def main(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", "-d", default="color_mnist", type=str) parser.add_argument("--root", "-r", default="./dataset/colour_mnist", type=str, help="dataset dir") parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir") parser.add_argument("--exp_name", default="colour_mnist", type=str, help="exp name") parser.add_argument("--baseline_exp_name", default="colour_mnist", type=str, help="exp name") parser.add_argument("--model", default="mnistgan", type=str, help="network model") parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--num_pack', default=1, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--num_steps', default=20000, type=int) parser.add_argument('--logit_save_steps', default=100, type=int) parser.add_argument('--decay', default='None', type=str) parser.add_argument('--n_dis', default=1, type=int) parser.add_argument('--p1_step', default=10000, type=int) parser.add_argument('--major_ratio', default=0.99, type=float) parser.add_argument('--num_data', default=10000, type=int) parser.add_argument('--resample_score', type=str) parser.add_argument("--loss_type", default="hinge", type=str, help="loss type") parser.add_argument('--use_eval_logits', type=int) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu output_dir = f'{args.work_dir}/{args.exp_name}' save_path = Path(output_dir) save_path.mkdir(parents=True, exist_ok=True) baseline_output_dir = f'{args.work_dir}/{args.baseline_exp_name}' baseline_save_path = Path(baseline_output_dir) prefix = args.exp_name.split('/')[-1] set_seed(args.seed) if torch.cuda.is_available(): device = "cuda" cudnn.benchmark = True else: device = "cpu" netG, netD, netD_drs, optG, optD, optD_drs = get_gan_model( dataset_name=args.dataset, model=args.model, drs=True, loss_type=args.loss_type, ) netG_ckpt_path = baseline_save_path / f'checkpoints/netG/netG_{args.p1_step}_steps.pth' netD_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth' netD_drs_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth' logit_path = baseline_save_path / ('logits_netD_eval.pkl' if args.use_eval_logits == 1 else 'logits_netD_train.pkl') print(f'Use logit from: {logit_path}') logits = pickle.load(open(logit_path, "rb")) score_start_step = args.p1_step - 5000 score_end_step = args.p1_step score_dict = calculate_scores(logits, start_epoch=score_start_step, end_epoch=score_end_step) sample_weights = score_dict[args.resample_score] print(f'sample_weights mean: {sample_weights.mean()}, var: {sample_weights.var()}, max: {sample_weights.max()}, min: {sample_weights.min()}') print_num_params(netG, netD) ds_train = get_predefined_dataset( dataset_name=args.dataset, root=args.root, weights=None, major_ratio=args.major_ratio, num_data=args.num_data ) dl_train = get_dataloader( ds_train, batch_size=args.batch_size, weights=sample_weights if args.resample_score is not None else None) dl_drs = get_dataloader(ds_train, batch_size=args.batch_size, weights=None) data_iter = iter(dl_train) imgs, _, _, _ = next(data_iter) plot_data(imgs, num_per_side=8, save_path=save_path, file_name=f'{prefix}_resampled_train_data_p2', vis=None) plot_score_sort(ds_train, score_dict, save_path=save_path, phase=f'{prefix}_{score_start_step}-{score_end_step}_score', plot_metric_name=args.resample_score) # plot_score_box(ds_train, score_dict, save_path=save_path, phase=f'{prefix}_{score_start_step}-{score_end_step}_box') print(args, netG_ckpt_path, netD_ckpt_path, netD_drs_ckpt_path) # Start training trainer = LogTrainer( output_path=save_path, logit_save_steps=args.logit_save_steps, netD=netD, netG=netG, optD=optD, optG=optG, netG_ckpt_file=netG_ckpt_path, netD_ckpt_file=netD_ckpt_path, netD_drs_ckpt_file=netD_drs_ckpt_path, netD_drs=netD_drs, optD_drs=optD_drs, dataloader_drs=dl_drs, n_dis=args.n_dis, num_steps=args.num_steps, save_steps=1000, vis_steps=100, lr_decay=args.decay, dataloader=dl_train, log_dir=output_dir, print_steps=10, device=device, save_logits=False, ) trainer.train() plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_p2') netG_drs = drs.DRS(netG, netD_drs, device=device) # for percentile in np.arange(50, 100, 5): # netG_drs.percentile = percentile percentile = 80 plot_color_mnist_generator(netG_drs, save_path=save_path, file_name=f'{prefix}-eval_drs_percent{percentile}_p2') netG.restore_checkpoint(ckpt_file=netG_ckpt_path) netG.to(device) plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_generated_p1')
