Пример #1
0
def test_multi_recv_0deg():
    # test recv with 0deg nodes;
    g = DGLGraph()

    def _message(edges):
        return {'m': edges.src['h']}

    def _reduce(nodes):
        return {'h': nodes.data['h'] + nodes.mailbox['m'].sum(1)}

    def _apply(nodes):
        return {'h': nodes.data['h'] * 2}

    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype=dtype, ctx=ctx)

    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(_init2)
    g.add_nodes(2)
    g.add_edge(0, 1)
    # recv both 0deg and non-0deg nodes
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata['h']
    # 0deg check: initialized with the func and got applied
    assert F.allclose(new[0], F.full((5, ), 4, F.float32))
    # non-0deg check
    assert F.allclose(new[1], F.sum(old, 0) * 2)

    # recv again on zero degree node
    g.recv([0])
    assert F.allclose(g.nodes[0].data['h'], F.full((5, ), 8, F.float32))

    # recv again on node with no incoming message
    g.recv([1])
    assert F.allclose(g.nodes[1].data['h'], F.sum(old, 0) * 4)
Пример #2
0
def test_pull_0deg():
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)

    def _message(edges):
        return {'m': edges.src['h']}

    def _reduce(nodes):
        return {'h': nodes.data['h'] + nodes.mailbox['m'].sum(1)}

    def _apply(nodes):
        return {'h': nodes.data['h'] * 2}

    def _init2(shape, dtype, ctx, ids):
        return 2 + th.zeros(shape, dtype=dtype, device=ctx)

    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(_init2, 'h')
    # test#1: pull both 0deg and non-0deg nodes
    old = th.randn((2, 5))
    g.ndata['h'] = old
    g.pull([0, 1])
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
    assert U.allclose(new[0], th.full((5, ), 4))
    # non-0deg check
    assert U.allclose(new[1], th.sum(old, 0) * 2)

    # test#2: pull only 0deg node
    old = th.randn((2, 5))
    g.ndata['h'] = old
    g.pull(0)
    new = g.ndata.pop('h')
    # 0deg check: fallback to apply
    assert U.allclose(new[0], 2 * old[0])
    # non-0deg check: not touched
    assert U.allclose(new[1], old[1])
Пример #3
0
def test_recv_0deg_newfld():
    # test recv with 0deg nodes; the reducer also creates a new field
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h1' : nodes.data['h'] + mx.nd.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h1' : nodes.data['h1'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + mx.nd.zeros(shape=shape, dtype=dtype, ctx=ctx)
    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    # test#1: recv both 0deg and non-0deg nodes
    old = mx.nd.random.normal(shape=(2, 5))
    g.set_n_initializer(_init2, 'h1')
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata.pop('h1')
    # 0deg check: initialized with the func and got applied
    assert np.allclose(new[0].asnumpy(), np.full((5,), 4))
    # non-0deg check
    assert np.allclose(new[1].asnumpy(), mx.nd.sum(old, 0).asnumpy() * 2)

    # test#2: recv only 0deg node
    old = mx.nd.random.normal(shape=(2, 5))
    g.ndata['h'] = old
    g.ndata['h1'] = mx.nd.full((2, 5), -1)  # this is necessary
    g.send((0, 1))
    g.recv(0)
    new = g.ndata.pop('h1')
    # 0deg check: fallback to apply
    assert np.allclose(new[0].asnumpy(), np.full((5,), -2))
    # non-0deg check: not changed
    assert np.allclose(new[1].asnumpy(), np.full((5,), -1))
Пример #4
0
def test_update_all_0deg():
    # test#1
    g = DGLGraph()
    g.add_nodes(5)
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.add_edge(3, 0)
    g.add_edge(4, 0)
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + mx.nd.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + mx.nd.zeros(shape, dtype=dtype, ctx=ctx)
    g.set_n_initializer(_init2, 'h')
    old_repr = mx.nd.random.normal(shape=(5, 5))
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # the first row of the new_repr should be the sum of all the node
    # features; while the 0-deg nodes should be initialized by the
    # initializer and applied with UDF.
    assert np.allclose(new_repr[1:].asnumpy(), 2*(2+np.zeros((4,5))))
    assert np.allclose(new_repr[0].asnumpy(), 2 * mx.nd.sum(old_repr, 0).asnumpy())

