Пример #1
0
    def sample(self, size=1):
        """ Samples deterministic quasi-static point grasp quality metrics.

        Parameters
        ----------
        size : int
            number of samples to take
        """
        # sample grasp
        cur_time = time.time()
        grasp_sample = self.grasp_rv_.rvs(size=1, iteration=self.sample_count_)
        grasp_time = time.time()

        # sample object
        obj_sample = self.obj_rv_.rvs(size=1, iteration=self.sample_count_)
        obj_time = time.time()

        # sample params
        params_sample = None
        if self.params_rv_ is not None:
            params_sample = self.params_rv_.rvs(size=1, iteration=self.sample_count_)
        params_time = time.time()

        logging.debug('Sampling took %.3f sec' % (params_time - cur_time))

        # compute deterministic quality
        start = time.time()
        q = PointGraspMetrics3D.grasp_quality(grasp_sample, obj_sample,
                                              params_sample)
        quality_time = time.time()

        logging.debug('Quality comp took %.3f sec' % (quality_time - start))

        self.sample_count_ = self.sample_count_ + 1
        return q
Пример #2
0
    def quality(self, grasp):
        """ Compute grasp quality using a quasistatic method.

        Parameters
        ----------
        grasp : :obj:`GraspableObject3D`
            grasp to quality quality on

        Returns
        -------
        :obj:`GraspQualityResult`
            result of quality computation
        """
        if not isinstance(grasp, Grasp):
            raise ValueError('Must provide Grasp object to compute quality')

        quality = PointGraspMetrics3D.grasp_quality(grasp, self.graspable_,
                                                    self.quality_config_)
        return GraspQualityResult(quality, quality_config=self.quality_config_)
Пример #3
0
    def antipodal_grasp_sampler(self):
    	#of = ObjFile(OBJ_FILENAME)
    	#sf = SdfFile(SDF_FILENAME)
    	#mesh = of.read()
    	#sdf = sf.read()
        #obj = GraspableObject3D(sdf, mesh)
        mass = 1.0
        CONFIG['obj_rescaling_type'] = RescalingType.RELATIVE
        mesh_processor = MeshProcessor(OBJ_FILENAME, CONFIG['cache_dir'])
        mesh_processor.generate_graspable(CONFIG)
        mesh = mesh_processor.mesh
        sdf = mesh_processor.sdf
        obj = GraspableObject3D(sdf, mesh)

        gripper = RobotGripper.load(GRIPPER_NAME)

        ags = AntipodalGraspSampler(gripper, CONFIG)
        grasps = ags.sample_grasps(obj, num_grasps=100)
        print(len(grasps))
  
        quality_config = GraspQualityConfigFactory.create_config(CONFIG['metrics']['robust_ferrari_canny'])
        #quality_config = GraspQualityConfigFactory.create_config(CONFIG['metrics']['force_closure'])
        quality_fn = GraspQualityFunctionFactory.create_quality_function(obj, quality_config)
        

        vis.figure()
        #vis.points(PointCloud(nparraypoints), scale=0.001, color=np.array([0.5,0.5,0.5]))
        #vis.plot3d(nparraypoints)

        metrics = []
        vis.mesh(obj.mesh.trimesh, style='surface')
        for grasp in grasps:
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                #fn_fc = quality_fn(grasp).quality
                true_fc = PointGraspMetrics3D.grasp_quality(grasp, obj, quality_config)
                true_fc = true_fc
                metrics.append(true_fc)

