def check_all_set_all_get_func(device, init_emb): num_embs = init_emb.shape[0] emb_dim = init_emb.shape[1] dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test', device=device) dgl_emb.all_set_embedding(init_emb) out_emb = dgl_emb.all_get_embedding() assert F.allclose(init_emb, out_emb)
def test_sparse_adam(): num_embs = 10 emb_dim = 4 device = F.ctx() dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test') torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True) th.manual_seed(0) th.nn.init.uniform_(torch_emb.weight, 0, 1.0) th.manual_seed(0) th.nn.init.uniform_(dgl_emb.weight, 0, 1.0) dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01) torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01) # first step idx = th.randint(0, num_embs, size=(4, )) dgl_value = dgl_emb(idx, device).to(th.device('cpu')) torch_value = torch_emb(idx) labels = th.ones((4, )).long() dgl_adam.zero_grad() torch_adam.zero_grad() dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels) torch_loss = th.nn.functional.cross_entropy(torch_value, labels) dgl_loss.backward() torch_loss.backward() dgl_adam.step() torch_adam.step() assert F.allclose(dgl_emb.weight, torch_emb.weight)
def start_sparse_adam_worker(rank, device, world_size, weight, tensor_dev='cpu', has_zero_grad=False, backend='gloo', num_embs=128, emb_dim=10): print('start sparse worker for adam {}'.format(rank)) dist_init_method = 'tcp://{master_ip}:{master_port}'.format( master_ip='127.0.0.1', master_port='12345') if device.type == 'cuda': th.cuda.set_device(device) th.distributed.init_process_group(backend=backend, init_method=dist_init_method, world_size=world_size, rank=rank) init_weight = th.empty((num_embs, emb_dim)) th.manual_seed(0) th.nn.init.uniform_(init_weight, -1.0, 1.0) dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test', init_func=initializer, device=tensor_dev) dgl_emb.all_set_embedding(init_weight) if has_zero_grad: dgl_emb_zero = NodeEmbedding(num_embs, emb_dim, 'zero', init_func=initializer, device=tensor_dev) dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01) else: dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01) start = (num_embs // world_size) * rank end = (num_embs // world_size) * (rank + 1) th.manual_seed(rank) idx = th.randint(start, end, size=(4, )).to(tensor_dev) dgl_value = dgl_emb(idx, device) labels = th.ones((4, )).long().to(device) dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels) dgl_adam.zero_grad() dgl_loss.backward() dgl_adam.step() th.distributed.barrier() dgl_weight = dgl_emb.all_get_embedding().detach() after_step = dgl_emb(idx, device).cpu() if rank == 0: dgl_value = dgl_value.detach().cpu() assert F.allclose(dgl_value, after_step) is False weight[:] = dgl_weight[:] th.distributed.barrier()
def start_sparse_adam_worker(rank, world_size, has_zero_grad=False, num_embs=128, emb_dim=10): print('start sparse worker for adam {}'.format(rank)) dist_init_method = 'tcp://{master_ip}:{master_port}'.format( master_ip='127.0.0.1', master_port='12345') backend = 'gloo' device = F.ctx() th.distributed.init_process_group(backend=backend, init_method=dist_init_method, world_size=world_size, rank=rank) dgl_emb = NodeEmbedding(num_embs, emb_dim, 'test', init_func=initializer) torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True) th.manual_seed(0) th.nn.init.uniform_(torch_emb.weight, -1.0, 1.0) torch_emb = th.nn.parallel.DistributedDataParallel(torch_emb) if has_zero_grad: dgl_emb_zero = NodeEmbedding(num_embs, emb_dim, 'zero', init_func=initializer) torch_emb_zero = th.nn.Embedding(num_embs, emb_dim, sparse=True) th.manual_seed(0) th.nn.init.uniform_(torch_emb_zero.weight, -1.0, 1.0) torch_emb_zero = th.nn.parallel.DistributedDataParallel(torch_emb_zero) dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01) torch_adam = th.optim.SparseAdam( list(torch_emb.module.parameters()) + list(torch_emb_zero.module.parameters()), lr=0.01) else: dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01) torch_adam = th.optim.SparseAdam(list(torch_emb.module.parameters()), lr=0.01) start = (num_embs // world_size) * rank end = (num_embs // world_size) * (rank + 1) idx = th.randint(start, end, size=(4, )) dgl_value = dgl_emb(idx, device).to(th.device('cpu')) torch_value = torch_emb(idx) labels = th.ones((4, )).long() dgl_adam.zero_grad() dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels) dgl_loss.backward() dgl_adam.step() torch_loss = th.nn.functional.cross_entropy(torch_value, labels) torch_adam.zero_grad() torch_loss.backward() torch_adam.step() if rank == 0: after_step = dgl_emb(idx, device) assert F.allclose(dgl_emb.weight, torch_emb.module.weight) assert F.allclose(dgl_value, after_step) is False th.distributed.barrier()