    # test#2: graph with no edge
    g = DGLGraph()
    g.add_nodes(5)
    g.set_n_initializer(_init2, 'h')
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # should fallback to apply
    assert np.allclose(new_repr.asnumpy(), 2*old_repr.asnumpy())
Пример #5
0
    def _load(self):
        """ Loads input dataset from dataset/NAME/NAME.txt file

        """

        print('loading data...')
        with open(self.file, 'r') as f:
            # line_1 == N, total number of graphs
            self.N = int(f.readline().strip())

            for i in range(self.N):
                if (i + 1) % 10 == 0 and self.verbosity is True:
                    print('processing graph {}...'.format(i + 1))

                grow = f.readline().strip().split()
                # line_2 == [n_nodes, l] is equal to
                # [node number of a graph, class label of a graph]
                n_nodes, glabel = [int(w) for w in grow]

                # relabel graphs
                if glabel not in self.glabel_dict:
                    mapped = len(self.glabel_dict)
                    self.glabel_dict[glabel] = mapped

                self.labels.append(self.glabel_dict[glabel])

                g = DGLGraph()
                g.add_nodes(n_nodes)

                nlabels = []  # node labels
                nattrs = []  # node attributes if it has
                m_edges = 0

                for j in range(n_nodes):
                    nrow = f.readline().strip().split()

                    # handle edges and attributes(if has)
                    tmp = int(nrow[1]) + 2  # tmp == 2 + #edges
                    if tmp == len(nrow):
                        # no node attributes
                        nrow = [int(w) for w in nrow]
                        nattr = None
                    elif tmp > len(nrow):
                        nrow = [int(w) for w in nrow[:tmp]]
                        nattr = [float(w) for w in nrow[tmp:]]
                        nattrs.append(nattr)
                    else:
                        raise Exception('edge number is incorrect!')

                    # relabel nodes if it has labels
                    # if it doesn't have node labels, then every nrow[0]==0
                    if not nrow[0] in self.nlabel_dict:
                        mapped = len(self.nlabel_dict)
                        self.nlabel_dict[nrow[0]] = mapped

                    #nlabels.append(self.nlabel_dict[nrow[0]])
                    nlabels.append(nrow[0])

                    m_edges += nrow[1]
                    g.add_edges(j, nrow[2:])

                    # add self loop
                    if self.self_loop:
                        m_edges += 1
                        g.add_edge(j, j)

                    if (j + 1) % 10 == 0 and self.verbosity is True:
                        print(
                            'processing node {} of graph {}...'.format(
                                j + 1, i + 1))
                        print('this node has {} edgs.'.format(
                            nrow[1]))

                if nattrs != []:
                    nattrs = np.stack(nattrs)
                    g.ndata['attr'] = nattrs
                    self.nattrs_flag = True
                else:
                    nattrs = None

                g.ndata['label'] = np.array(nlabels)
                if len(self.nlabel_dict) > 1:
                    self.nlabels_flag = True

                assert len(g) == n_nodes

                # update statistics of graphs
                self.n += n_nodes
                self.m += m_edges

                self.graphs.append(g)

        # if no attr
        if not self.nattrs_flag:
            print('there are no node features in this dataset!')
            label2idx = {}
            # generate node attr by node degree
            if self.degree_as_nlabel:
                print('generate node features by node degree...')
                nlabel_set = set([])
                for g in self.graphs:
                    # actually this label shouldn't be updated
                    # in case users want to keep it
                    # but usually no features means no labels, fine.
                    g.ndata['label'] = g.in_degrees()
                    # extracting unique node labels
                    nlabel_set = nlabel_set.union(set(g.ndata['label'].numpy()))

                nlabel_set = list(nlabel_set)

                # in case the labels/degrees are not continuous number
                self.ndegree_dict = {
                    nlabel_set[i]: i
                    for i in range(len(nlabel_set))
                }
                label2idx = self.ndegree_dict
            # generate node attr by node label
            else:
                print('generate node features by node label...')
                label2idx = self.nlabel_dict

            for g in self.graphs:
                g.ndata['attr'] = np.zeros((
                    g.number_of_nodes(), len(label2idx)))
                g.ndata['attr'][range(g.number_of_nodes(
                )), [label2idx[nl.item()] for nl in g.ndata['label']]] = 1

