Пример #1
0
def run_test(cfg, model, distributed):
    torch.cuda.empty_cache()  # TODO check if it helps
    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )

    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg,
                                        is_train=False,
                                        is_distributed=distributed)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=cfg.MODEL.RPN_ONLY,
            device=cfg.MODEL.DEVICE,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
        )
        synchronize()
def run_test(cfg, model, distributed):
    if distributed:
        model = model.module
    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints", )
    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg,
                                        is_train=False,
                                        is_distributed=distributed)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
            bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
            device=cfg.MODEL.DEVICE,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
        )
Пример #3
0
def run_inference(config_file):
    import jittor as jt
    from jittor_utils import auto_diff

    from detectron.config import cfg
    from detectron.modeling.detector import build_detection_model
    from detectron.utils.checkpoint import DetectronCheckpointer
    from detectron.data import make_data_loader
    from detectron.engine.inference import inference
    from detectron.utils.logger import setup_logger

    jt.flags.use_cuda = 1
    jt.cudnn.set_algorithm_cache_size(0)

    cfg.merge_from_file(config_file)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("maskrcnn_benchmark", save_dir)
    model = build_detection_model(cfg)
    # hook = auto_diff.Hook('fasterrcnn')
    # hook.hook_module(model)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    _ = checkpointer.load(cfg.MODEL.WEIGHT)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints", )
    dataset_names = cfg.DATASETS.TEST
    data_loaders_val = make_data_loader(cfg, is_train=False)
    for dataset_name, data_loader_val in zip(dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=False if cfg.MODEL.FCOS_ON or cfg.MODEL.EMBED_MASK_ON
            or cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
            bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            cfg=cfg)
Пример #4
0
def run_torch_inference(config_file):
    import jittor as jt
    from jittor_utils import auto_diff

    from maskrcnn_benchmark.config import cfg
    from maskrcnn_benchmark.modeling.detector import build_detection_model
    from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
    from maskrcnn_benchmark.data import make_data_loader
    from maskrcnn_benchmark.engine.inference import inference
    from maskrcnn_benchmark.utils.logger import setup_logger

    cfg.merge_from_file(config_file)
    cfg.freeze()

    save_dir = ""
    model = build_detection_model(cfg)
    model = model.cuda()
    # hook = auto_diff.Hook('fasterrcnn')
    # hook.hook_module(model)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    _ = checkpointer.load(cfg.MODEL.WEIGHT)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    dataset_names = cfg.DATASETS.TEST
    data_loaders_val = make_data_loader(cfg, is_train=False)
    for dataset_name, data_loader_val in zip(dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            'coco_2014_minival',
            iou_types=iou_types,
            box_only=cfg.MODEL.RPN_ONLY,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
        )
Пример #5
0
def do_train(
    cfg,
    model,
    data_loader,
    data_loader_val,
    optimizer,
    scheduler,
    checkpointer,
    checkpoint_period,
    test_period,
    arguments,
):
    logger = logging.getLogger("detectron.trainer")
    logger.info("Start training")
    meters = MetricLogger(delimiter="  ")
    max_iter = len(data_loader)
    start_iter = arguments["iteration"]
    model.train()
    start_training_time = time.time()
    end = time.time()

    iou_types = ("bbox",)
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm",)
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints",)
    dataset_names = cfg.DATASETS.TEST

    for iteration, (images, targets, _) in enumerate(data_loader, start_iter):
        
        if any(len(target) < 1 for target in targets):
            logger.error(f"Iteration={iteration + 1} || Image Ids used for training {_} || targets Length={[len(target) for target in targets]}" )
            continue
        data_time = time.time() - end
        iteration = iteration + 1
        arguments["iteration"] = iteration


        loss_dict = model(images, targets)

        losses = sum(loss for loss in loss_dict.values())

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = loss_dict
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())
        meters.update(loss=losses_reduced, **loss_dict_reduced)

        # Note: If mixed precision is not used, this ends up doing nothing
        # Otherwise apply loss scaling for mixed-precision recipe
        optimizer.step(losses)
        scheduler.step()

        batch_time = time.time() - end
        end = time.time()
        meters.update(time=batch_time, data=data_time)

        eta_seconds = meters.time.global_avg * (max_iter - iteration)
        eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))