    	    #color = quality_fn(grasp).quality
            #if (true_fc > 1.0):
            #    true_fc = 1.0
            #color = (1.0-true_fc, true_fc, 0.0)

        low = np.min(metrics)
        high = np.max(metrics)
        print(low)
        print(high)
        if low == high:
            q_to_c = lambda quality: CONFIG['quality_scale']
        else:
            q_to_c = lambda quality: CONFIG['quality_scale'] * (quality - low) / (high - low)
        print(len(metrics))
        for grasp, metric in zip(grasps, metrics):
            color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
            print(color)
            vis.grasp(grasp, grasp_axis_color=color,endpoint_color=color)


        vis.show(False)
Пример #4
0
def antipodal_grasp_sampler(visual=False, debug=False):
    mass = 1.0
    CONFIG['obj_rescaling_type'] = RescalingType.RELATIVE
    mesh_processor = MeshProcessor(OBJ_FILENAME, CONFIG['cache_dir'])
    mesh_processor.generate_graspable(CONFIG)
    mesh = mesh_processor.mesh
    sdf = mesh_processor.sdf
    stable_poses = mesh_processor.stable_poses
    obj = GraspableObject3D(sdf, mesh)
    stable_pose = stable_poses[0]
    if visual:
        vis.figure()

    T_table_world = RigidTransform(from_frame='table', to_frame='world')
    T_obj_world = Visualizer3D.mesh_stable_pose(obj.mesh.trimesh,
                                                stable_pose.T_obj_world,
                                                T_table_world=T_table_world,
                                                color=(0.5, 0.5, 0.5),
                                                style='surface',
                                                plot_table=True,
                                                dim=0.15)
    if debug:
        print(len(stable_poses))
    #for stable_pose in stable_poses:
    #    print(stable_pose.p)
    #    print(stable_pose.r)
    #    print(stable_pose.x0)
    #    print(stable_pose.face)
    #    print(stable_pose.id)
    # glass = 22 is standing straight
    if debug:
        print(stable_pose.r)
        print(stable_pose.T_obj_world)
    gripper = RobotGripper.load(
        GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

    ags = AntipodalGraspSampler(gripper, CONFIG)
    stable_pose.id = 0
    grasps = ags.generate_grasps(obj,
                                 target_num_grasps=20,
                                 max_iter=5,
                                 stable_pose=stable_pose.r)

    quality_config = GraspQualityConfigFactory.create_config(
        CONFIG['metrics']['robust_ferrari_canny'])

    metrics = []
    result = []

    #grasps = map(lambda g : g.perpendicular_table(stable_pose), grasps)

    for grasp in grasps:
        c1, c2 = grasp.endpoints
        true_fc = PointGraspMetrics3D.grasp_quality(grasp, obj, quality_config)
        metrics.append(true_fc)
        result.append((c1, c2))

        if debug:
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                print("Grasp:")
                print(c1.point)
                print(c2.point)
                print(true_fc)

    low = np.min(metrics)
    high = np.max(metrics)
    if low == high:
        q_to_c = lambda quality: CONFIG['quality_scale']
    else:
        q_to_c = lambda quality: CONFIG['quality_scale'] * (quality - low) / (
            high - low)

    if visual:
        for grasp, metric in zip(grasps, metrics):
            #grasp2 = grasp.perpendicular_table(stable_pose)
            #c1, c2 = grasp.endpoints
            #axis = ParallelJawPtGrasp3D.axis_from_endpoints(c1, c2)
            #angle = np.dot(np.matmul(stable_pose.r, axis), [1,0,0])
            #angle = math.tan(axis[1]/axis[0])
            #angle = math.degrees(angle)%360
            #print(angle)
            #print(angle/360.0)
            color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
            vis.grasp(grasp,
                      T_obj_world=T_obj_world,
                      grasp_axis_color=color,
                      endpoint_color=color)

        #axis = np.array([[0,0,0], point])
        #points = [(x[0], x[1], x[2]) for x in axis]
        #Visualizer3D.plot3d(points, color=(0,0,1), tube_radius=0.002)
        vis.show(False)

    pose_matrix = np.eye(4, 4)
    pose_matrix[:3, :3] = T_obj_world.rotation
    pose_matrix[:3, 3] = T_obj_world.translation
    return pose_matrix, result