        # after load, get the #classes and #dim
        self.gclasses = len(self.glabel_dict)
        self.nclasses = len(self.nlabel_dict)
        self.eclasses = len(self.elabel_dict)
        self.dim_nfeats = len(self.graphs[0].ndata['attr'][0])

        print('Done.')
        print(
            """
            -------- Data Statistics --------'
            #Graphs: %d
            #Graph Classes: %d
            #Nodes: %d
            #Node Classes: %d
            #Node Features Dim: %d
            #Edges: %d
            #Edge Classes: %d
            Avg. of #Nodes: %.2f
            Avg. of #Edges: %.2f
            Graph Relabeled: %s
            Node Relabeled: %s
            Degree Relabeled(If degree_as_nlabel=True): %s \n """ % (
                self.N, self.gclasses, self.n, self.nclasses,
                self.dim_nfeats, self.m, self.eclasses,
                self.n / self.N, self.m / self.N, self.glabel_dict,
                self.nlabel_dict, self.ndegree_dict))
Пример #6
0
def test_send_multigraph():
    g = DGLGraph(multigraph=True)
    g.add_nodes(3)
    g.add_edge(0, 1)
    g.add_edge(0, 1)
    g.add_edge(0, 1)
    g.add_edge(2, 1)

    def _message_a(edges):
        return {'a': edges.data['a']}

    def _message_b(edges):
        return {'a': edges.data['a'] * 3}

    def _reduce(nodes):
        return {'a': nodes.mailbox['a'].max(1)[0]}

    def answer(*args):
        return th.stack(args, 0).max(0)[0]

    # send by eid
    old_repr = th.randn(4, 5)
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send([0, 2], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[2]))

    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send([0, 2, 3], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[2],
                                          old_repr[3]))

    # send on multigraph
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send(([0, 2], [1, 1]), _message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], old_repr.max(0)[0])

    # consecutive send and send_on
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send((2, 1), _message_a)
    g.send([0, 1], message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1],
                      answer(old_repr[0] * 3, old_repr[1] * 3, old_repr[3]))

    # consecutive send_on
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send(0, message_func=_message_a)
    g.send(1, message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[1] * 3))

    # send_and_recv_on
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send_and_recv([0, 2, 3], message_func=_message_a, reduce_func=_reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[2],
                                          old_repr[3]))
    assert U.allclose(new_repr[[0, 2]], th.zeros(2, 5))
Пример #7
0
def test_nx_conversion():
    # check conversion between networkx and DGLGraph

    def _check_nx_feature(nxg, nf, ef):
        # check node and edge feature of nxg
        # this is used to check to_networkx
        num_nodes = len(nxg)
        num_edges = nxg.size()
        if num_nodes > 0:
            node_feat = ddict(list)
            for nid, attr in nxg.nodes(data=True):
                assert len(attr) == len(nf)
                for k in nxg.nodes[nid]:
                    node_feat[k].append(attr[k].unsqueeze(0))
            for k in node_feat:
                feat = th.cat(node_feat[k], dim=0)
                assert U.allclose(feat, nf[k])
        else:
            assert len(nf) == 0
        if num_edges > 0:
            edge_feat = ddict(lambda: [0] * num_edges)
            for u, v, attr in nxg.edges(data=True):
                assert len(attr) == len(ef) + 1  # extra id
                eid = attr['id']
                for k in ef:
                    edge_feat[k][eid] = attr[k].unsqueeze(0)
            for k in edge_feat:
                feat = th.cat(edge_feat[k], dim=0)
                assert U.allclose(feat, ef[k])
        else:
            assert len(ef) == 0

    n1 = th.randn(5, 3)
    n2 = th.randn(5, 10)
    n3 = th.randn(5, 4)
    e1 = th.randn(4, 5)
    e2 = th.randn(4, 7)
    g = DGLGraph(multigraph=True)
    g.add_nodes(5)
    g.add_edges([0, 1, 3, 4], [2, 4, 0, 3])
    g.ndata.update({'n1': n1, 'n2': n2, 'n3': n3})
    g.edata.update({'e1': e1, 'e2': e2})

