Пример #1
0
def setup_w_over_q(wOverQ, w, qmin, qmax, npad, sigma=0):
    """
    Initialise spatially variable w/Q field used to implement attenuation and
    absorb outgoing waves at the edges of the model. Uses Devito Operator.

    Parameters
    ----------
    wOverQ : Function, required
        The omega over Q field used to implement attenuation in the model,
        and the absorbing boundary condition for outgoing waves.
    w : float32, required
        center angular frequency, e.g. peak frequency of Ricker source wavelet
        used for modeling.
    qmin : float32, required
        Q value at the edge of the model. Typically set to 0.1 to strongly
        attenuate outgoing waves.
    qmax : float32, required
        Q value in the interior of the model. Typically set to 100 as a
        reasonable and physically meaningful Q value.
    npad : int, required
        Number of points in the absorbing boundary region. Note that we expect
        this to be the same on all sides of the model.
    sigma : float32, optional, defaults to None
        sigma value for call to scipy gaussian smoother, default 5.
    """
    # sanity checks
    assert w > 0, "supplied w value [%f] must be positive" % (w)
    assert qmin > 0, "supplied qmin value [%f] must be positive" % (qmin)
    assert qmax > 0, "supplied qmax value [%f] must be positive" % (qmax)
    assert npad > 0, "supplied npad value [%f] must be positive" % (npad)
    for n in wOverQ.grid.shape:
        if n - 2 * npad < 1:
            raise ValueError("2 * npad must not exceed dimension size!")

    lqmin = np.log(qmin)
    lqmax = np.log(qmax)

    # 1. Get distance to closest boundary in all dimensions
    # 2. Logarithmic variation between qmin, qmax across the absorbing boundary
    eqs = [Eq(wOverQ, 1)]
    for d in wOverQ.dimensions:
        # left
        dim_l = SubDimension.left(name='abc_%s_l' % d.name,
                                  parent=d,
                                  thickness=npad)
        pos = Abs(dim_l - d.symbolic_min) / float(npad)
        eqs.append(
            Eq(wOverQ.subs({d: dim_l}), Min(wOverQ.subs({d: dim_l}), pos)))
        # right
        dim_r = SubDimension.right(name='abc_%s_r' % d.name,
                                   parent=d,
                                   thickness=npad)
        pos = Abs(d.symbolic_max - dim_r) / float(npad)
        eqs.append(
            Eq(wOverQ.subs({d: dim_r}), Min(wOverQ.subs({d: dim_r}), pos)))

    eqs.append(Eq(wOverQ, w / exp(lqmin + wOverQ * (lqmax - lqmin))))
    # 2020.05.04 currently does not support spatial smoothing of the Q field
    # due to MPI weirdness in reassignment of the numpy array
    Operator(eqs, name='WOverQ_Operator')()
Пример #2
0
def initialize_function(function, data, nbpml):
    """
    Initialize a `Function` with the given ``data``. ``data``
    does *not* include the PML layers for the absorbing boundary conditions;
    these are added via padding by this function.

    Parameters
    ----------
    function : Function
        The initialised object.
    data : ndarray
        The data array used for initialisation.
    nbpml : int
        Number of PML layers for boundary damping.
    """
    slices = tuple([slice(nbpml, -nbpml) for _ in range(function.grid.dim)])
    function.data[slices] = data
    eqs = []

    for d in function.dimensions:
        dim_l = SubDimension.left(name='abc_%s_l' % d.name,
                                  parent=d,
                                  thickness=nbpml)
        to_copy = nbpml
        eqs += [Eq(function.subs({d: dim_l}), function.subs({d: to_copy}))]
        dim_r = SubDimension.right(name='abc_%s_r' % d.name,
                                   parent=d,
                                   thickness=nbpml)
        to_copy = d.symbolic_max - nbpml
        eqs += [Eq(function.subs({d: dim_r}), function.subs({d: to_copy}))]

