Пример #1
0
def save_model_to_weights_file(weights_file, model):
    """Stash model weights in a dictionary and pickle them to a file. We map
    GPU device scoped names to unscoped names (e.g., 'gpu_0/conv1_w' ->
    'conv1_w').
    """
    logger.info('Saving parameters and momentum to {}'.format(
        os.path.abspath(weights_file)))
    blobs = {}
    # Save all parameters
    for param in model.params:
        scoped_name = str(param)
        unscoped_name = c2_utils.UnscopeName(scoped_name)
        if unscoped_name not in blobs:
            logger.debug(' {:s} -> {:s}'.format(scoped_name, unscoped_name))
            blobs[unscoped_name] = workspace.FetchBlob(scoped_name)
    # Save momentum
    for param in model.TrainableParams():
        scoped_name = str(param) + '_momentum'
        unscoped_name = c2_utils.UnscopeName(scoped_name)
        if unscoped_name not in blobs:
            logger.debug(' {:s} -> {:s}'.format(scoped_name, unscoped_name))
            blobs[unscoped_name] = workspace.FetchBlob(scoped_name)
    # Save preserved blobs
    for scoped_name in workspace.Blobs():
        if scoped_name.startswith('__preserve__/'):
            unscoped_name = c2_utils.UnscopeName(scoped_name)
            if unscoped_name not in blobs:
                logger.debug(' {:s} -> {:s} (preserved)'.format(
                    scoped_name, unscoped_name))
                blobs[unscoped_name] = workspace.FetchBlob(scoped_name)
    cfg_yaml = yaml.dump(cfg)
    save_object(dict(blobs=blobs, cfg=cfg_yaml), weights_file)
def multi_gpu_generate_rpn_on_dataset(weights_file, dataset_name,
                                      _proposal_file_ignored, num_images,
                                      output_dir):
    """Multi-gpu inference on a dataset."""
    # Retrieve the test_net binary path
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    opts += ['TEST.WEIGHTS', weights_file]

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel('rpn_proposals', num_images,
                                                   binary, output_dir, opts)

    # Collate the results from each subprocess
    boxes, scores, ids = [], [], []
    for rpn_data in outputs:
        boxes += rpn_data['boxes']
        scores += rpn_data['scores']
        ids += rpn_data['ids']
    rpn_file = os.path.join(output_dir, 'rpn_proposals.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml),
                rpn_file)
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file
def evaluate_proposal_file(dataset, proposal_file, output_dir):
    """Evaluate box proposal average recall."""
    roidb = dataset.get_roidb(gt=True, proposal_file=proposal_file)
    results = task_evaluation.evaluate_box_proposals(dataset, roidb)
    task_evaluation.log_box_proposal_results(results)
    recall_file = os.path.join(output_dir, 'rpn_proposal_recall.pkl')
    save_object(results, recall_file)
    return results
def _do_detection_eval(json_dataset, res_file, output_dir):
    coco_dt = json_dataset.COCO.loadRes(str(res_file))
    coco_eval = COCOeval(json_dataset.COCO, coco_dt, 'bbox')
    coco_eval.evaluate()
    coco_eval.accumulate()
    _log_detection_eval_metrics(json_dataset, coco_eval)
    eval_file = os.path.join(output_dir, 'detection_results.pkl')
    save_object(coco_eval, eval_file)
    logger.info('Wrote json eval results to: {}'.format(eval_file))
    return coco_eval
def _do_keypoint_eval(json_dataset, res_file, output_dir):
    ann_type = 'keypoints'
    imgIds = json_dataset.COCO.getImgIds()
    imgIds.sort()
    coco_dt = json_dataset.COCO.loadRes(res_file)
    coco_eval = COCOeval(json_dataset.COCO, coco_dt, ann_type)
    coco_eval.params.imgIds = imgIds
    coco_eval.evaluate()
    coco_eval.accumulate()
    eval_file = os.path.join(output_dir, 'keypoint_results.pkl')
    save_object(coco_eval, eval_file)
    logger.info('Wrote json eval results to: {}'.format(eval_file))
    coco_eval.summarize()
    return coco_eval
def generate_rpn_on_range(weights_file,
                          dataset_name,
                          _proposal_file_ignored,
                          output_dir,
                          ind_range=None,
                          gpu_id=0):
    """Run inference on all images in a dataset or over an index range of images
    in a dataset using a single GPU.
    """
    assert cfg.MODEL.RPN_ONLY or cfg.MODEL.FASTER_RCNN

    roidb, start_ind, end_ind, total_num_images = get_roidb(
        dataset_name, ind_range)
    logger.info('Output will be saved to: {:s}'.format(
        os.path.abspath(output_dir)))

    model = model_builder.create(cfg.MODEL.TYPE, train=False, gpu_id=gpu_id)
    nu.initialize_gpu_from_weights_file(
        model,
        weights_file,
        gpu_id=gpu_id,
    )
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)

    boxes, scores, ids = generate_proposals_on_roidb(
        model,
        roidb,
        start_ind=start_ind,
        end_ind=end_ind,
        total_num_images=total_num_images,
        gpu_id=gpu_id,
    )