    # convert to networkx
    nxg = g.to_networkx(node_attrs=['n1', 'n3'], edge_attrs=['e1', 'e2'])
    assert len(nxg) == 5
    assert nxg.size() == 4
    _check_nx_feature(nxg, {'n1': n1, 'n3': n3}, {'e1': e1, 'e2': e2})

    # convert to DGLGraph, nx graph has id in edge feature
    # use id feature to test non-tensor copy
    g.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1', 'id'])
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    # test with existing dglgraph (so existing features should be cleared)
    assert len(g.ndata) == 1
    assert len(g.edata) == 2
    # check feature values
    assert U.allclose(g.ndata['n1'], n1)
    # with id in nx edge feature, e1 should follow original order
    assert U.allclose(g.edata['e1'], e1)
    assert th.equal(g.get_e_repr()['id'], th.arange(4))

    # test conversion after modifying DGLGraph
    g.pop_e_repr(
        'id')  # pop id so we don't need to provide id when adding edges
    new_n = th.randn(2, 3)
    new_e = th.randn(3, 5)
    g.add_nodes(2, data={'n1': new_n})
    # add three edges, one is a multi-edge
    g.add_edges([3, 6, 0], [4, 5, 2], data={'e1': new_e})
    n1 = th.cat((n1, new_n), dim=0)
    e1 = th.cat((e1, new_e), dim=0)
    # convert to networkx again
    nxg = g.to_networkx(node_attrs=['n1'], edge_attrs=['e1'])
    assert len(nxg) == 7
    assert nxg.size() == 7
    _check_nx_feature(nxg, {'n1': n1}, {'e1': e1})

    # now test convert from networkx without id in edge feature
    # first pop id in edge feature
    for _, _, attr in nxg.edges(data=True):
        attr.pop('id')
    # test with a new graph
    g = DGLGraph(multigraph=True)
    g.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1'])
    # check graph size
    assert g.number_of_nodes() == 7
    assert g.number_of_edges() == 7
    # check number of features
    assert len(g.ndata) == 1
    assert len(g.edata) == 1
    # check feature values
    assert U.allclose(g.ndata['n1'], n1)
    # edge feature order follows nxg.edges()
    edge_feat = []
    for _, _, attr in nxg.edges(data=True):
        edge_feat.append(attr['e1'].unsqueeze(0))
    edge_feat = th.cat(edge_feat, dim=0)
    assert U.allclose(g.edata['e1'], edge_feat)
Пример #8
0
def test_nx_conversion():
    # check conversion between networkx and DGLGraph

    def _check_nx_feature(nxg, nf, ef):
        num_nodes = len(nxg)
        num_edges = nxg.size()
        if num_nodes > 0:
            node_feat = ddict(list)
            for nid, attr in nxg.nodes(data=True):
                assert len(attr) == len(nf)
                for k in nxg.nodes[nid]:
                    node_feat[k].append(attr[k].unsqueeze(0))
            for k in node_feat:
                feat = th.cat(node_feat[k], dim=0)
                assert U.allclose(feat, nf[k])
        else:
            assert len(nf) == 0
        if num_edges > 0:
            edge_feat = ddict(lambda: [0] * num_edges)
            for u, v, attr in nxg.edges(data=True):
                assert len(attr) == len(ef) + 1  # extra id
                eid = attr['id']
                for k in ef:
                    edge_feat[k][eid] = attr[k].unsqueeze(0)
            for k in edge_feat:
                feat = th.cat(edge_feat[k], dim=0)
                assert U.allclose(feat, ef[k])
        else:
            assert len(ef) == 0

    n1 = th.randn(5, 3)
    n2 = th.randn(5, 10)
    n3 = th.randn(5, 4)
    e1 = th.randn(4, 5)
    e2 = th.randn(4, 7)
    g = DGLGraph(multigraph=True)
    g.add_nodes(5)
    g.add_edges([0, 1, 3, 4], [2, 4, 0, 3])
    g.ndata.update({'n1': n1, 'n2': n2, 'n3': n3})
    g.edata.update({'e1': e1, 'e2': e2})

    # convert to networkx
    nxg = g.to_networkx(node_attrs=['n1', 'n3'], edge_attrs=['e1', 'e2'])
    assert len(nxg) == 5
    assert nxg.size() == 4
    _check_nx_feature(nxg, {'n1': n1, 'n3': n3}, {'e1': e1, 'e2': e2})

