes("detector/yolo/data/coco.names")

    while True:
        if object_detector.stop:
            break

        if to_detect.empty():
            sleep(1)
            continue

        task = to_detect.get()

        if task.message == QueueMessage.DONE:
            break

        progressbar.update(1)
        img_tensor = task.payload
        detections = object_detector.detect_in_image_tensor(img_tensor)

        detected_vehicles = []
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                class_name = classes[int(cls_pred)]
                bounding_box = BoundingBox(top_left=Point(x=int(x1),
                                                          y=int(y1)),
                                           bottom_right=Point(x=int(x2),
                                                              y=int(y2)))
                raw_data = [x1, y1, x2, y2, conf]

                if class_name in ["car", "bus", "truck"]:
                    detected_vehicles.append(
                        DetectedObject(bounding_box, class_name, raw_data))

        to_detect.task_done()

        if len(detected_vehicles) > 0:
            new_task = Task(payload=detected_vehicles)
            to_track.put(new_task)

    finishing_task = Task(message=QueueMessage.DONE)
    to_track.put(finishing_task)
Пример #7
0
#!/usr/bin/python3

from flask import Flask
from flask_restplus import Api, Resource, fields, reqparse
from werkzeug.contrib.fixers import ProxyFix
from werkzeug.datastructures import FileStorage
from tempfile import NamedTemporaryFile
import io
from PIL import Image
import time
import os
import numpy as np

from detector import ObjectDetector
global detector
detector = ObjectDetector()

ALLOWED_MIMETYPES = set(['image/png', 'image/jpeg'])

app = Flask(__name__)
app.config['SWAGGER_UI_JSONEDITOR'] = True
app.config['MAX_CONTENT_LENGTH'] = 2 * 1024 * 1024  # 2MB
app.wsgi_app = ProxyFix(app.wsgi_app)
api = Api(app,
          version='0.1',
          title='Objects Detector API',
          description='Detect objects in images')

ns = api.namespace('detector', description='Object detection operations')

image_upload = reqparse.RequestParser()
Пример #8
0
from detector import Darknet_ObjectDetector as ObjectDetector
from detector import DetBBox

import requests
from PIL import Image
from PIL import ImageFilter
from StringIO import StringIO

def _get_image(url):
    return Image.open(StringIO(requests.get(url).content))

if __name__ == '__main__':
    from PIL import Image
    voc_names = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train", "tvmonitor"]
    det = ObjectDetector('../cfg/yolo.cfg','../yolo.weights')
    url = 'http://farm9.staticflickr.com/8323/8141398311_2fd0af60f7.jpg'
    #for i in xrange(4):
    rst, run_time = det.detect_object(_get_image(url))

    print 'got {} objects in {} seconds'.format(len(rst), run_time)

    for bbox in rst:
        print '{} {} {} {} {} {}'.format(voc_names[bbox.cls], bbox.top, bbox.left, bbox.bottom, bbox.right, bbox.confidence)
Пример #9
0
from detector import ObjectDetector
import sys
from PIL import Image
import numpy as np

img_path = sys.argv[1]
img = np.asarray(Image.open(img_path), dtype=np.uint8)

# Provide the .pb model file path
graph_path = "./faster_rcnn_resnet50_coco_2018_01_28/frozen_inference_graph.pb"

model = ObjectDetector(graph_path)
out = model.run(img)

print(out)
Пример #10
0
    def image_callback(self, img, camera_info):
        """Image detector"""

        # img = self.cv_bridge.imgmsg_to_cv2(image_msg, "rgb8")
        # cv2.imwrite('img.png', cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # for debugging

        # Update camera matrix and distortion coefficients
        if self.input_is_rectified:
            P = np.matrix(camera_info.P, dtype='float64')
            P.resize((3, 4))
            camera_matrix = P[:, :3]
            dist_coeffs = np.zeros((4, 1))
        else:
            camera_matrix = np.matrix(camera_info.K, dtype='float64')
            camera_matrix.resize((3, 3))
            dist_coeffs = np.matrix(camera_info.D, dtype='float64')
            dist_coeffs.resize((len(camera_info.D), 1))

        # Downscale image if necessary
        height, width, _ = img.shape
        scaling_factor = float(self.downscale_height) / height
        if scaling_factor < 1.0:
            camera_matrix[:2] *= scaling_factor
            img = cv2.resize(
                img,
                (int(scaling_factor * width), int(scaling_factor * height)))

        for m in self.models:
            self.pnp_solvers[m].set_camera_intrinsic_matrix(camera_matrix)
            self.pnp_solvers[m].set_dist_coeffs(dist_coeffs)

        # Copy and draw image
        img_copy = img.copy()
        im = Image.fromarray(img_copy)
        draw = Draw(im)

        # detection_array = Detection3DArray()
        # detection_array.header = image_msg.header
        detection_array = []

        for m in self.models:
            # Detect object
            results = ObjectDetector.detect_object_in_image(
                self.models[m].net, self.pnp_solvers[m], img,
                self.config_detect)

            # Publish pose and overlay cube on image
            for i_r, result in enumerate(results):
                if result["location"] is None:
                    continue
                loc = result["location"]
                ori = result["quaternion"]

                # transform orientation
                transformed_ori = tf3d.quaternions.qmult(
                    ori, self.model_transforms[m])

                # rotate bbox dimensions if necessary
                # (this only works properly if model_transform is in 90 degree angles)
                dims = rotate_vector(vector=self.dimensions[m],
                                     quaternion=self.model_transforms[m])
                dims = np.absolute(dims)
                dims = tuple(dims)

                # TODO: Convert pose_msg to detection

                x = loc[0] / CONVERT_SCALE_CM_TO_METERS
                y = loc[1] / CONVERT_SCALE_CM_TO_METERS
                z = loc[2] / CONVERT_SCALE_CM_TO_METERS
                qw = transformed_ori[3]
                qx = transformed_ori[0]
                qy = transformed_ori[1]
                qz = transformed_ori[2]
                detection = np.array([x, y, z, qw, qx, qy, qz])
                detection_array.append((m, detection))

                # pose_msg = PoseStamped()
                # pose_msg.header = image_msg.header
                # CONVERT_SCALE_CM_TO_METERS = 100
                # pose_msg.pose.position.x = loc[0] / CONVERT_SCALE_CM_TO_METERS
                # pose_msg.pose.position.y = loc[1] / CONVERT_SCALE_CM_TO_METERS
                # pose_msg.pose.position.z = loc[2] / CONVERT_SCALE_CM_TO_METERS
                # pose_msg.pose.orientation.x = transformed_ori[0]
                # pose_msg.pose.orientation.y = transformed_ori[1]
                # pose_msg.pose.orientation.z = transformed_ori[2]
                # pose_msg.pose.orientation.w = transformed_ori[3]