    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        rpn_name = 'rpn_proposals_range_%s_%s.pkl' % tuple(ind_range)
    else:
        rpn_name = 'rpn_proposals.pkl'
    rpn_file = os.path.join(output_dir, rpn_name)
    save_object(dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml),
                rpn_file)
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file
Пример #7
0
def _do_python_eval(json_dataset, salt, output_dir='output'):
    info = voc_info(json_dataset)
    year = info['year']
    anno_path = info['anno_path']
    image_set_path = info['image_set_path']
    devkit_path = info['devkit_path']
    cachedir = os.path.join(devkit_path, 'annotations_cache')
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    logger.info('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    for _, cls in enumerate(json_dataset.classes):
        if cls == '__background__':
            continue
        filename = _get_voc_results_file_template(json_dataset,
                                                  salt).format(cls)
        rec, prec, ap = voc_eval(filename,
                                 anno_path,
                                 image_set_path,
                                 cls,
                                 cachedir,
                                 ovthresh=0.5,
                                 use_07_metric=use_07_metric)
        aps += [ap]
        logger.info('AP for {} = {:.4f}'.format(cls, ap))
        res_file = os.path.join(output_dir, cls + '_pr.pkl')
        save_object({'rec': rec, 'prec': prec, 'ap': ap}, res_file)
    logger.info('Mean AP = {:.4f}'.format(np.mean(aps)))
    logger.info('~~~~~~~~')
    logger.info('Results:')
    for ap in aps:
        logger.info('{:.3f}'.format(ap))
    logger.info('{:.3f}'.format(np.mean(aps)))
    logger.info('~~~~~~~~')
    logger.info('')
    logger.info('----------------------------------------------------------')
    logger.info('Results computed with the **unofficial** Python eval code.')
    logger.info('Results should be very close to the official MATLAB code.')
    logger.info('Use `./tools/reval.py --matlab ...` for your paper.')
    logger.info('-- Thanks, The Management')
    logger.info('----------------------------------------------------------')
def multi_gpu_test_net_on_dataset(weights_file, dataset_name, proposal_file,
                                  num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset and proposal file (if any) via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    opts += ['TEST.WEIGHTS', weights_file]
    if proposal_file:
        opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]
    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel('detection', num_images,
                                                   binary, output_dir, opts)

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[cls_idx] += all_boxes_batch[cls_idx]
            all_segms[cls_idx] += all_segms_batch[cls_idx]
            all_keyps[cls_idx] += all_keyps_batch[cls_idx]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(all_boxes=all_boxes,
             all_segms=all_segms,
             all_keyps=all_keyps,
             cfg=cfg_yaml), det_file)
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps
def test_net(weights_file,
             dataset_name,
             proposal_file,
             output_dir,
             ind_range=None,
             gpu_id=0):
    """Run inference on all images in a dataset or over an index range of images
    in a dataset using a single GPU.
    """
    assert not cfg.MODEL.RPN_ONLY, \
        'Use rpn_generate to generate proposals from RPN-only models'

    roidb, dataset, start_ind, end_ind, total_num_images = get_roidb_and_dataset(
        dataset_name, proposal_file, ind_range)
    model = initialize_model_from_cfg(weights_file, gpu_id=gpu_id)
    num_images = len(roidb)
    num_classes = cfg.MODEL.NUM_CLASSES
    all_boxes, all_segms, all_keyps = empty_results(num_classes, num_images)
    timers = defaultdict(Timer)
    for i, entry in enumerate(roidb):
        if cfg.TEST.PRECOMPUTED_PROPOSALS:
            # The roidb may contain ground-truth rois (for example, if the roidb
            # comes from the training or val split). We only want to evaluate
            # detection on the *non*-ground-truth rois. We select only the rois
            # that have the gt_classes field set to 0, which means there's no
            # ground truth.
            box_proposals = entry['boxes'][entry['gt_classes'] == 0]
            if len(box_proposals) == 0:
                continue
        else:
            # Faster R-CNN type models generate proposals on-the-fly with an
            # in-network RPN; 1-stage models don't require proposals.
            box_proposals = None

        im = cv2.imread(entry['image'])
        with c2_utils.NamedCudaScope(gpu_id):
            cls_boxes_i, cls_segms_i, cls_keyps_i = im_detect_all(
                model, im, box_proposals, timers)

        extend_results(i, all_boxes, cls_boxes_i)
        if cls_segms_i is not None:
            extend_results(i, all_segms, cls_segms_i)
        if cls_keyps_i is not None:
            extend_results(i, all_keyps, cls_keyps_i)

        if i % 10 == 0:  # Reduce log file size
            ave_total_time = np.sum([t.average_time for t in timers.values()])
            eta_seconds = ave_total_time * (num_images - i - 1)
            eta = str(datetime.timedelta(seconds=int(eta_seconds)))
            det_time = (timers['im_detect_bbox'].average_time +
                        timers['im_detect_mask'].average_time +
                        timers['im_detect_keypoints'].average_time)
            misc_time = (timers['misc_bbox'].average_time +
                         timers['misc_mask'].average_time +
                         timers['misc_keypoints'].average_time)
            logger.info(('im_detect: range [{:d}, {:d}] of {:d}: '
                         '{:d}/{:d} {:.3f}s + {:.3f}s (eta: {})').format(
                             start_ind + 1, end_ind, total_num_images,
                             start_ind + i + 1, start_ind + num_images,
                             det_time, misc_time, eta))

        if cfg.VIS:
            im_name = os.path.splitext(os.path.basename(entry['image']))[0]
            vis_utils.vis_one_image(im[:, :, ::-1],
                                    '{:d}_{:s}'.format(i, im_name),
                                    os.path.join(output_dir, 'vis'),
                                    cls_boxes_i,
                                    segms=cls_segms_i,
                                    keypoints=cls_keyps_i,
                                    thresh=cfg.VIS_TH,
                                    box_alpha=0.8,
                                    dataset=dataset,
                                    show_class=True)

    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        det_name = 'detection_range_%s_%s.pkl' % tuple(ind_range)
    else:
        det_name = 'detections.pkl'
    det_file = os.path.join(output_dir, det_name)
    save_object(
        dict(all_boxes=all_boxes,
             all_segms=all_segms,
             all_keyps=all_keyps,
             cfg=cfg_yaml), det_file)
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
    return all_boxes, all_segms, all_keyps