    # convert to DGLGraph
    # use id feature to test non-tensor copy
    g.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1', 'id'])
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    assert U.allclose(g.get_n_repr()['n1'], n1)
    assert U.allclose(g.get_e_repr()['e1'], e1)
    assert th.equal(g.get_e_repr()['id'], th.arange(4))

    g.pop_e_repr('id')

    # test modifying DGLGraph
    new_n = th.randn(2, 3)
    new_e = th.randn(3, 5)
    g.add_nodes(2, data={'n1': new_n})
    # add three edges, one is a multi-edge
    g.add_edges([3, 6, 0], [4, 5, 2], data={'e1': new_e})
    n1 = th.cat((n1, new_n), dim=0)
    e1 = th.cat((e1, new_e), dim=0)
    # convert to networkx again
    nxg = g.to_networkx(node_attrs=['n1'], edge_attrs=['e1'])
    assert len(nxg) == 7
    assert nxg.size() == 7
    _check_nx_feature(nxg, {'n1': n1}, {'e1': e1})
Пример #9
0
def reverse(g, share_ndata=False, share_edata=False):
    """Return the reverse of a graph

    The reverse (also called converse, transpose) of a directed graph is another directed
    graph on the same nodes with edges reversed in terms of direction.

    Given a :class:`DGLGraph` object, we return another :class:`DGLGraph` object
    representing its reverse.

    Notes
    -----
    * This function does not support :class:`~dgl.BatchedDGLGraph` objects.
    * We do not dynamically update the topology of a graph once that of its reverse changes.
      This can be particularly problematic when the node/edge attrs are shared. For example,
      if the topology of both the original graph and its reverse get changed independently,
      you can get a mismatched node/edge feature.

    Parameters
    ----------
    g : dgl.DGLGraph
    share_ndata: bool, optional
        If True, the original graph and the reversed graph share memory for node attributes.
        Otherwise the reversed graph will not be initialized with node attributes.
    share_edata: bool, optional
        If True, the original graph and the reversed graph share memory for edge attributes.
        Otherwise the reversed graph will not have edge attributes.

    Examples
    --------
    Create a graph to reverse.

    >>> import dgl
    >>> import torch as th
    >>> g = dgl.DGLGraph()
    >>> g.add_nodes(3)
    >>> g.add_edges([0, 1, 2], [1, 2, 0])
    >>> g.ndata['h'] = th.tensor([[0.], [1.], [2.]])
    >>> g.edata['h'] = th.tensor([[3.], [4.], [5.]])

    Reverse the graph and examine its structure.

    >>> rg = g.reverse(share_ndata=True, share_edata=True)
    >>> print(rg)
    DGLGraph with 3 nodes and 3 edges.
    Node data: {'h': Scheme(shape=(1,), dtype=torch.float32)}
    Edge data: {'h': Scheme(shape=(1,), dtype=torch.float32)}

    The edges are reversed now.

    >>> rg.has_edges_between([1, 2, 0], [0, 1, 2])
    tensor([1, 1, 1])

    Reversed edges have the same feature as the original ones.

    >>> g.edges[[0, 2], [1, 0]].data['h'] == rg.edges[[1, 0], [0, 2]].data['h']
    tensor([[1],
            [1]], dtype=torch.uint8)

    The node/edge features of the reversed graph share memory with the original
    graph, which is helpful for both forward computation and back propagation.

    >>> g.ndata['h'] = g.ndata['h'] + 1
    >>> rg.ndata['h']
    tensor([[1.],
            [2.],
            [3.]])
    """
    assert not isinstance(g, BatchedDGLGraph), \
        'reverse is not supported for a BatchedDGLGraph object'
    g_reversed = DGLGraph(multigraph=g.is_multigraph)
    g_reversed.add_nodes(g.number_of_nodes())
    g_edges = g.edges()
    g_reversed.add_edges(g_edges[1], g_edges[0])
    if share_ndata:
        g_reversed._node_frame = g._node_frame
    if share_edata:
        g_reversed._edge_frame = g._edge_frame
    return g_reversed
Пример #10
0
 def __init__(self, split
              ):
     super(DGLDataset, self).__init__()
     self.device = torch.device("cuda" )
     self.split = split
     self.data_list = []
     self.gt_list = []
     n7 = int (len(random_index_list) * 0.7)
   #  print('enter DGLDataset ', random_index_list)
     if split == 'train':
         