                # Publish
                # self.pubs[m].publish(pose_msg)
                # self.pub_dimension[m].publish(str(dims))

                # Add to Detection3DArray
                # detection = Detection3D()
                # hypothesis = ObjectHypothesisWithPose()
                # hypothesis.id = self.class_ids[result["name"]]
                # hypothesis.score = result["score"]
                # hypothesis.pose.pose = pose_msg.pose
                # detection.results.append(hypothesis)
                # detection.bbox.center = pose_msg.pose
                # detection.bbox.size.x = dims[0] / CONVERT_SCALE_CM_TO_METERS
                # detection.bbox.size.y = dims[1] / CONVERT_SCALE_CM_TO_METERS
                # detection.bbox.size.z = dims[2] / CONVERT_SCALE_CM_TO_METERS
                # detection_array.detections.append(detection)

                # Draw the cube
                if None not in result['projected_points']:
                    points2d = []
                    for pair in result['projected_points']:
                        points2d.append(tuple(pair))
                    draw.draw_cube(points2d, self.draw_colors[m])

        return detection_array
Пример #11
0
from detector import ObjectDetector
import cv2
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-d",
                "--detector",
                required=True,
                default='detector.svm',
                help="path to trained detector to load...")
ap.add_argument("-i",
                "--image",
                required=True,
                help="path to an image for object detection...")
ap.add_argument("-a", "--annotate", default=None, help="text to annotate...")
args = vars(ap.parse_args())

detector = ObjectDetector(load_path=args["detector"])

imagePath = args["image"]
image = cv2.imread(imagePath)
detector.detect(image, annotate=args["annotate"])
from detector import ObjectDetector
import numpy as np
import cv2
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-d",
                "--detector",
                required=True,
                help="path to trained detector to load...")
#ap.add_argument("-i","--image",required=True,help="path to an image for object detection...")
ap.add_argument("-a", "--annotate", default=None, help="text to annotate...")
args = vars(ap.parse_args())

detector = ObjectDetector(loadPath=args["detector"])

cap = cv2.VideoCapture("naspati.webm")
grabbed, image = cap.read()
while True:

    grabbed, image = cap.read()

    x, y, xb, yb = detector.detect(image, annotate=args["annotate"])

    #detector.detect(image,annotate=args["annotate"])
    center = [[(x / 2 + xb / 2) / 2], [(y + yb) / 3]]

    key = cv2.waitKey(1) & 0xFF

    # if the 'q' key is pressed, stop the loop
    if key == ord("q"):
Пример #13
0
    def __init__(self):
        global test_mode
        """
        コンストラクタ。引数をパースする。また、カメラ、画像判定モデルを初期化する。
        """

        # (1)引数をパースする
        arg_parser = argparse.ArgumentParser(description='Detecting Camera')
        arg_parser.add_argument('target_name',
                                help='Target name to detecting. Split by commas.')
        arg_parser.add_argument('-x', '--exclude', default=None,
                                help='Target excluded from detection. Split by commas.')
        arg_parser.add_argument('-i', '--interval', type=int, default=60,
                                help='Camera shooting interval[sec] (default:60)')
        arg_parser.add_argument('-p', '--period', type=int, default=0,
                                help='Shooting period[min]. Infinite if 0(default).')
        arg_parser.add_argument('-d', '--directory', default='./',
                                help='Output directory (default:current dir)')
        arg_parser.add_argument('-l', '--list', action='store_true', default=False,
                                help='List target names.')
        arg_parser.add_argument('-s', '--saveimage', action='store_true', default=False,
                                help='Save image mode.(default:Off)')
        arg_parser.add_argument('-t', '--tweet', action='store_true', default=False,
                                help='Tweet detected.(default:Off)')
        arg_parser.add_argument('-e', '--test', action='store_true', default=False,
                                help='Test mode.(default:Off)')
        args = arg_parser.parse_args()

        # パースした引数の内容を変数で覚えておく。
        self._target_names = args.target_name.split(',')
        self._exclude_names = args.exclude.split(',') if args.exclude is not None else []
        self._output_directory = args.directory
        self._period_sec = args.period * 60
        self._interval_sec = args.interval
        self._list_option = args.list
        self._save_image_mode = args.saveimage
        self._tweet_mode = args.tweet
        self._test_mode = args.test

        # 検知器を用意し、利用可能なターゲット名称をそこから取得する。
        self._detector = ObjectDetector()
        available_names = self._detector.list_names()

        # 引数"-l"が指定されていたら、利用可能なターゲット名称をリストアップして終了
        if self._list_option:
            print('Available names:')
            print(', '.join(available_names))
            exit(0)

        # (2)ターゲット名が、利用可能なターゲット名称に含まれるかチェック。
        # なければプログラム終了。
        for name in self._target_names + self._exclude_names:
            if name not in available_names:
                print('"{0}" is not available word. Retry input.'.format(name))
                print('(Search available words for -l options.)')
                exit(0)

        # カメラの無い環境であればテストモードを強制的にONにする。
        if without_camera:
            self._test_mode = True

        # (3)引数の内容を表示。
        print(('Camera started.\n'
               '  - Target name     : {0}\n'
               '  - Exclude name    : {1}\n'
               '  - Interval        : {2}\n'
               '  - Shooting period : {3}\n'
               '  - Output directory: {4}\n'
               '  - Save image mode : {5}\n'
               '  - Tweet mode      : {6}\n'
               '  - Test mode       : {7}\n'
               ).format(','.join(self._target_names),
                        ','.join(self._exclude_names),
                        str(self._interval_sec) + '[sec]',
                        str(args.period) + '[min]' if self._period_sec != 0 else 'infinite',
                        self._output_directory,
                        self._save_image_mode,
                        self._tweet_mode,
                        self._test_mode)
              )

        # (4)画像判定モデルを初期化。
        print('Start model loading...')
        self._detector.open()
        print('Finish.')

        # (5)Twitter接続を初期化。
        if self._tweet_mode:
            self._twitter = Twitter()
Пример #14
0
from detector import ObjectDetector
import numpy as np
import cv2
import argparse

detector_path = r'd:\Users\boykni\Desktop\object_detection\Object-Detector-master\detector.svm'
#annotations_path = r"d:\Users\boykni\Desktop\object_detection\Object-Detector-master\annot.npy"
images_path = r"\\Mos-srv1\Petroview\NAWAT\Completion Data\LA_COMPLETION_REPORTS\imageclassifier\training_dataset\titlepage\3_242294_2_1.jpg"

detector = ObjectDetector(loadPath=detector_path)

imagePath = images_path
image = cv2.imread(imagePath)
detector.detect(image,annotate="LOGO")
Пример #15
0
class DetectionCamera:
    """
    検知カメラ。指定した物体をカメラが写したときに画像を保存することを繰り返す。
    """
    def __init__(self):
        global test_mode
        """
       コンストラクタ。引数をパースする。また、カメラ、画像判定モデルを初期化する。
       """

