def read_model(model_filename): model = detector_model_pb2.DetectorModel() f = open(model_filename, "rb") model.ParseFromString(f.read()) f.close() if not model.IsInitialized(): print("Input file seems not to be a DetectorModel, " \ "trying as MultiScalesDetectorModel") model = detector_model_pb2.MultiScalesDetectorModel() f = open(model_filename, "rb") model.ParseFromString(f.read()) f.close() if not model.IsInitialized(): print("Input file seems not to be "\ "a DetectorModel nor a MultiScalesDetectorModel") raise Exception("Unknown input file format") print(model.detector_name) if model.training_dataset_name: print("trained on dataset:", model.training_dataset_name) if type(model) is detector_model_pb2.DetectorModel \ and model.soft_cascade_model: #print("Model shrinking factor ==", # model.soft_cascade_model.shrinking_factor) print("Model channels description ==", model.soft_cascade_model.channels_description) return model
def read_model(model_filename): model = detector_model_pb2.DetectorModel() f = open(model_filename, "rb") model.ParseFromString(f.read()) f.close() return model
def read_model_old(model_filepath): model = detector_model_pb2.DetectorModel() f = open(model_filepath, "rb") model.ParseFromString(f.read()) f.close() assert model.IsInitialized() return model
def read_model(model_filename): model = detector_model_pb2.DetectorModel() f = open(model_filename, "rb") model.ParseFromString(f.read()) f.close() if not model.IsInitialized(): print("Input file seems not to be a DetectorModel, " \ "trying as MultiScalesDetectorModel") model = detector_model_pb2.MultiScalesDetectorModel() f = open(model_filename, "rb") model.ParseFromString(f.read()) f.close() if not model.IsInitialized(): print("Input file seems not to be "\ "a DetectorModel nor a MultiScalesDetectorModel") raise Exception("Unknown input file format") return model