    # TODO: Figure out why yask doesn't like it with dse/dle
    Operator(eqs, name='padfunc', dse='noop', dle='noop')()
Пример #3
0
    def test_sub_dimension(self):
        """
        Test that SubDimensions with same name but different attributes do not
        alias to the same SubDimension. Conversely, if the name and the attributes
        are the same, they must alias to the same SubDimension.
        """
        x = Dimension('x')
        xi0 = SubDimension.middle('xi', x, 1, 1)
        xi1 = SubDimension.middle('xi', x, 1, 1)
        assert xi0 is xi1

        xl0 = SubDimension.left('xl', x, 2)
        xl1 = SubDimension.left('xl', x, 2)
        assert xl0 is xl1
        xl2asxi = SubDimension.left('xi', x, 2)
        assert xl2asxi is not xl1
        assert xl2asxi is not xi1

        xr0 = SubDimension.right('xr', x, 1)
        xr1 = SubDimension.right('xr', x, 1)
        assert xr0 is xr1
Пример #4
0
def test_sub_dimension_cache():
    """
    Test that SubDimensions with same name but different attributes do not
    alias to the same SubDimension. Conversely, if the name and the attributes
    are the same, they must alias to the same SubDimension.
    """
    x = Dimension('x')
    xi0 = SubDimension.middle('xi', x, 1, 1)
    xi1 = SubDimension.middle('xi', x, 1, 1)
    assert xi0 is xi1

    xl0 = SubDimension.left('xl', x, 2)
    xl1 = SubDimension.left('xl', x, 2)
    assert xl0 is xl1
    xl2asxi = SubDimension.left('xi', x, 2)
    assert xl2asxi is not xl1
    assert xl2asxi is not xi1

    xr0 = SubDimension.right('xr', x, 1)
    xr1 = SubDimension.right('xr', x, 1)
    assert xr0 is xr1
Пример #5
0
    def test_bcs(self):
        """
        Tests application of an Operator consisting of multiple equations
        defined over different sub-regions, explicitly created through the
        use of :class:`SubDimension`s.
        """
        grid = Grid(shape=(20, 20))
        x, y = grid.dimensions
        t = grid.stepping_dim
        thickness = 4

        u = TimeFunction(name='u',
                         save=None,
                         grid=grid,
                         space_order=0,
                         time_order=1)

        xleft = SubDimension.left(name='xleft', parent=x, thickness=thickness)
        xi = SubDimension.middle(name='xi',
                                 parent=x,
                                 thickness_left=thickness,
                                 thickness_right=thickness)
        xright = SubDimension.right(name='xright',
                                    parent=x,
                                    thickness=thickness)

        yi = SubDimension.middle(name='yi',
                                 parent=y,
                                 thickness_left=thickness,
                                 thickness_right=thickness)

        t_in_centre = Eq(u[t + 1, xi, yi], 1)
        leftbc = Eq(u[t + 1, xleft, yi], u[t + 1, xleft + 1, yi] + 1)
        rightbc = Eq(u[t + 1, xright, yi], u[t + 1, xright - 1, yi] + 1)

        op = Operator([t_in_centre, leftbc, rightbc])

        op.apply(time_m=1, time_M=1)

        assert np.all(u.data[0, :, 0:thickness] == 0.)
        assert np.all(u.data[0, :, -thickness:] == 0.)
        assert all(
            np.all(u.data[0, i, thickness:-thickness] == (thickness + 1 - i))
            for i in range(thickness))
        assert all(
            np.all(u.data[0, -i, thickness:-thickness] == (thickness + 2 - i))
            for i in range(1, thickness + 1))
        assert np.all(u.data[0, thickness:-thickness,
                             thickness:-thickness] == 1.)
Пример #6
0
    def test_symbolic_size(self):
        """Check the symbolic size of all possible SubDimensions is as expected."""
        grid = Grid(shape=(4,))
        x, = grid.dimensions
        thickness = 4

        xleft = SubDimension.left(name='xleft', parent=x, thickness=thickness)
        assert xleft.symbolic_size == xleft.thickness.left[0]

        xi = SubDimension.middle(name='xi', parent=x,
                                 thickness_left=thickness, thickness_right=thickness)
        assert xi.symbolic_size == (x.symbolic_max - x.symbolic_min -
                                    xi.thickness.left[0] - xi.thickness.right[0] + 1)

        xright = SubDimension.right(name='xright', parent=x, thickness=thickness)
        assert xright.symbolic_size == xright.thickness.right[0]
Пример #7
0
def initialize_damp(damp, padsizes, spacing, fs=False):
    """
    Initialise damping field with an absorbing boundary layer.
    Includes basic constant Q setup (not interfaced yet) and assumes that
    the peak frequency is 1/(10 * spacing).