        # ロガーを初期化する
        logging.config.fileConfig('logging.ini')
        self.logger = getLogger(__name__)

        # 引数をパースする
        arg_parser = argparse.ArgumentParser(description='Detecting Camera')
        arg_parser.add_argument(
            'target_name', help='Target name to detecting. Split by commas.')
        arg_parser.add_argument(
            '-x',
            '--exclude',
            default=None,
            help='Target excluded from detection. Split by commas.')
        arg_parser.add_argument(
            '-i',
            '--interval',
            type=int,
            default=60,
            help='Camera shooting interval[sec] (default:60)')
        arg_parser.add_argument(
            '-p',
            '--period',
            type=int,
            default=0,
            help='Shooting period[min]. Infinite if 0(default).')
        arg_parser.add_argument('-d',
                                '--directory',
                                default='./',
                                help='Output directory (default:current dir)')
        arg_parser.add_argument('-l',
                                '--list',
                                action='store_true',
                                default=False,
                                help='List target names.')
        arg_parser.add_argument('-s',
                                '--saveimage',
                                action='store_true',
                                default=False,
                                help='Save image mode.(default:Off)')
        arg_parser.add_argument('-t',
                                '--tweet',
                                action='store_true',
                                default=False,
                                help='Tweet detected.(default:Off)')
        arg_parser.add_argument('-e',
                                '--test',
                                action='store_true',
                                default=False,
                                help='Test mode.(default:Off)')
        args = arg_parser.parse_args()

        # パースした引数の内容を変数で覚えておく。
        self._target_names = args.target_name.split(',')
        self._exclude_names = args.exclude.split(
            ',') if args.exclude is not None else []
        self._output_directory = args.directory
        self._period_sec = args.period * 60
        self._interval_sec = args.interval
        self._list_option = args.list
        self._save_image_mode = args.saveimage
        self._tweet_mode = args.tweet
        self._test_mode = args.test

        # 検知器を用意し、利用可能なターゲット名称をそこから取得する。
        self._detector = ObjectDetector()
        available_names = self._detector.list_names()

        # 引数"-l"が指定されていたら、利用可能なターゲット名称をリストアップして終了
        if self._list_option:
            print('Available names:')
            print(', '.join(available_names))
            exit(0)

        # ターゲット名が、利用可能なターゲット名称に含まれるかチェック。
        # なければプログラム終了。
        for name in self._target_names + self._exclude_names:
            if name not in available_names:
                print('"{0}" is not available word. Retry input.'.format(name))
                print('(Search available words for -l options.)')
                exit(0)

        # カメラの無い環境であればテストモードを強制的にONにする。
        if without_camera:
            self._test_mode = True

        # 引数の内容を表示。
        self.logger.info(
            ('Camera started.\n'
             '  - Target name     : {0}\n'
             '  - Exclude name    : {1}\n'
             '  - Interval        : {2}\n'
             '  - Shooting period : {3}\n'
             '  - Output directory: {4}\n'
             '  - Save image mode : {5}\n'
             '  - Tweet mode      : {6}\n'
             '  - Test mode       : {7}\n').format(
                 ','.join(self._target_names), ','.join(self._exclude_names),
                 str(self._interval_sec) + '[sec]',
                 str(args.period) +
                 '[min]' if self._period_sec != 0 else 'infinite',
                 self._output_directory, self._save_image_mode,
                 self._tweet_mode, self._test_mode))

        # 画像判定モデルを初期化。
        self.logger.info('Start model loading...')
        self._detector.open()
        self.logger.info('Finish.')

        # Twitter接続を初期化。
        if self._tweet_mode:
            self._twitter = Twitter()

        self._face_detector = FaceDetector()

    def run(self):
        """
        カメラ処理。撮影、画像判定、ファイル保存を繰り返す。
        """

        self.logger.info('Start shooting.')

        # 処理開始時間を保持。このあと経過時間を計算するため。
        start_time = datetime.datetime.now()

        # カメラを初期化。テストモードならスキップ。
        if not self._test_mode:
            camera = picamera.PiCamera()
            camera.resolution = CAMERA_RESOLUTION

            camera.hflip = True
            camera.vflip = True
            '''
            # カメラ設定用のオプション。必要に応じてコメント外にコピーすること。
            #https://picamera.readthedocs.io/en/release-0.2/api.html
            camera.sharpness = 0 # -100 to 100
            camera.contrast = 0 # -100 to 100
            camera.brightness = 50 # 0 to 100
            camera.saturation = 0
            camera.ISO = 0
            camera.video_stabilization = False
            camera.exposure_compensation = 0
            camera.exposure_mode = 'auto'
            camera.meter_mode = 'average'
            camera.awb_mode = 'auto'
            camera.image_effect = 'none'
            camera.color_effects = None
            camera.rotation = 0
            camera.hflip = False
            camera.vflip = False
            camera.crop = (0.0, 0.0, 1.0, 1.0)

            '''

        # 以下、撮影期間が終了するまで繰り返し
        while True:

            now_time = datetime.datetime.now()

            # CPU温度をチェック。冷えている場合のみ撮影・投稿処理を続ける。
            if not self._is_cpu_hot():

                # カメラ画像を取得。
                if not self._test_mode:
                    camera.capture('tmp.jpg')

                # 画像に目的のものが写っていればTwitterに投稿する。
                self.try_tweet_image(now_time)

                # 記録用にCPU温度を出力しておく。
                self._is_cpu_hot()

            # 経過時間をチェック。オプションで指定した時間異常が過ぎていたら処理を停止する。
            elapsed_time = now_time - start_time
            elapsed_sec = elapsed_time.total_seconds()
            if self._period_sec != 0 and elapsed_sec < self._period_sec:
                self.logger.info('Shooting period ({0} sec) ended.'.format(
                    self._period_sec))
                break

            # インターバル期間の分、待ち。
            wait_time = self._interval_sec - (elapsed_sec % self._interval_sec)
            time.sleep(wait_time)

    def try_tweet_image(self, now_time):
        """
        画像に目的のものが写っていればTwitterに投稿する。
        :param now_time: 現在時刻
        :return: 写っていた物の名称
        """

        # 目的のものが写っているか判定。写っていなければ終了。
        matched_name, matched_box = self._match_target_image(
            'tmp.jpg', threshold=SCORE_THRESHOLD)

        duration = datetime.datetime.now() - now_time
        self.logger.info('Detect {0}. ({1:.1f}[sec])'.format(
            matched_name, duration.total_seconds()))

        if matched_name is None:
            return None

        # 正規化座標をピクセル座標に変換する
        org_image = Image.open('tmp.jpg')
        org_width, org_height = org_image.size

        ymin_n, xmin_n, ymax_n, xmax_n = matched_box
        px_box = (int(xmin_n * org_width), int(xmax_n * org_width),
                  int(ymin_n * org_height), int(ymax_n * org_height))

