Пример #1
0
def dist_tensor_test_sanity(data_shape, rank, name=None):
    dist_ten = dgl.distributed.DistTensor(data_shape,
                                          F.int32,
                                          init_func=zeros_init,
                                          name=name)
    # arbitrary value
    stride = 3
    if part_id == 0:
        dist_ten[rank*stride:(rank+1)*stride] = F.ones((stride, 2), dtype=F.int32, ctx=F.cpu()) * (rank+1)
        dgl.distributed.client_barrier()
    else:
        dgl.distributed.client_barrier()
        original_rank = rank % num_client_per_machine
        assert F.allclose(dist_ten[original_rank*stride:(original_rank+1)*stride],
                          F.ones((stride, 2), dtype=F.int32, ctx=F.cpu()) * (original_rank+1))
Пример #2
0
    def predict_neg_score(self, pos_g, neg_g, to_device=None, gpu_id=-1, trace=False,
                          neg_deg_sample=False):
        """Calculate the negative score.

        Parameters
        ----------
        pos_g : DGLGraph
            Graph holding positive edges.
        neg_g : DGLGraph
            Graph holding negative edges.
        to_device : func
            Function to move data into device.
        gpu_id : int
            Which gpu to move data to.
        trace : bool
            If True, trace the computation. This is required in training.
            If False, do not trace the computation.
            Default: False
        neg_deg_sample : bool
            If True, we use the head and tail nodes of the positive edges to
            construct negative edges.
            Default: False

        Returns
        -------
        tensor
            The negative score
        """
        num_chunks = neg_g.num_chunks
        chunk_size = neg_g.chunk_size
        neg_sample_size = neg_g.neg_sample_size
        mask = F.ones((num_chunks, chunk_size * (neg_sample_size + chunk_size)),
                      dtype=F.float32, ctx=F.context(pos_g.ndata['emb']))
        if neg_g.neg_head:
            neg_head_ids = neg_g.ndata['id'][neg_g.head_nid]
            neg_head = self.entity_emb(neg_head_ids, gpu_id, trace)
            head_ids, tail_ids = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                tail_ids = to_device(tail_ids, gpu_id)
            tail = pos_g.ndata['emb'][tail_ids]
            rel = pos_g.edata['emb']

            # When we train a batch, we could use the head nodes of the positive edges to
            # construct negative edges. We construct a negative edge between a positive head
            # node and every positive tail node.
            # When we construct negative edges like this, we know there is one positive
            # edge for a positive head node among the negative edges. We need to mask
            # them.
            if neg_deg_sample:
                head = pos_g.ndata['emb'][head_ids]
                head = head.reshape(num_chunks, chunk_size, -1)
                neg_head = neg_head.reshape(num_chunks, neg_sample_size, -1)
                neg_head = F.cat([head, neg_head], 1)
                neg_sample_size = chunk_size + neg_sample_size
                mask[:,0::(neg_sample_size + 1)] = 0
            neg_head = neg_head.reshape(num_chunks * neg_sample_size, -1)
            neg_head, tail = self.head_neg_prepare(pos_g.edata['id'], num_chunks, neg_head, tail, gpu_id, trace)
            neg_score = self.head_neg_score(neg_head, rel, tail,
                                            num_chunks, chunk_size, neg_sample_size)
        else:
            neg_tail_ids = neg_g.ndata['id'][neg_g.tail_nid]
            neg_tail = self.entity_emb(neg_tail_ids, gpu_id, trace)
            head_ids, tail_ids = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                head_ids = to_device(head_ids, gpu_id)
            head = pos_g.ndata['emb'][head_ids]
            rel = pos_g.edata['emb']