        if iteration % 20 == 0 or iteration == max_iter:
            logger.info(
                meters.delimiter.join(
                    [
                        "eta: {eta}",
                        "iter: {iter}",
                        "{meters}",
                        "lr: {lr:.6f}",
                        "max mem: {memory:.0f}",
                    ]
                ).format(
                    eta=eta_string,
                    iter=iteration,
                    meters=str(meters),
                    lr=optimizer.param_groups[0]["lr"],
                    memory=1024 / 1024.0 / 1024.0, # TODO CUDA Memory
                )
            )
        if iteration % checkpoint_period == 0:
            checkpointer.save("model_{:07d}".format(iteration), **arguments)
        if data_loader_val is not None and test_period > 0 and iteration % test_period == 0:
            meters_val = MetricLogger(delimiter="  ")
            _ = inference(  # The result can be used for additional logging, e. g. for TensorBoard
                model,
                # The method changes the segmentation mask format in a data loader,
                # so every time a new data loader is created:
                make_data_loader(cfg, is_train=False, is_distributed=False, is_for_period=True),
                dataset_name="[Validation]",
                iou_types=iou_types,
                box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
                device=cfg.MODEL.DEVICE,
                expected_results=cfg.TEST.EXPECTED_RESULTS,
                expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
                output_folder=None,
            )
            model.train()
            with jt.no_grad():
                # Should be one image for each GPU:
                for iteration_val, (images_val, targets_val, _) in enumerate(tqdm(data_loader_val)):
                    loss_dict = model(images_val, targets_val)
                    losses = sum(loss for loss in loss_dict.values())
                    loss_dict_reduced = loss_dict
                    losses_reduced = sum(loss for loss in loss_dict_reduced.values())
                    meters_val.update(loss=losses_reduced, **loss_dict_reduced)
            logger.info(
                meters_val.delimiter.join(
                    [
                        "[Validation]: ",
                        "eta: {eta}",
                        "iter: {iter}",
                        "{meters}",
                        "lr: {lr:.6f}",
                        "max mem: {memory:.0f}",
                    ]
                ).format(
                    eta=eta_string,
                    iter=iteration,
                    meters=str(meters_val),
                    lr=optimizer.param_groups[0]["lr"],
                    memory= 2014 / 1024.0 / 1024.0,# TODO torch.cuda.max_memory_allocated()
                )
            )
        if iteration == max_iter:
            checkpointer.save("model_final", **arguments)

    total_training_time = time.time() - start_training_time
    total_time_str = str(datetime.timedelta(seconds=total_training_time))
    logger.info(
        "Total training time: {} ({:.4f} s / it)".format(
            total_time_str, total_training_time / (max_iter)
        )
    )
Пример #6
0
def main():
    jt.flags.use_cuda = 1
    parent_path = os.path.abspath(__file__).split("/tools/")[0]
    parser = argparse.ArgumentParser(description="Object Detection Inference")
    parser.add_argument(
        "--config-file",
        default=
        f"{parent_path}/configs/maskrcnn_benchmark/e2e_mask_rcnn_R_50_FPN_1x.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--ckpt",
        help=
        "The path to the checkpoint for test, default is the latest checkpoint.",
        default=None,
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("detectron", save_dir)
    logger.info("Using {} GPUs".format(1))
    logger.info(cfg)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    model = build_detection_model(cfg)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt
    _ = checkpointer.load(ckpt, use_latest=args.ckpt is None)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints", )
    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg, is_train=False)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
            bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
        )
Пример #7
0
def main(add_eval_flag=False):
    parser = argparse.ArgumentParser(
        description="PyTorch Object Detection Inference")
    parser.add_argument(
        "--config-file",
        default=cfg_file,
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=int(os.environ['CUDA_VISIBLE_DIVICES']))
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1

    # if args.distributed:
    #     torch.cuda.set_device(args.local_rank)
    #     torch.distributed.init_process_group(
    #         backend="nccl", init_method="env://"
    #     )
    #     synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("detectron", save_dir, get_rank())
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    model = build_detection_model(cfg)
    model.to(cfg.MODEL.DEVICE)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    _ = checkpointer.load(cfg.MODEL.WEIGHT)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )

    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg,
                                        is_train=False,
                                        is_distributed=args.distributed)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        coco_results, _ = \
            inference(
                model,
                data_loader_val,
                dataset_name=dataset_name,
                iou_types=iou_types,
                box_only=cfg.MODEL.RPN_ONLY,
                device=cfg.MODEL.DEVICE,
                expected_results=cfg.TEST.EXPECTED_RESULTS,
                expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
                output_folder=output_folder,
        )
    synchronize()

    def add_eval_fields():
        ar = coco_results.results['bbox']['AR50']
        ap = coco_results.results['bbox']['AP50']

        checkpoint_file = checkpointer.get_checkpoint_file()
        base_checkpoint_file = os.path.basename(checkpoint_file).split('.')[0]
        new_checkpoint_file = os.path.join(
            output_dir,
            base_checkpoint_file + '_ar{:.03}_ap_{:.03}.pth'.format(ar, ap))
        os.rename(checkpoint_file, new_checkpoint_file)

    if add_eval_flag:
        add_eval_fields()