        # 顔が検知枠の中に含まれているかチェックする。含まれていなければ終了。
        contain_face = self._face_detector.contains_face('tmp.jpg', px_box)
        self.logger.info('  Contain face: {0}'.format(contain_face))

        if not contain_face:
            return matched_name

        # 目的の物の位置を中心にカメラ画像を切り取る。
        self._crop_center(px_box, 'tmp.jpg', 'crop.jpg')

        # 切り取り画像をTwitterに投稿。Tweet modeがONの場合のみ。
        if self._tweet_mode:
            self._twitter.post(matched_name, 'crop.jpg')

        # 画像を保存。
        # 切り取り画像は"{指定されたディレクトリ}/{年月日}_{時分秒}_{物体名}.jpg"とし、
        # 検知枠の付いた判定画像は末尾を"_result.jpg"として保存する。
        if self._save_image_mode:
            now_str = now_time.strftime('%Y%m%d_%H%M%S')

            original_file_name = '{0}_{1}.jpg'.format(now_str, matched_name)
            original_file_path = os.path.join(self._output_directory,
                                              original_file_name)
            shutil.copy('crop.jpg', original_file_path)

            result_file_name = '{0}_{1}_result.jpg'.format(
                now_str, matched_name)
            result_file_path = os.path.join(self._output_directory,
                                            result_file_name)
            shutil.copy('result.jpg', result_file_path)

        return matched_name

    def _is_cpu_hot(self):
        """
        CPUが規定の温度より熱くなっているかを返す
        :return: THERMAL_LIMITより熱ければTrue
        """
        # CPU温度の出力されたファイルから温度の値を取得する。
        # OSの違いなどでファイルが無い場合は、Falseを返して終了。
        if not os.path.exists(THERMAL_FILE):
            self.logger.info(
                'CPU Thermal file does not exist. File:{0}'.format(
                    THERMAL_FILE))
            return False

        with open(THERMAL_FILE, 'r') as file:
            thermal = int(file.read())

        # ファイルには1000倍した整数値が記述されているので、1000で割る。
        thermal /= 1000

        # THERMAL_LIMITより熱いかチェックし、返す。ログも出力する。
        result = (thermal > THERMAL_LIMIT)
        result_text = 'hot' if result else 'cool'
        self.logger.info('Thermal: {0}\'C => {1}'.format(thermal, result_text))

        return result

    def _match_target_image(self, img_path, threshold=0):
        """
        引数の画像に何が写っているか判定し、検知対象であればその物体名を返す。
        :param img_path: 確認したい画像
        :return: 物体名 検知対象でなければNone
        """

        # 画像を判定
        results = self._detector.detect(img_path)

        # 判定結果のチェック
        # 全画像分の判定結果について、写っている物体がターゲット名と同じかチェックし、
        # スコアが最高のものだけを記録する。
        # またターゲット除外名ものがあれば、即座に中断する。
        max_score_name = None
        max_score_box = None
        max_score = 0

        for name, score, box in zip(results['names'], results['scores'],
                                    results['boxes']):

            # ターゲット除外名であれば即座に終了。
            if name in self._exclude_names:
                self.logger.info('Exclude name "{0}" detected.'.format(name))
                return None, None

            # ターゲットであれば、今までの最高スコアと比較し、最高スコアを更新したら記録する。
            if name in self._target_names:

                if score > max_score:
                    max_score = score
                    max_score_name = name
                    max_score_box = box

        # 最高スコアの物を返す。
        return max_score_name, max_score_box

    def _crop_center(self, px_box, original_image_path, crop_image_path):
        """
        matched_boxと中央が合う位置で、original_image_pathの画像を切り取り、その結果をcrop_image_pathのファイルに保存する。
        :param px_box: ピクセル座標での検知枠
        :param original_image_path: 元画像のパス
        :param crop_image_path: 切り取った画像を保存するパス
        """
        # 元画像を読み込む。
        org_image = Image.open(original_image_path)
        org_width, org_height = org_image.size

        # 検知枠の座標を取り出す。
        xmin, xmax, ymin, ymax = px_box

        # 検知枠と中心点が合うような切り取り枠の位置を求める。
        x_center = (xmin + xmax) / 2
        y_center = (ymin + ymax) / 2

        crop_width, crop_height = IMAGE_SIZE
        xmin_c = round(x_center - (crop_width / 2))
        ymin_c = round(y_center - (crop_height / 2))

        # 切り取り枠が元画像からはみ出ていたら中央側に寄せる。
        if xmin_c < 0:
            xmin_c = 0

        if ymin_c < 0:
            ymin_c = 0

        if xmin_c + crop_width > org_width:
            xmin_c = org_width - crop_width

        if ymin_c + crop_height > org_height:
            ymin_c = org_height - crop_height

        # 切り取り枠で、元画像を切り取った結果の画像を生成し、保存する。
        crop_image = org_image.crop(
            (xmin_c, ymin_c, xmin_c + crop_width, ymin_c + crop_height))

        crop_image.save(crop_image_path)
Пример #16
0
from PIL import Image
from PIL import ImageFilter
from StringIO import StringIO


def _get_image(path):
    #return Image.open(StringIO(requests.get(url).content))
    return Image.open(path)


if __name__ == '__main__':
    from PIL import Image
    voc_names = [
        "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat",
        "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person",
        "pottedplant", "sheep", "sofa", "train", "tvmonitor", "plate_license"
    ]
    det = ObjectDetector('../cfg/yolo-plate.cfg',
                         '/home/himon/code/yolo/yolo-plate_final.weights')
    #url = 'http://farm9.staticflickr.com/8323/8141398311_2fd0af60f7.jpg'
    path = '/home/himon/code/yolo/cars.jpg'
    #for i in xrange(4):
    rst, run_time = det.detect_object(_get_image(path))

    print 'got {} objects in {} seconds'.format(len(rst), run_time)

    for bbox in rst:
        print '{} {} {} {} {} {}'.format(voc_names[bbox.cls], bbox.top,
                                         bbox.left, bbox.bottom, bbox.right,
                                         bbox.confidence)
Пример #17
0
 def __init__(self):
     self.detector = ObjectDetector()
     self.classifier = Classifier()
Пример #18
0
    img_path = os.path.join(os.path.dirname(__file__), "world", "render_files")
    file_list = sorted(os.listdir(img_path))

    for f in file_list:
        img = cv.imread(os.path.join(img_path, f))
        vid.write(img)

    cv.destroyAllWindows()
    vid.release()


if __name__ == "__main__":
    img_difficulty = Difficulty.MEDIUM_FAST
    original, new, binary, color_matrix = load_image(img_difficulty)

    detector = ObjectDetector(new, binary, color_matrix)
    detector.scan_image()

