Пример #1
0
def test(opt):
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str

    Dataset = build_dataset(opt.dataset)
    opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
    print(opt)
    Logger(opt)
    Detector = build_detector(opt.task)

    split = 'val' if not opt.trainval else 'test'
    dataset = Dataset(opt, split)
    detector = Detector(opt)

    results = {}
    num_iters = len(dataset)
    bar = Bar('{}'.format(opt.exp_id), max=num_iters)
    time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
    avg_time_stats = {t: AverageMeter() for t in time_stats}
    for ind in range(num_iters):
        img_id = dataset.images[ind]
        img_info = dataset.coco.loadImgs(ids=[img_id])[0]
        img_path = os.path.join(dataset.img_dir, img_info['file_name'])

        if opt.task == 'ddd':
            ret = detector.run(img_path, img_info['calib'])
        else:
            ret = detector.run(img_path)

        results[img_id] = ret['results']

        Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
            ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
        for t in avg_time_stats:
            avg_time_stats[t].update(ret[t])
            Bar.suffix = Bar.suffix + \
                '|{} {:.3f} '.format(t, avg_time_stats[t].avg)
        bar.next()
    bar.finish()
    dataset.run_eval(results, opt.save_dir)
Пример #2
0
def prefetch_test(opt):
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str

    Dataset = build_dataset(opt.dataset)
    opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
    print(opt)
    Logger(opt)
    Detector = build_detector(opt.task)

    split = 'val' if not opt.trainval else 'test'
    dataset = Dataset(opt, split)
    detector = Detector(opt)

    data_loader = torch.utils.data.DataLoader(PrefetchDataset(
        opt, dataset, detector.pre_process),
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=1,
                                              pin_memory=True)

    results = {}
    num_iters = len(dataset)
    bar = Bar('{}'.format(opt.exp_id), max=num_iters)
    time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
    avg_time_stats = {t: AverageMeter() for t in time_stats}
    for ind, (img_id, pre_processed_images) in enumerate(data_loader):
        ret = detector.run(pre_processed_images)
        results[img_id.numpy().astype(np.int32)[0]] = ret['results']
        Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
            ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
        for t in avg_time_stats:
            avg_time_stats[t].update(ret[t])
            Bar.suffix = Bar.suffix + '|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format(
                t, tm=avg_time_stats[t])
        bar.next()
    bar.finish()
    dataset.run_eval(results, opt.save_dir)
Пример #3
0
def demo(opt):
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.debug = max(opt.debug, 1)
    Detector = build_detector(opt.task)
    detector = Detector(opt)

    if opt.demo == 'webcam' or \
            opt.demo[opt.demo.rfind('.') + 1:].lower() in video_ext:
        cam = cv2.VideoCapture(0 if opt.demo == 'webcam' else opt.demo)
        detector.pause = False
        while True:
            _, img = cam.read()
            cv2.imshow('input', img)
            ret = detector.run(img)
            time_str = ''
            for stat in time_stats:
                time_str = time_str + '{} {:.3f}s |'.format(stat, ret[stat])
            print(time_str)
            if cv2.waitKey(1) == 27:
                return  # esc to quit
    else:
        if os.path.isdir(opt.demo):
            image_names = []
            ls = os.listdir(opt.demo)
            for file_name in sorted(ls):
                ext = file_name[file_name.rfind('.') + 1:].lower()
                if ext in image_ext:
                    image_names.append(os.path.join(opt.demo, file_name))
        else:
            image_names = [opt.demo]

        for (image_name) in image_names:
            ret = detector.run(image_name)
            time_str = ''
            for stat in time_stats:
                time_str = time_str + '{} {:.3f}s | '.format(stat, ret[stat])
            print(time_str)