Пример #1
0
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))
    sgc = sgc.to(ctx)

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    sgc = sgc.to(ctx)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10
Пример #2
0
def test_sgc_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((g.number_of_nodes(), 5))
    sgc = sgc.to(ctx)

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    sgc = sgc.to(ctx)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10
Пример #3
0
def test_sgconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    sgconv = nn.SGConv(5, 5, 3)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    sgconv = sgconv.to(ctx)
    h = sgconv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5
Пример #4
0
def test_sgc_conv(g, idtype, out_dim):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    # not cached
    sgc = nn.SGConv(5, out_dim, 3)

    # test pickle
    th.save(sgc, tmp_buffer)

    feat = F.randn((g.number_of_nodes(), 5))
    sgc = sgc.to(ctx)

    h = sgc(g, feat)
    assert h.shape[-1] == out_dim

    # cached
    sgc = nn.SGConv(5, out_dim, 3, True)
    sgc = sgc.to(ctx)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == out_dim
Пример #5
0
    def __init__(self, in_dim, hidden_dim, n_classes, hidden_layers, ctype,
                 hops, readout, activation_func, dropout, grid, device):
        super(Classifier, self).__init__()
        self.device = device
        self.readout = readout
        self.layers = nn.ModuleList()
        self.batch_norms = nn.ModuleList()
        self.grid = grid

        # input layer
        if ctype == 'tagconv':
            self.layers.append(
                conv.TAGConv(in_dim,
                             hidden_dim,
                             hops,
                             activation=activation_func))
        else:
            self.layers.append(
                conv.SGConv(in_dim,
                            hidden_dim,
                            hops,
                            cached=False,
                            norm=activation_func))
        self.batch_norms.append(nn.BatchNorm1d(hidden_dim))

        # hidden layers
        for k in range(0, hidden_layers):
            if ctype == 'tagconv':
                self.layers.append(
                    conv.TAGConv(hidden_dim,
                                 hidden_dim,
                                 hops,
                                 activation=activation_func))
            else:
                self.layers.append(
                    conv.SGConv(hidden_dim,
                                hidden_dim,
                                hops,
                                cached=False,
                                norm=activation_func))
            self.batch_norms.append(nn.BatchNorm1d(hidden_dim))

        # dropout layer
        self.dropout = nn.Dropout(p=dropout)

        # last layer
        if self.readout == 'max':
            self.readout_fcn = conv.MaxPooling()
        elif self.readout == 'mean':
            self.readout_fcn = conv.AvgPooling()
        elif self.readout == 'sum':
            self.readout_fcn = conv.SumPooling()
        elif self.readout == 'gap':
            self.readout_fcn = conv.GlobalAttentionPooling(
                nn.Linear(hidden_dim, 1), nn.Linear(hidden_dim,
                                                    hidden_dim * 2))
        else:
            self.readout_fcn = SppPooling(hidden_dim, self.grid)

        if self.readout == 'spp':
            self.classify = nn.Sequential(
                nn.Dropout(),
                nn.Linear(hidden_dim * self.grid * self.grid, hidden_dim * 2),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(2 * hidden_dim, 2 * hidden_dim),
                nn.ReLU(inplace=True),
                nn.Linear(2 * hidden_dim, n_classes),
            )
        else:
            var = hidden_dim
            if self.readout == 'gap':
                var *= 2
            self.classify = nn.Linear(var, n_classes)
Пример #6
0
    def __init__(self, in_dim, hidden_dim, n_classes, hidden_layers, ctype,
                 hops, readout, activation_func, dropout, grid, K, norm,
                 device):
        super(Classifier, self).__init__()
        self.device = device
        self.readout = readout
        self.layers = nn.ModuleList()
        self.n_layers = nn.ModuleList()
        self.grid = grid
        self.K = K
        self.hidden_dim = hidden_dim
        self.norm = norm

        self.mish = Mish()

        # input layer
        if ctype == 'tagconv':
            self.layers.append(
                conv.TAGConv(in_dim,
                             hidden_dim,
                             hops,
                             activation=activation_func))
        else:
            self.layers.append(
                conv.SGConv(in_dim,
                            hidden_dim,
                            hops,
                            cached=False,
                            norm=activation_func))

        if self.norm == 'batch':
            self.n_layers.append(nn.BatchNorm1d(hidden_dim))
        elif self.norm == 'layer':
            self.n_layers.append(
                nn.LayerNorm(hidden_dim, elementwise_affine=False))
        elif self.norm == 'group':
            self.n_layers.append(nn.GroupNorm(16, hidden_dim))
        elif self.norm == 'instance':
            self.n_layers.append(nn.InstanceNorm1d(hidden_dim))
        else:
            self.n_layers.append(GraphNorm(hidden_dim, affine=False))

        # hidden layers
        for k in range(0, hidden_layers):
            if ctype == 'tagconv':
                self.layers.append(
                    conv.TAGConv(hidden_dim,
                                 hidden_dim,
                                 hops,
                                 activation=activation_func))
            else:
                self.layers.append(
                    conv.SGConv(hidden_dim,
                                hidden_dim,
                                hops,
                                cached=False,
                                norm=activation_func))

            if self.norm == 'batch':
                self.n_layers.append(nn.BatchNorm1d(hidden_dim))
            elif self.norm == 'layer':
                self.n_layers.append(
                    nn.LayerNorm(hidden_dim, elementwise_affine=False))
            elif self.norm == 'group':
                self.n_layers.append(nn.GroupNorm(16, hidden_dim))
            elif self.norm == 'instance':
                self.n_layers.append(nn.InstanceNorm1d(hidden_dim))
            else:
                self.n_layers.append(GraphNorm(hidden_dim, affine=False))

        # dropout layer
        self.dropout = nn.Dropout(p=dropout)

        # last layer
        if self.readout == 'max':
            self.readout_fcn = conv.MaxPooling()
        elif self.readout == 'mean':
            self.readout_fcn = conv.AvgPooling()
        elif self.readout == 'sum':
            self.readout_fcn = conv.SumPooling()
        elif self.readout == 'gap':
            self.readout_fcn = conv.GlobalAttentionPooling(
                nn.Linear(hidden_dim, 1), nn.Linear(hidden_dim,
                                                    hidden_dim * 2))
        elif self.readout == 'sort':
            self.readout_fcn = conv.SortPooling(self.K)
        elif self.readout == 'set':
            self.readout_fcn = conv.Set2Set(hidden_dim, 2, 1)
        elif self.readout == 'cov':
            self.readout_fcn = CovPooling(hidden_dim)
        else:
            self.readout_fcn = SppPooling(hidden_dim, self.grid)

        if self.readout == 'spp':
            self.classify = nn.Sequential(
                nn.Dropout(),
                nn.Linear(hidden_dim * self.grid * self.grid, hidden_dim * 2),
                nn.ReLU(inplace=True), nn.Dropout(),
                nn.Linear(2 * hidden_dim, 2 * hidden_dim),
                nn.ReLU(inplace=True), nn.Linear(2 * hidden_dim, n_classes))
        elif self.readout == 'sort':
            self.classify = nn.Sequential(
                #nn.Dropout(),
                nn.Linear(hidden_dim * self.K, n_classes))
        elif self.readout == 'cov':
            self.classify = nn.Sequential(
                nn.Dropout(),
                nn.Linear(int(((hidden_dim + 1) * hidden_dim) / 2), n_classes))
        else:
            var = hidden_dim
            if self.readout == 'gap' or self.readout == 'set':
                var *= 2
            self.classify = nn.Linear(var, n_classes)