    # All we need to supply to the world
    objects = detector.get_objects_array()
    objects_dict = detector.get_objects()
    label_plane = detector.get_label_plane()

    # detector.print_label_plane()

    # call world
    World.get_instance().create_world(objects=objects,
                                      objects_dict=objects_dict,
                                      label_plane=label_plane)

    # Discover properties of objects
Пример #19
0
from detector import ObjectDetector
import numpy as np
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-a", "--annotations", required=True, default='annot.npy', help="path to saved annotations...")
ap.add_argument("-i", "--images", required=True, default='images.npy', help="path to saved image paths...")
ap.add_argument("-d", "--detector", default='detector.svm',  help="path to save the trained detector...")
args = vars(ap.parse_args())

print "[INFO] loading annotations and images"
annotations = np.load(args["annotations"])
image_paths = np.load(args["images"])

detector = ObjectDetector()
print "[INFO] creating & saving object detector"

detector.fit(image_paths, annotations, visualize=True, save_path=args["detector"])
Пример #20
0
    def image_callback(
            self,
            img,
            camera_info,
            img_name="00000.png",  # this is the name of the img file to save, it needs the .png at the end
            output_folder='out_inference',  # folder where to put the output
    ):
        img_name = str(img_name).zfill(5)
        """Image callback"""

        # img = self.cv_bridge.imgmsg_to_cv2(image_msg, "rgb8")

        # cv2.imwrite('img.png', cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # for debugging

        # Update camera matrix and distortion coefficients
        if self.input_is_rectified:
            P = np.matrix(camera_info['projection_matrix']['data'],
                          dtype='float64').copy()
            P.resize((3, 4))
            camera_matrix = P[:, :3]
            dist_coeffs = np.zeros((4, 1))
        else:
            # TODO
            camera_matrix = np.matrix(camera_info.K, dtype='float64')
            camera_matrix.resize((3, 3))
            dist_coeffs = np.matrix(camera_info.D, dtype='float64')
            dist_coeffs.resize((len(camera_info.D), 1))

        # Downscale image if necessary
        height, width, _ = img.shape
        scaling_factor = float(self.downscale_height) / height
        if scaling_factor < 1.0:
            camera_matrix[:2] *= scaling_factor
            img = cv2.resize(
                img,
                (int(scaling_factor * width), int(scaling_factor * height)))

        for m in self.models:
            self.pnp_solvers[m].set_camera_intrinsic_matrix(camera_matrix)
            self.pnp_solvers[m].set_dist_coeffs(dist_coeffs)

        # Copy and draw image
        img_copy = img.copy()
        im = Image.fromarray(img_copy)
        draw = Draw(im)

        # dictionary for the final output
        dict_out = {"camera_data": {}, "objects": []}

        for m in self.models:
            # Detect object
            results, beliefs = ObjectDetector.detect_object_in_image(
                self.models[m].net, self.pnp_solvers[m], img,
                self.config_detect)
            # print(results)
            # print('---')
            # continue
            # Publish pose and overlay cube on image
            for i_r, result in enumerate(results):
                if result["location"] is None:
                    continue
                # print(result)
                loc = result["location"]
                ori = result["quaternion"]

                print(loc)

                dict_out['objects'].append({
                    'class':
                    m,
                    'location':
                    np.array(loc).tolist(),
                    'quaternion_xyzw':
                    np.array(ori).tolist(),
                    'projected_cuboid':
                    np.array(result['projected_points']).tolist(),
                })
                # print( dict_out )

                # transform orientation
                # TODO
                # transformed_ori = tf.transformations.quaternion_multiply(ori, self.model_transforms[m])

                # rotate bbox dimensions if necessary
                # (this only works properly if model_transform is in 90 degree angles)
                # dims = rotate_vector(vector=self.dimensions[m], quaternion=self.model_transforms[m])
                # dims = np.absolute(dims)
                # dims = tuple(dims)

                # Draw the cube
                if None not in result['projected_points']:
                    points2d = []
                    for pair in result['projected_points']:
                        points2d.append(tuple(pair))
                    draw.draw_cube(points2d, self.draw_colors[m])
        # save the output of the image.
        im.save(f"{output_folder}/{img_name}.png")

        # save the json files
        with open(f"{output_folder}/{img_name.replace('png','json')}",
                  'w') as fp:
            json.dump(dict_out, fp)
Пример #21
0
import cv2
from centroidtracker import CentroidTracker
from detector import ObjectDetector
import numpy as np
import tensorflow as tf
from stream import ThreadedCam
from trackedobjects import TrackableObject
from sort import Sort
from time import time
from numba import jit
from utils import roiselector


det = ObjectDetector('cardetector')
ct = CentroidTracker()
trackers = []
totalframes = 0
skipframes = 5
trackedobjects = {}
roiwindow = 'Pls Select ROI'

H = None
W = None

def check_and_correct_boundaries(x,y,xmin,ymin,xmax,ymax):
    if x < xmin:
        x = xmin
    elif x > xmax:
        x = xmax-1
    if y < ymin:
        y = ymin
Пример #22
0
    parser.add_argument('--name-path', type=str, default=defaults['name_path'])
    parser.add_argument('--cfg-path', type=str, default=defaults['cfg_path'])
    parser.add_argument('--weight-path',
                        type=str,
                        default=defaults['weight_path'])
    parser.add_argument('--thresh', type=float, default=0.5)
    parser.add_argument('--nms', type=float, default=0.4)
    parser.add_argument('--draw', action='store_true')
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()

    ObjectDetector.set_device(0)
    det = ObjectDetector(args.cfg_path, args.weight_path, args.thresh,
                         args.nms, int(args.draw))

    class_names = open(args.name_path).read().splitlines()
    print class_names

    start = time()
    c_load_time, c_pred_time = 0, 0
    for i, im_name in enumerate(sys.stdin):
        py_all_time = time() - start
        py_load_time = py_all_time - c_load_time - c_pred_time
        print >> sys.stderr, "%d | pyall %f | pyload %f | cload %f | cpred %f" % (
            i, py_all_time, py_load_time, c_load_time, c_pred_time)

        try:
            im_name = im_name.strip()
            img = Image.open(im_name)
Пример #23
0
from detector import ObjectDetector
import numpy as np
import cv2
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("-d",
                "--detector",
                required=True,
                help="path to trained detector to load...")
ap.add_argument("-i",
                "--image",
                required=True,
                help="path to an image for object detection...")
ap.add_argument("-a", "--annotate", default=None, help="text to annotate...")
args = vars(ap.parse_args())
detector = ObjectDetector(loadPath=args["detector"])
imagePath = args["image"]
image = cv2.imread(imagePath)
detector.detect(image, annotations=args["annotate"])
Пример #24
0
from detector import ObjectDetector
import numpy as np
import cv2
import argparse
import imutils

ap = argparse.ArgumentParser()
ap.add_argument("-d", "--detector", required= True,
                help="path to trained detector to load...")
ap.add_argument("-v", "--video", required=True,
                help="path to a video for object detection...")
ap.add_argument("-a","--annotate", default=None, help="text to annotate...")
args = vars(ap.parse_args())

detector = ObjectDetector(loadPath=args["detector"])

vs = cv2.VideoCapture(args["video"])

while(vs.isOpened()):

    ret, imagePath = vs.read()
    imagePath = imutils.resize(imagePath, width=min(400, imagePath.shape[1]))
    image =[]
    image ==imagePath
    if imagePath is None:
        break