    Parameters
    ----------
    damp : Function
        The damping field for absorbing boundary condition.
    nbl : int
        Number of points in the damping layer.
    spacing :
        Grid spacing coefficient.
    mask : bool, optional
        whether the dampening is a mask or layer.
        mask => 1 inside the domain and decreases in the layer
        not mask => 0 inside the domain and increase in the layer
    """
    lqmin = np.log(.1)
    lqmax = np.log(100)
    w0 = 1 / (10 * np.max(spacing))

    z = damp.dimensions[-1]
    eqs = [Eq(damp, 1)]

    for (nbl, nbr), d in zip(padsizes, damp.dimensions):
        if not fs or d is not z:
            nbl = max(5, nbl - 10) if d is z else nbl
            # left
            dim_l = SubDimension.left(name='abc_%s_l' % d.name,
                                      parent=d,
                                      thickness=nbl)
            pos = Abs(dim_l - d.symbolic_min) / float(nbl)
            eqs.append(
                Eq(damp.subs({d: dim_l}), Min(damp.subs({d: dim_l}), pos)))
        # right
        dim_r = SubDimension.right(name='abc_%s_r' % d.name,
                                   parent=d,
                                   thickness=nbr)
        pos = Abs(d.symbolic_max - dim_r) / float(nbr)
        eqs.append(Eq(damp.subs({d: dim_r}), Min(damp.subs({d: dim_r}), pos)))

    eqs.append(Eq(damp, w0 / exp(lqmin + damp * (lqmax - lqmin))))
    Operator(eqs, name='initdamp')()
Пример #8
0
    def test_bcs_basic(self):
        """
        Test MPI in presence of boundary condition loops. Here, no halo exchange
        is expected (as there is no stencil in the computed expression) but we
        check that:

            * the left BC loop is computed by the leftmost rank only
            * the right BC loop is computed by the rightmost rank only
        """
        grid = Grid(shape=(20, ))
        x = grid.dimensions[0]
        t = grid.stepping_dim

        thickness = 4

        u = TimeFunction(name='u', grid=grid, time_order=1)

        xleft = SubDimension.left(name='xleft', parent=x, thickness=thickness)
        xi = SubDimension.middle(name='xi',
                                 parent=x,
                                 thickness_left=thickness,
                                 thickness_right=thickness)
        xright = SubDimension.right(name='xright',
                                    parent=x,
                                    thickness=thickness)

        t_in_centre = Eq(u[t + 1, xi], 1)
        leftbc = Eq(u[t + 1, xleft], u[t + 1, xleft + 1] + 1)
        rightbc = Eq(u[t + 1, xright], u[t + 1, xright - 1] + 1)

        op = Operator([t_in_centre, leftbc, rightbc])

        op.apply(time_m=1, time_M=1)

        glb_pos_map = u.grid.distributor.glb_pos_map
        if LEFT in glb_pos_map[x]:
            assert np.all(u.data_ro_domain[0, thickness:] == 1.)
            assert np.all(
                u.data_ro_domain[0, :thickness] == range(thickness + 1, 1, -1))
        else:
            assert np.all(u.data_ro_domain[0, :-thickness] == 1.)
            assert np.all(
                u.data_ro_domain[0, -thickness:] == range(2, thickness + 2))
Пример #9
0
def initialize_damp(damp, padsizes, spacing, abc_type="damp", fs=False):
    """
    Initialize damping field with an absorbing boundary layer.