         for i in random_index_list[ : n7]:
             d_data = train_data_list[random_index_list[i]]
           #  if i == 0:
               #  print('d_data ', d_data)
             nodes = d_data['nodes']
             edges = d_data['edges']
             
             g = DGLGraph()
             g.add_nodes(len(nodes))
             gt = []
         #    {'idx': atom_index, 't': atom_index_dic[atom], 'x': x, 'y' : y, 'z' : z}
             d = []      
             for node_info in nodes:
                 idx = int(node_info['idx'])
                 tp = int(node_info['t'])
                 x = float(node_info['x'])
                 y = float(node_info['y'])
                 z = float(node_info['z'])
                 dn = [[tp, x, y, z]]
                 n = torch.tensor( dn).cuda()
                 
                 g.nodes[idx].data['h'] = n
                 d.append(dn)
             
          #   gt = []
             e = []
             d_e = []
             for edge_info in edges:
                 idx0 = int(edge_info['index0'])
                 idx1 = int(edge_info['index1'])
                 et = int(edge_info['et'])
                 sc = float(edge_info['sc'])
                 g.add_edge(idx0, idx1)
                 
                 e.append([et])
                 d_e.append(d[idx1])
              #   if 'w' not in g.edata.keys():
              #       g.edata['w'] =  torch.tensor( [[et]]).cuda()
             #    else :
             #        g.edata['w'].expand( torch.tensor( [et]).cuda())
                 gt.append(sc)
           #  print('e ', e)
             g.edata['we'] = torch.tensor(e).cuda()
            # g.edata['wd'] = torch.tensor(d_e).cuda()
          #   print('g ', g)   
             
             self.data_list.append(g)
             self.gt_list.append(gt)
           #  self.gt_list.append([gt])
            # self.gt_list.append(1)
     print('len data ', len(self.data_list))  
     print('len gt ', len(self.gt_list))
     #    self.gt_list = np.array(self.gt_list)
      #   self.data_list = np.array(self.data_list)
      #   tshape = self.data_list.shape
     #    print('self.data_list ', tshape)
         
     if split == 'val':
         self.val_data_list = []
         for i in random_index_list[n7 : ]:
             d_data = train_data_list[random_index_list[i]]
           #  if i == 0:
             #    print('d_data ', d_data)
             nodes = d_data['nodes']
             edges = d_data['edges']
             
             g = DGLGraph()
             g.add_nodes(len(nodes))
             gt = []
         #    {'idx': atom_index, 't': atom_index_dic[atom], 'x': x, 'y' : y, 'z' : z}
             d = []    
             for node_info in nodes:
                 idx = int(node_info['idx'])
                 tp = int(node_info['t'])
                 x = float(node_info['x'])
                 y = float(node_info['y'])
                 z = float(node_info['z'])
                 dn = [[tp, x, y, z]]
                 n = torch.tensor( dn).cuda()
                 
                 g.nodes[idx].data['h'] = n
                 d.append(dn)
             
          #   gt = []
             e = []
             d_e = []
             for edge_info in edges:
                 idx0 = int(edge_info['index0'])
                 idx1 = int(edge_info['index1'])
                 et = int(edge_info['et'])
                 sc = float(edge_info['sc'])
                 g.add_edge(idx0, idx1)
                 
                 e.append([et])
                 d_e.append(d[idx1])
              #   if 'w' not in g.edata.keys():
              #       g.edata['w'] =  torch.tensor( [[et]]).cuda()
             #    else :
             #        g.edata['w'].expand( torch.tensor( [et]).cuda())
                 gt.append(sc)
           #  print('e ', e)
             g.edata['we'] = torch.tensor(e).cuda()
          #   g.edata['wd'] = torch.tensor(d_e).cuda()
          #   print('g ', g)   
             
             self.data_list.append(g)
             self.gt_list.append(gt)
             
     print('len v data ', len(self.data_list))  
     print('len v gt ', len(self.gt_list))