    #image = imagePath
    detector.detectV(imagePath, annotate=args["annotate"])

    #cv2.imshow("Bead Detector", image)
Пример #25
0
class DetectionCamera:
    """
    検知カメラ。指定した物体をカメラが写したときに画像を保存することを繰り返す。
    """

    def __init__(self):
        global test_mode
        """
        コンストラクタ。引数をパースする。また、カメラ、画像判定モデルを初期化する。
        """

        # (1)引数をパースする
        arg_parser = argparse.ArgumentParser(description='Detecting Camera')
        arg_parser.add_argument('target_name',
                                help='Target name to detecting. Split by commas.')
        arg_parser.add_argument('-x', '--exclude', default=None,
                                help='Target excluded from detection. Split by commas.')
        arg_parser.add_argument('-i', '--interval', type=int, default=60,
                                help='Camera shooting interval[sec] (default:60)')
        arg_parser.add_argument('-p', '--period', type=int, default=0,
                                help='Shooting period[min]. Infinite if 0(default).')
        arg_parser.add_argument('-d', '--directory', default='./',
                                help='Output directory (default:current dir)')
        arg_parser.add_argument('-l', '--list', action='store_true', default=False,
                                help='List target names.')
        arg_parser.add_argument('-s', '--saveimage', action='store_true', default=False,
                                help='Save image mode.(default:Off)')
        arg_parser.add_argument('-t', '--tweet', action='store_true', default=False,
                                help='Tweet detected.(default:Off)')
        arg_parser.add_argument('-e', '--test', action='store_true', default=False,
                                help='Test mode.(default:Off)')
        args = arg_parser.parse_args()

        # パースした引数の内容を変数で覚えておく。
        self._target_names = args.target_name.split(',')
        self._exclude_names = args.exclude.split(',') if args.exclude is not None else []
        self._output_directory = args.directory
        self._period_sec = args.period * 60
        self._interval_sec = args.interval
        self._list_option = args.list
        self._save_image_mode = args.saveimage
        self._tweet_mode = args.tweet
        self._test_mode = args.test

        # 検知器を用意し、利用可能なターゲット名称をそこから取得する。
        self._detector = ObjectDetector()
        available_names = self._detector.list_names()

        # 引数"-l"が指定されていたら、利用可能なターゲット名称をリストアップして終了
        if self._list_option:
            print('Available names:')
            print(', '.join(available_names))
            exit(0)

        # (2)ターゲット名が、利用可能なターゲット名称に含まれるかチェック。
        # なければプログラム終了。
        for name in self._target_names + self._exclude_names:
            if name not in available_names:
                print('"{0}" is not available word. Retry input.'.format(name))
                print('(Search available words for -l options.)')
                exit(0)

        # カメラの無い環境であればテストモードを強制的にONにする。
        if without_camera:
            self._test_mode = True

        # (3)引数の内容を表示。
        print(('Camera started.\n'
               '  - Target name     : {0}\n'
               '  - Exclude name    : {1}\n'
               '  - Interval        : {2}\n'
               '  - Shooting period : {3}\n'
               '  - Output directory: {4}\n'
               '  - Save image mode : {5}\n'
               '  - Tweet mode      : {6}\n'
               '  - Test mode       : {7}\n'
               ).format(','.join(self._target_names),
                        ','.join(self._exclude_names),
                        str(self._interval_sec) + '[sec]',
                        str(args.period) + '[min]' if self._period_sec != 0 else 'infinite',
                        self._output_directory,
                        self._save_image_mode,
                        self._tweet_mode,
                        self._test_mode)
              )

        # (4)画像判定モデルを初期化。
        print('Start model loading...')
        self._detector.open()
        print('Finish.')

        # (5)Twitter接続を初期化。
        if self._tweet_mode:
            self._twitter = Twitter()

    def run(self):
        """
        カメラ処理。撮影、画像判定、ファイル保存を繰り返す。
        """

        print('Start shooting.')

        # (1)処理開始時間を保持。このあと経過時間を計算するため。
        start_time = datetime.datetime.now()

        # (2)カメラを初期化。テストモードならスキップ。
        if not self._test_mode:
            camera = picamera.PiCamera()
            camera.resolution = CAMERA_RESOLUTION

            #camera.hflip = True
            #camera.vflip = True
            '''
            # カメラ設定用のオプション。必要に応じてコメント外にコピーすること。
            #https://picamera.readthedocs.io/en/release-0.2/api.html
            camera.sharpness = 0 # -100 to 100
            camera.contrast = 0 # -100 to 100
            camera.brightness = 50 # 0 to 100
            camera.saturation = 0
            camera.ISO = 0
            camera.video_stabilization = False
            camera.exposure_compensation = 0
            camera.exposure_mode = 'auto'
            camera.meter_mode = 'average'
            camera.awb_mode = 'auto'
            camera.image_effect = 'none'
            camera.color_effects = None
            camera.rotation = 0
            camera.hflip = False
            camera.vflip = False
            camera.crop = (0.0, 0.0, 1.0, 1.0)

            '''

        # 以下、撮影期間が終了するまで繰り返し
        counter = 1
        while True:
            now_time = datetime.datetime.now()
            # (3)カメラ画像を取得。
            if not self._test_mode:
                camera.capture('tmp.jpg')

            # (4)目的のものが写っているか判定。
            matched_name, matched_box = self._match_target_image('tmp.jpg', threshold=SCORE_THRESHOLD)
            duration = datetime.datetime.now() - now_time
            print('[{0}] {1} - Detect {2}. ({3:.1f}[sec])'.format(counter, now_time.strftime('%Y/%m/%d %H:%M:%S'),
                                                                  matched_name, duration.total_seconds()))

            if matched_name is not None:
                # (5)写っていたら画像をTwitterに投稿。Tweet modeがONの場合のみ。
                if self._tweet_mode:
                    self._twitter.post(matched_name, 'tmp.jpg')