            # This is negative edge construction similar to the above.
            if neg_deg_sample:
                tail = pos_g.ndata['emb'][tail_ids]
                tail = tail.reshape(num_chunks, chunk_size, -1)
                neg_tail = neg_tail.reshape(num_chunks, neg_sample_size, -1)
                neg_tail = F.cat([tail, neg_tail], 1)
                neg_sample_size = chunk_size + neg_sample_size
                mask[:,0::(neg_sample_size + 1)] = 0
            neg_tail = neg_tail.reshape(num_chunks * neg_sample_size, -1)
            head, neg_tail = self.tail_neg_prepare(pos_g.edata['id'], num_chunks, head, neg_tail, gpu_id, trace)
            neg_score = self.tail_neg_score(head, rel, neg_tail,
                                            num_chunks, chunk_size, neg_sample_size)

        if neg_deg_sample:
            neg_g.neg_sample_size = neg_sample_size
            mask = mask.reshape(num_chunks, chunk_size, neg_sample_size)
            return neg_score * mask
        else:
            return neg_score
Пример #3
0
    def predict_neg_score(self,
                          pos_g,
                          neg_g,
                          to_device=None,
                          gpu_id=-1,
                          trace=False,
                          neg_deg_sample=False):
        num_chunks = neg_g.num_chunks
        chunk_size = neg_g.chunk_size
        neg_sample_size = neg_g.neg_sample_size
        mask = F.ones(
            (num_chunks, chunk_size * (neg_sample_size + chunk_size)),
            dtype=F.float32,
            ctx=F.context(pos_g.ndata['emb']))
        if neg_g.neg_head:
            neg_head_ids = neg_g.ndata['id'][neg_g.head_nid]
            neg_head = self.entity_emb(neg_head_ids, gpu_id, trace)
            head_ids, tail_ids = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                tail_ids = to_device(tail_ids, gpu_id)
            tail = pos_g.ndata['emb'][tail_ids]
            rel = pos_g.edata['emb']

            # When we train a batch, we could use the head nodes of the positive edges to
            # construct negative edges. We construct a negative edge between a positive head
            # node and every positive tail node.
            # When we construct negative edges like this, we know there is one positive
            # edge for a positive head node among the negative edges. We need to mask
            # them.
            if neg_deg_sample:
                head = pos_g.ndata['emb'][head_ids]
                head = head.reshape(num_chunks, chunk_size, -1)
                neg_head = neg_head.reshape(num_chunks, neg_sample_size, -1)
                neg_head = F.cat([head, neg_head], 1)
                neg_sample_size = chunk_size + neg_sample_size
                mask[:, 0::(neg_sample_size + 1)] = 0
            neg_head = neg_head.reshape(num_chunks * neg_sample_size, -1)
            neg_head, tail = self.head_neg_prepare(pos_g.edata['id'],
                                                   num_chunks, neg_head, tail,
                                                   gpu_id, trace)
            neg_score = self.head_neg_score(neg_head, rel, tail, num_chunks,
                                            chunk_size, neg_sample_size)
        else:
            neg_tail_ids = neg_g.ndata['id'][neg_g.tail_nid]
            neg_tail = self.entity_emb(neg_tail_ids, gpu_id, trace)
            head_ids, tail_ids = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                head_ids = to_device(head_ids, gpu_id)
            head = pos_g.ndata['emb'][head_ids]
            rel = pos_g.edata['emb']

            # This is negative edge construction similar to the above.
            if neg_deg_sample:
                tail = pos_g.ndata['emb'][tail_ids]
                tail = tail.reshape(num_chunks, chunk_size, -1)
                neg_tail = neg_tail.reshape(num_chunks, neg_sample_size, -1)
                neg_tail = F.cat([tail, neg_tail], 1)
                neg_sample_size = chunk_size + neg_sample_size
                mask[:, 0::(neg_sample_size + 1)] = 0
            neg_tail = neg_tail.reshape(num_chunks * neg_sample_size, -1)
            head, neg_tail = self.tail_neg_prepare(pos_g.edata['id'],
                                                   num_chunks, head, neg_tail,
                                                   gpu_id, trace)
            neg_score = self.tail_neg_score(head, rel, neg_tail, num_chunks,
                                            chunk_size, neg_sample_size)

        if neg_deg_sample:
            neg_g.neg_sample_size = neg_sample_size
            mask = mask.reshape(num_chunks, chunk_size, neg_sample_size)
            return neg_score * mask
        else:
            return neg_score