    Parameters
    ----------
    damp : Function
        The damping field for absorbing boundary condition.
    nbl : int
        Number of points in the damping layer.
    spacing :
        Grid spacing coefficient.
    mask : bool, optional
        whether the dampening is a mask or layer.
        mask => 1 inside the domain and decreases in the layer
        not mask => 0 inside the domain and increase in the layer
    """

    eqs = [Eq(damp, 1.0 if abc_type == "mask" else 0.0)]
    for (nbl, nbr), d in zip(padsizes, damp.dimensions):
        if not fs or d is not damp.dimensions[-1]:
            dampcoeff = 1.5 * np.log(1.0 / 0.001) / (nbl)
            # left
            dim_l = SubDimension.left(name='abc_%s_l' % d.name,
                                      parent=d,
                                      thickness=nbl)
            pos = Abs((nbl - (dim_l - d.symbolic_min) + 1) / float(nbl))
            val = dampcoeff * (pos - sin(2 * np.pi * pos) / (2 * np.pi))
            val = -val if abc_type == "mask" else val
            eqs += [Inc(damp.subs({d: dim_l}), val / d.spacing)]
        # right
        dampcoeff = 1.5 * np.log(1.0 / 0.001) / (nbr)
        dim_r = SubDimension.right(name='abc_%s_r' % d.name,
                                   parent=d,
                                   thickness=nbr)
        pos = Abs((nbr - (d.symbolic_max - dim_r) + 1) / float(nbr))
        val = dampcoeff * (pos - sin(2 * np.pi * pos) / (2 * np.pi))
        val = -val if abc_type == "mask" else val
        eqs += [Inc(damp.subs({d: dim_r}), val / d.spacing)]

    Operator(eqs, name='initdamp')()
Пример #10
0
def test_nofission_as_unprofitable():
    """
    Test there's no fission if not gonna increase number of collapsable loops.
    """
    grid = Grid(shape=(20, 20))
    x, y = grid.dimensions
    t = grid.stepping_dim

    yl = SubDimension.left(name='yl', parent=y, thickness=4)
    yr = SubDimension.right(name='yr', parent=y, thickness=4)

    u = TimeFunction(name='u', grid=grid)

    eqns = [
        Eq(u.forward, u[t + 1, x, y + 1] + 1.).subs(y, yl),
        Eq(u.forward, u[t + 1, x, y - 1] + 1.).subs(y, yr)
    ]

    op = Operator(eqns, opt='fission')

    assert_structure(op, ['t,x,yl', 't,x,yr'], 't,x,yl,yr')
Пример #11
0
def initialize_damp(damp, nbl, spacing, mask=False):
    """
    Initialise damping field with an absorbing boundary layer.

    Parameters
    ----------
    damp : Function
        The damping field for absorbing boundary condition.
    nbl : int
        Number of points in the damping layer.
    spacing :
        Grid spacing coefficient.
    mask : bool, optional
        whether the dampening is a mask or layer.
        mask => 1 inside the domain and decreases in the layer
        not mask => 0 inside the domain and increase in the layer
    """
    dampcoeff = 1.5 * np.log(1.0 / 0.001) / (40)

    eqs = [Eq(damp, 1.0)] if mask else []
    for d in damp.dimensions:
        # left
        dim_l = SubDimension.left(name='abc_%s_l' % d.name,
                                  parent=d,
                                  thickness=nbl)
        pos = Abs((nbl - (dim_l - d.symbolic_min) + 1) / float(nbl))
        val = dampcoeff * (pos - sin(2 * np.pi * pos) / (2 * np.pi))
        val = -val if mask else val
        eqs += [Inc(damp.subs({d: dim_l}), val / d.spacing)]
        # right
        dim_r = SubDimension.right(name='abc_%s_r' % d.name,
                                   parent=d,
                                   thickness=nbl)
        pos = Abs((nbl - (d.symbolic_max - dim_r) + 1) / float(nbl))
        val = dampcoeff * (pos - sin(2 * np.pi * pos) / (2 * np.pi))
        val = -val if mask else val
        eqs += [Inc(damp.subs({d: dim_r}), val / d.spacing)]

    # TODO: Figure out why yask doesn't like it with dse/dle
    Operator(eqs, name='initdamp', dse='noop', dle='noop')()
Пример #12
0
    def test_nontrivial_operator(self):
        """
        Test MPI in a non-trivial scenario: ::