                # (6)画像を保存。
                # 元画像は"{指定されたディレクトリ}/{年月日}_{時分秒}_{物体名}.jpg"とし、
                # 検知枠の付いた画像は末尾を"_result.jpg"として保存する。
                if self._save_image_mode:
                    now_str = now_time.strftime('%Y%m%d_%H%M%S')

                    original_file_name = '{0}_{1}.jpg'.format(now_str, matched_name)
                    original_file_path = os.path.join(self._output_directory, original_file_name)
                    shutil.copy('tmp.jpg', original_file_path)

                    result_file_name = '{0}_{1}_result.jpg'.format(now_str, matched_name)
                    result_file_path = os.path.join(self._output_directory, result_file_name)
                    shutil.copy('result.jpg', result_file_path)

            # (7)経過時間をチェック。オプションで指定した時間異常が過ぎていたら処理を停止する。
            elapsed_time = now_time - start_time
            elapsed_sec = elapsed_time.total_seconds()
            if self._period_sec != 0 and elapsed_sec < self._period_sec:
                print('Shooting period ({0} sec) ended.'.format(self._period_sec))
                break

            # (8)インターバル期間の分、待ち。
            wait_time = self._interval_sec - (elapsed_sec % self._interval_sec)
            time.sleep(wait_time)
            counter += 1

    def _match_target_image(self, img_path, threshold=0):
        """
        引数の画像に何が写っているか判定し、検知対象であればその物体名を返す。
        :param img_path: 確認したい画像
        :return: 物体名 検知対象でなければNone
        """

        # (1) 画像を判定
        results = self._detector.detect(img_path)

        # (2) 判定結果のチェック
        # 全画像分の判定結果について、写っている物体がターゲット名と同じかチェックし、
        # スコアが最高のものだけを記録する。
        # またターゲット除外名ものがあれば、即座に中断する。
        max_score_name = None
        max_score_box = None
        max_score = 0

        for name, score, box in zip(results['names'], results['scores'], results['boxes']):

            # ターゲット除外名であれば即座に終了。
            if name in self._exclude_names:
                print('Exclude name "{0}" detected.'.format(name))
                return None, None

            # ターゲットであれば、今までの最高スコアと比較し、最高スコアを更新したら記録する。
            if name in self._target_names:

                if score > max_score:
                    max_score = score
                    max_score_name = name
                    max_score_box = box

        # 最高スコアの物を返す。
        return max_score_name, max_score_box
from detector import ObjectDetector
import numpy as np
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-a",
                "--annotations",
                required=True,
                help="path to saved annotations...")
ap.add_argument("-i",
                "--images",
                required=True,
                help="path to saved image paths...")
ap.add_argument("-d",
                "--detector",
                default=None,
                help="path to save the trained detector...")
args = vars(ap.parse_args())

print("[INFO] loading annotations and images")
annots = np.load(args["annotations"])
imagePaths = np.load(args["images"])

detector = ObjectDetector()
print("[INFO] creating & saving object detector")

detector.fit(imagePaths, annots, visualize=False, savePath=args["detector"])
Пример #27
0
    def image_callback(
        self,
        img,
        camera_info,
        P_matrix,
        img_name="00000.png",  # this is the name of the img file to save, it needs the .png at the end
        output_folder='out_inference',  # folder where to put the output
        showbelief=False,
        gt_keypoints=None,
    ):
        # img_name = str(img_name).zfill(5)+'.png'
        """Image callback"""

        # img = self.cv_bridge.imgmsg_to_cv2(image_msg, "rgb8")

        # cv2.imwrite('img.png', cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # for debugging

        # Update camera matrix and distortion coefficients
        if self.input_is_rectified:
            '''
            P = np.matrix(camera_info['camera_matrix']['data'], dtype='float64').copy()
            # print(P)
            P.resize((3, 3))
            '''
            P = np.matrix(P_matrix, dtype='float64').copy()
            P.resize((3, 3))
            camera_matrix = P
            dist_coeffs = np.zeros((4, 1))
            # print(camera_matrix)
            # raise()
        else:
            # TODO
            camera_matrix = np.matrix(camera_info.K, dtype='float64')
            camera_matrix.resize((3, 3))
            dist_coeffs = np.matrix(camera_info.D, dtype='float64')
            dist_coeffs.resize((len(camera_info.D), 1))

        # add padding to the image
        img = cv2.copyMakeBorder(img, 0, self.padding_height, 0,
                                 self.padding_width, cv2.BORDER_CONSTANT,
                                 (0, 0, 0))
        # Downscale image if necessary
        height, width, _ = img.shape
        scaling_factor = float(self.downscale_height) / height
        if scaling_factor < 1.0:
            camera_matrix[:2] *= scaling_factor
            img = cv2.resize(
                img,
                (int(scaling_factor * width), int(scaling_factor * height)))

        for m in self.models:
            if 'ensemble' not in m:
                self.pnp_solvers[m].set_camera_intrinsic_matrix(camera_matrix)
                self.pnp_solvers[m].set_dist_coeffs(dist_coeffs)

        # Copy and draw image
        img_copy = img.copy()
        im = Image.fromarray(img_copy)
        draw = Draw(im)

        # dictionary for the final output
        dict_out = {"camera_data": {}, "objects": []}

        beliefs_outputs = []

        Metric = {}

        for m in self.models:
            # Detect object
            if 'ensemble' in m:
                if 'full' in self.keypoints_ensemble_1.net_path:
                    full = True
                else:
                    full = False
            else:
                if 'full' in self.models[m].net_path:
                    full = True
                else:
                    full = False

            Score = []
            Location = []
            Orientation = []
            Uncertainty = []
            Reprojection_error = []

            if 'visii' in m:
                new = False
                visii_flag = True
            else:
                new = False
                visii_flag = False

            if 'ensemble' in m:
                results, beliefs = ObjectDetector.detect_object_in_image(
                    self.keypoints_ensemble_1.net,
                    self.pnp_solvers[self.m1],
                    img,
                    self.config_detect,
                    full=full,
                    grid_belief_debug=showbelief,
                    run_sampling=self.config_detect.run_sampling,
                    new=new,
                    second_model=self.keypoints_ensemble_2.net,
                    visii=visii_flag)
            else:
                results, beliefs = ObjectDetector.detect_object_in_image(
                    self.models[m].net,
                    self.pnp_solvers[m],
                    img,
                    self.config_detect,
                    full=full,
                    grid_belief_debug=showbelief,
                    run_sampling=self.config_detect.run_sampling,
                    new=new,
                    visii=visii_flag)
            beliefs_outputs.append(beliefs)
            # print(results)
            # print('---')
            # continue
            # Publish pose and overlay cube on image

            for i_r, result in enumerate(results):
                if result["location"] is None:
                    continue
                loc = result["location"]
                ori = result["quaternion"]

