Пример #1
0
def test_Embedding_ASM_act_14_exp_2_ACCV_fc_j0():
    """
    just check the pose displaying
    """
    from mpl_toolkits.mplot3d import Axes3D
    import imgproc
    import iread.h36m_hmlpe as h36m

    data_path = "/opt/visal/tmp/for_sijin/Data/H36M/H36MExp/folder_Embedding_ASM_act_14_exp_2_ACCV_fc_j0/batches.meta"
    data_path1 = "/opt/visal/tmp/for_sijin/Data/H36M/H36MExp/folder_SP_t004_act_14/batches.meta"
    meta = mio.unpickle(data_path)
    meta1 = mio.unpickle(data_path1)
    print "Len of feature list is {} \t dims = {}".format(len(meta["feature_list"]), meta["feature_dim"])
    for i, e in enumerate(meta["feature_list"]):
        print "idx {}:\t shapes = {}".format(i, e.shape)
    f0 = meta["feature_list"][0]
    f0_1 = meta1["feature_list"][0]
    ndata = f0.shape[-1]
    limbs, params = h36m.part_idx, {"elev": -89, "azim": -107, "linewidth": 3}
    fig = pl.figure()
    idx = 0
    fig.add_subplot(2, 1, 1, projection="3d")
    p = f0[..., idx].reshape((-1, 1), order="F") * 1200
    p1 = f0_1[..., idx].reshape((-1, 1), order="F")
    print p
    pp = df.convert_relskel2rel(p).reshape((-1, 1), order="F")
    diff = pp.reshape((-1, 1), order="F") - p1

    imgproc.turn_off_axis()
    dutils.show_3d_skeleton(p1, limbs, params)
    pl.show()
    print """
Пример #2
0
def test_Embedding_ASM_act_14_exp_2_ACCV_fc_j0():
    """
    just check the pose displaying
    """
    from mpl_toolkits.mplot3d import Axes3D
    import imgproc
    import iread.h36m_hmlpe as h36m
    data_path = '/opt/visal/tmp/for_sijin/Data/H36M/H36MExp/folder_Embedding_ASM_act_14_exp_2_ACCV_fc_j0/batches.meta'
    data_path1 = '/opt/visal/tmp/for_sijin/Data/H36M/H36MExp/folder_SP_t004_act_14/batches.meta'
    meta = mio.unpickle(data_path)
    meta1 = mio.unpickle(data_path1)
    print 'Len of feature list is {} \t dims = {}'.format(
        len(meta['feature_list']), meta['feature_dim'])
    for i, e in enumerate(meta['feature_list']):
        print 'idx {}:\t shapes = {}'.format(i, e.shape)
    f0 = meta['feature_list'][0]
    f0_1 = meta1['feature_list'][0]
    ndata = f0.shape[-1]
    limbs, params = h36m.part_idx, {'elev': -89, 'azim': -107, 'linewidth': 3}
    fig = pl.figure()
    idx = 0
    fig.add_subplot(2, 1, 1, projection='3d')
    p = f0[..., idx].reshape((-1, 1), order='F') * 1200
    p1 = f0_1[..., idx].reshape((-1, 1), order='F')
    print p
    pp = df.convert_relskel2rel(p).reshape((-1, 1), order='F')
    diff = pp.reshape((-1, 1), order='F') - p1

    imgproc.turn_off_axis()
    dutils.show_3d_skeleton(p1, limbs, params)
    pl.show()
    print '''
Пример #3
0
    def do_accveval(self):
        images_folder = self.op.get_value('images_folder')
        # get all jpg file in images_folder
        allfiles = iu.getfilelist(images_folder, '.*\.jpg')
        images_path = [iu.fullfile(images_folder, p) for p in allfiles]
        n_image = len(images_path)
        images = self.load_images(images_path)
        mean_image_path = self.op.get_value('mean_image_path')
        mean_image = sio.loadmat(mean_image_path)['cropped_mean_image']
        mean_image_arr = mean_image.reshape((-1, 1), order='F')
        input_images = images - mean_image_arr
        # pack input images into batch data
        data = [
            input_images,
            np.zeros((51, n_image), dtype=np.single),
            np.zeros((1700, n_image), dtype=np.single)
        ]
        # allocate the buffer for prediction
        pred_buffer = np.zeros((n_image, 51), dtype=np.single)
        data.append(pred_buffer)

        ext_data = [
            np.require(elem, dtype=np.single, requirements='C')
            for elem in data
        ]
        # run the model
        ## get the joint prediction layer indexes
        self.pred_layer_idx = self.get_layer_idx('fc_j2', check_type='fc')
        self.libmodel.startFeatureWriter(ext_data, self.pred_layer_idx)
        self.finish_batch()

        raw_pred = ext_data[-1].T
        pred = dhmlpe_features.convert_relskel2rel(raw_pred) * 1200.0

        # show the first prediction
        show_idx = 0
        img = np.array(Image.open(images_path[show_idx]))
        fig = pl.figure(0)
        ax1 = fig.add_subplot(121)
        ax1.imshow(img)
        ax2 = fig.add_subplot(122, projection='3d')
        cur_pred = pred[..., show_idx].reshape((3, -1), order='F')
        part_idx = iread.h36m_hmlpe.part_idx
        params = {'elev': -94, 'azim': -86, 'linewidth': 6, 'order': 'z'}
        dutils.show_3d_skeleton(cur_pred.T, part_idx, params)
Пример #4
0
    def do_accveval(self):
        images_folder = self.op.get_value('images_folder')
        # get all jpg file in images_folder
        allfiles = iu.getfilelist(images_folder, '.*\.jpg')
        images_path = [iu.fullfile(images_folder, p) for p in allfiles]
        n_image = len(images_path)
        images = self.load_images(images_path)
        mean_image_path = self.op.get_value('mean_image_path')
        mean_image = sio.loadmat(mean_image_path)['cropped_mean_image']
        mean_image_arr = mean_image.reshape((-1,1),order='F')
        input_images = images - mean_image_arr
        # pack input images into batch data
        data = [input_images, np.zeros((51,n_image),dtype=np.single),
                np.zeros((1700,n_image), dtype=np.single)]
        # allocate the buffer for prediction
        pred_buffer = np.zeros((n_image, 51),dtype=np.single)
        data.append(pred_buffer)

        ext_data = [np.require(elem,dtype=np.single, requirements='C') for elem in data]
        # run the model
        ## get the joint prediction layer indexes
        self.pred_layer_idx = self.get_layer_idx('fc_j2',check_type='fc')
        self.libmodel.startFeatureWriter(ext_data, self.pred_layer_idx)
        self.finish_batch()

        raw_pred = ext_data[-1].T
        pred = dhmlpe_features.convert_relskel2rel(raw_pred) * 1200.0

        # show the first prediction
        show_idx = 0
        img = np.array(Image.open(images_path[show_idx]))
        fig = pl.figure(0)
        ax1 = fig.add_subplot(121)
        ax1.imshow(img)
        ax2 = fig.add_subplot(122,projection='3d')
        cur_pred = pred[..., show_idx].reshape((3,-1),order='F')
        part_idx = iread.h36m_hmlpe.part_idx
        params =  {'elev':-94, 'azim':-86, 'linewidth':6, 'order':'z'}
        dutils.show_3d_skeleton(cur_pred.T, part_idx, params)
Пример #5
0
 def convert_relskel2rel(cls, x):
     import dhmlpe_features as df
     return df.convert_relskel2rel(x)
Пример #6
0
 def convert_relskel2rel(cls, x):
     import dhmlpe_features as df
     return df.convert_relskel2rel(x)