            * 9 processes logically organised in a 3x3 cartesian grid (as opposed to
              most tests in this module, which only use 2 or 4 processed);
            * star-like stencil expression;
            * non-trivial Higdon-like BCs;
            * simultaneous presence of TimeFunction(grid), Function(grid), and
              Function(dimensions)
        """
        size_x, size_y = 9, 9
        tkn = 2

        # Grid and Dimensions
        grid = Grid(shape=(
            size_x,
            size_y,
        ))
        x, y = grid.dimensions
        t = grid.stepping_dim

        # SubDimensions to implement BCs
        xl, yl = [SubDimension.left('%sl' % d.name, d, tkn) for d in [x, y]]
        xi, yi = [
            SubDimension.middle('%si' % d.name, d, tkn, tkn) for d in [x, y]
        ]
        xr, yr = [SubDimension.right('%sr' % d.name, d, tkn) for d in [x, y]]

        # Functions
        u = TimeFunction(name='f', grid=grid)
        m = Function(name='m', grid=grid)
        c = Function(name='c', grid=grid, dimensions=(x, ), shape=(size_x, ))

        # Data initialization
        u.data_with_halo[:] = 0.
        m.data_with_halo[:] = 1.
        c.data_with_halo[:] = 0.

        # Equations
        c_init = Eq(c, 1.)
        eqn = Eq(u[t + 1, xi, yi], u[t, xi, yi] + m[xi, yi] + c[xi] + 1.)
        bc_left = Eq(u[t + 1, xl, yi], u[t + 1, xl + 1, yi] + 1.)
        bc_right = Eq(u[t + 1, xr, yi], u[t + 1, xr - 1, yi] + 1.)
        bc_top = Eq(u[t + 1, xi, yl], u[t + 1, xi, yl + 1] + 1.)
        bc_bottom = Eq(u[t + 1, xi, yr], u[t + 1, xi, yr - 1] + 1.)

        op = Operator([c_init, eqn, bc_left, bc_right, bc_top, bc_bottom])
        op.apply(time=0)

        # Expected (global view):
        # 0 0 5 5 5 5 5 0 0
        # 0 0 4 4 4 4 4 0 0
        # 5 4 3 3 3 3 3 4 5
        # 5 4 3 3 3 3 3 4 5
        # 5 4 3 3 3 3 3 4 5
        # 5 4 3 3 3 3 3 4 5
        # 0 0 4 4 4 4 4 0 0
        # 0 0 5 5 5 5 5 0 0

        assert np.all(u.data_ro_domain[0] == 0)  # The write occures at t=1

        glb_pos_map = u.grid.distributor.glb_pos_map
        # Check cornes
        if LEFT in glb_pos_map[x] and LEFT in glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[0, 0, 5], [0, 0, 4], [5, 4, 3]])
        elif LEFT in glb_pos_map[x] and RIGHT in glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[5, 0, 0], [4, 0, 0], [3, 4, 5]])
        elif RIGHT in glb_pos_map[x] and LEFT in glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[5, 4, 3], [0, 0, 4], [0, 0, 5]])
        elif RIGHT in glb_pos_map[x] and RIGHT in glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[3, 4, 5], [4, 0, 0], [5, 0, 0]])
        # Check sides
        if not glb_pos_map[x] and LEFT in glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[5, 4, 3], [5, 4, 3], [5, 4, 3]])
        elif not glb_pos_map[x] and RIGHT in glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[3, 4, 5], [3, 4, 5], [3, 4, 5]])
        elif LEFT in glb_pos_map[x] and not glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[5, 5, 5], [4, 4, 4], [3, 3, 3]])
        elif RIGHT in glb_pos_map[x] and not glb_pos_map[y]:
            assert np.all(
                u.data_ro_domain[1] == [[3, 3, 3], [4, 4, 4], [5, 5, 5]])
        # Check center
        if not glb_pos_map[x] and not glb_pos_map[y]:
            assert np.all(u.data_ro_domain[1] == 3)