                # print(loc)
                Score.append(result['score'])
                Location.append(loc)
                Orientation.append(ori)
                Uncertainty.append(result['uncertainty'])

                # Compute the reprojection error
                projected_cuboid = result['projected_points']
                raw_cuboid = result['raw_points']
                reprojection_error = 0
                for i in range(9):
                    temp1 = np.array(projected_cuboid[i])
                    temp2 = np.array(raw_cuboid[i])
                    if raw_cuboid[i] is not None:
                        reprojection_error += np.linalg.norm(temp1 - temp2)

                Reprojection_error.append(reprojection_error)

                dict_out['objects'].append({
                    'class':
                    m,
                    'location':
                    np.array(loc).tolist(),
                    'quaternion_xyzw':
                    np.array(ori).tolist(),
                    'projected_cuboid':
                    np.array(result['projected_points']).tolist(),
                    'confidence':
                    np.array(result['confidence']).tolist(),
                    'raw_cuboid':
                    np.array(result['raw_points']).tolist(),
                    'reprojection_error':
                    reprojection_error.tolist()
                })
                # print( dict_out )

                # transform orientation
                # TODO
                # transformed_ori = tf.transformations.quaternion_multiply(ori, self.model_transforms[m])

                # rotate bbox dimensions if necessary
                # (this only works properly if model_transform is in 90 degree angles)
                # dims = rotate_vector(vector=self.dimensions[m], quaternion=self.model_transforms[m])
                # dims = np.absolute(dims)
                # dims = tuple(dims)

                # Draw the cube
                if None not in result['projected_points']:
                    points2d = []
                    for pair in result['projected_points']:
                        points2d.append(tuple(pair))
                    draw.draw_cube(points2d,
                                   self.draw_colors[m],
                                   text=str(i_r + 1))
                # draw the raw prediction points
                text = 0
                for p in result['raw_points']:
                    # draw.draw_dot(p,self.draw_colors[m], text=str(text)) #debug
                    draw.draw_dot(p, self.draw_colors[m])
                    text += 1
                # draw the ground truth keypoints
                if not gt_keypoints is None:
                    text = 0
                    for p in gt_keypoints:
                        draw.draw_dot(p, 'black', text=str(text))
                        text += 1

            if len(Score) > 0:
                best_index = 0
                for index in range(len(Score)):
                    # Using score to select the best candidate
                    # if Score[index] > Score[best_index]:
                    # Using reprojection_error to select the best candidate
                    if Reprojection_error[index] < Reprojection_error[
                            best_index]:
                        best_index = index

            Metric[m] = {}
            if len(Score) > 0:
                Metric[m]['centroid score'] = Score[best_index]
                Metric[m]['uncertainty'] = np.array(Uncertainty[best_index])
                Metric[m]['uncertainty'][:3] = 0.01 * Metric[m][
                    'uncertainty'][:3]  # cm -> m
                Metric[m]['location'] = 0.01 * np.array(
                    Location[best_index])  # cm -> m
                Metric[m]['orientation'] = np.array(Orientation[best_index])
            else:
                Metric[m]['centroid score'] = 0
                Metric[m]['uncertainty'] = np.array(
                    [1000, 1000, 1000, 1000, 1000, 1000, 1000])
                Metric[m]['location'] = None
                Metric[m]['orientation'] = None

            # draw the single object uncertainty
            # draw_uncertainty(Score, uncertainty, f"{output_folder}/uncertainty_{img_name}")

        draw_uncertainty_multi(
            img_name.replace('.png', ''),
            Metric,
            f"{output_folder}/{img_name.replace('.png','.jpg')}",
            colors=self.draw_colors)

        # print (result)

        # save the output of the image.
        if not opt.json_only:
            im.save(f"{output_folder}/{img_name}")

        # save the json files
        path_json = f"{output_folder}/{img_name.replace('png','')}json"

        if os.path.exists(path_json):
            # with open(path_json) as f:
            #     data = json.load(f)
            # data['objects'] = data['objects'] + dict_out['objects']
            with open(path_json, 'w') as fp:
                json.dump(dict_out, fp, indent=4)
        else:
            with open(path_json, 'w') as fp:
                json.dump(dict_out, fp, indent=4)

        return im, beliefs_outputs, Metric
from detector import ObjectDetector
from centroidtracker import CentroidTracker
import cv2
import numpy as np
import tensorflow as tf
import stream

det = ObjectDetector('facedetector')
# tracker = CentroidTracker()

# cap = stream.ThreadedCam('samples/traffic.mp4',fps=30).start()
cap = stream.ThreadedCam(0).start()

with tf.Session(graph=det.graph) as sess:
    while 2:
        frame = cap.get_frame()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        boxes = det.detect_boxes_and_scores(frame, sess, sort=True)
        print(boxes)
        # print(objects)
        # for objid,centroid in objects.items():
        #     y,x = centroid
        #     text = "ID {}".format(objid)
        #     cv2.putText(frame, text, (int(x) - 10, int(y) - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        #     cv2.circle(frame,(int(x),int(y)),radius=5,color=[0,255,255],thickness=-1)
        cv2.imshow("Test", cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

cap.stop()
cv2.destroyAllWindows()
Пример #29
0
parse.add_argument("-i",
                   "--images",
                   help="Path to saved images",
                   default="train_images.npy")
parse.add_argument("-d",
                   "--detector",
                   help="Path to save model",
                   default="svm_model.svm")
parse.add_argument("-ta",
                   "--test_annotate",
                   help="Path to saved test boxes annotations",
                   default="test_annot.npy")
parse.add_argument("-tim",
                   "--test_images",
                   help="Path to test images",
                   default="test_images.npy")
args = vars(parse.parse_args())

annots = np.load(args["annotations"])
imagePaths = np.load(args["images"])
trainAnnot = np.load(args["test_annotate"])
trainImages = np.load(args["test_images"])

detector = ObjectDetector()
detector.fit(imagePaths,
             annots,
             trainAnnot,
             trainImages,
             visualize=True,
             savePath=args["detector"])
Пример #30
0
import imutils
import datetime
import time

ap = argparse.ArgumentParser()
ap.add_argument("-d",
                "--detector",
                required=True,
                help="path to trained detector to load...")
ap.add_argument("-i",
                "--image",
                required=True,
                help="path to an image for object detection...")
ap.add_argument("-a", "--annotate", default=None, help="text to annotate...")
args = vars(ap.parse_args())

detector = ObjectDetector(loadPath=args["detector"])

imagePath = args["image"]
image = cv2.imread(imagePath)

video_capture = cv2.VideoCapture('aLine.mp4')
while (True):
    ret, frame = video_capture.read()
    detector.detectsp(frame, annotate=args["annotate"])
    time.sleep(0.001)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

detector.detect(image, annotate=args["annotate"])