def main(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", "-d", default="color_mnist", type=str) parser.add_argument("--root", "-r", default="./dataset/colour_mnist", type=str, help="dataset dir") parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir") parser.add_argument("--exp_name", default="colour_mnist", type=str, help="exp name") parser.add_argument("--loss_type", default="ns", type=str, help="loss type") parser.add_argument("--model", default="mnist_dcgan", type=str, help="network model") parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--num_pack', default=1, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--use_clipping', action='store_true') parser.add_argument('--num_steps', default=20000, type=int) parser.add_argument('--logit_save_steps', default=100, type=int) parser.add_argument('--decay', default='None', type=str) parser.add_argument('--n_dis', default=1, type=int) parser.add_argument('--major_ratio', default=0.99, type=float) parser.add_argument('--num_data', default=10000, type=int) parser.add_argument('--topk', default=0, type=int) parser.add_argument('--resample_score', type=str) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu output_dir = f'{args.work_dir}/{args.exp_name}' save_path = Path(output_dir) save_path.mkdir(parents=True, exist_ok=True) set_seed(args.seed) if torch.cuda.is_available(): device = "cuda" cudnn.benchmark = True else: device = "cpu" ds_train = get_predefined_dataset(dataset_name=args.dataset, root=args.root, weights=None, major_ratio=args.major_ratio, num_data=args.num_data) dl_train = get_dataloader(ds_train, batch_size=args.batch_size, weights=None) netG, netD, optG, optD = get_gan_model( dataset_name=args.dataset, model=args.model, num_pack=args.num_pack, loss_type=args.loss_type, topk=args.topk == 1, inclusive=True, num_data=args.num_data, dataloader=dl_train, ) print_num_params(netG, netD) print(args) # Start training trainer = LogTrainer( output_path=save_path, logit_save_steps=args.logit_save_steps, netD=netD, netG=netG, optD=optD, optG=optG, n_dis=args.n_dis, num_steps=args.num_steps, save_steps=1000, vis_steps=100, lr_decay=args.decay, dataloader=dl_train, log_dir=output_dir, print_steps=10, device=device, topk=args.topk, save_logits=args.num_pack == 1, save_eval_logits=False, ) trainer.train() plot_color_mnist_generator(netG, save_path=save_path, file_name='eval_p1')
def main(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", "-d", default="cifar10", type=str) parser.add_argument("--root", "-r", default="./dataset/cifar10", type=str, help="dataset dir") parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir") parser.add_argument("--exp_name", type=str, help="exp name") parser.add_argument("--baseline_exp_name", type=str, help="exp name") parser.add_argument('--p1_step', default=40000, type=int) parser.add_argument("--model", default="sngan", type=str, help="network model") parser.add_argument("--loss_type", default="hinge", type=str, help="loss type") parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--num_steps', default=80000, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--decay', default='linear', type=str) parser.add_argument('--n_dis', default=5, type=int) parser.add_argument('--resample_score', type=str) parser.add_argument('--gold', action='store_true') parser.add_argument('--topk', action='store_true') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu output_dir = f'{args.work_dir}/{args.exp_name}' save_path = Path(output_dir) save_path.mkdir(parents=True, exist_ok=True) baseline_output_dir = f'{args.work_dir}/{args.baseline_exp_name}' baseline_save_path = Path(baseline_output_dir) set_seed(args.seed) if torch.cuda.is_available(): device = "cuda" cudnn.benchmark = True else: device = "cpu" prefix = args.exp_name.split('/')[-1] if args.dataset == 'celeba': window = 5000 elif args.dataset == 'cifar10': window = 5000 else: window = 5000 if not args.gold: logit_path = baseline_save_path / 'logits_netD_eval.pkl' print(f'Use logit from: {logit_path}') logits = pickle.load(open(logit_path, "rb")) score_start_step = (args.p1_step - window) score_end_step = args.p1_step score_dict = calculate_scores(logits, start_epoch=score_start_step, end_epoch=score_end_step) sample_weights = score_dict[args.resample_score] print( f'sample_weights mean: {sample_weights.mean()}, var: {sample_weights.var()}, max: {sample_weights.max()}, min: {sample_weights.min()}' ) else: sample_weights = None netG_ckpt_path = baseline_save_path / f'checkpoints/netG/netG_{args.p1_step}_steps.pth' netD_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth' netD_drs_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth' netG, netD, netD_drs, optG, optD, optD_drs = get_gan_model( dataset_name=args.dataset, model=args.model, loss_type=args.loss_type, drs=True, topk=args.topk, gold=args.gold, ) print(f'model: {args.model} - netD_drs_ckpt_path: {netD_drs_ckpt_path}') print_num_params(netG, netD) ds_train = get_predefined_dataset(dataset_name=args.dataset, root=args.root, weights=None) dl_train = get_dataloader(ds_train, batch_size=args.batch_size, weights=sample_weights) ds_drs = get_predefined_dataset(dataset_name=args.dataset, root=args.root, weights=None) dl_drs = get_dataloader(ds_drs, batch_size=args.batch_size, weights=None) if not args.gold: show_sorted_score_samples(ds_train, score=sample_weights, save_path=save_path, score_name=args.resample_score, plot_name=prefix) print(args) # Start training trainer = LogTrainer( output_path=save_path, netD=netD, netG=netG, optD=optD, optG=optG, netG_ckpt_file=str(netG_ckpt_path), netD_ckpt_file=str(netD_ckpt_path), netD_drs_ckpt_file=str(netD_drs_ckpt_path), netD_drs=netD_drs, optD_drs=optD_drs, dataloader_drs=dl_drs, n_dis=args.n_dis, num_steps=args.num_steps, save_steps=1000, lr_decay=args.decay, dataloader=dl_train, log_dir=output_dir, print_steps=10, device=device, topk=args.topk, gold=args.gold, gold_step=args.p1_step, save_logits=False, ) trainer.train()
def main(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", "-d", default="color_mnist", type=str) parser.add_argument("--root", "-r", default="./dataset/colour_mnist", type=str, help="dataset dir") parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir") parser.add_argument("--exp_name", default="colour_mnist", type=str, help="exp name") parser.add_argument("--baseline_exp_name", default="colour_mnist", type=str, help="exp name") parser.add_argument("--model", default="mnistgan", type=str, help="network model") parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--num_pack', default=1, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--use_clipping', action='store_true') parser.add_argument('--num_steps', default=20000, type=int) parser.add_argument('--logit_save_steps', default=100, type=int) parser.add_argument('--decay', default='None', type=str) parser.add_argument('--n_dis', default=1, type=int) parser.add_argument('--p1_step', default=10000, type=int) parser.add_argument('--major_ratio', default=0.99, type=float) parser.add_argument('--num_data', default=10000, type=int) parser.add_argument('--resample_score', type=str) parser.add_argument("--loss_type", default="hinge", type=str, help="loss type") args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu output_dir = f'{args.work_dir}/{args.exp_name}' save_path = Path(output_dir) save_path.mkdir(parents=True, exist_ok=True) baseline_output_dir = f'{args.work_dir}/{args.baseline_exp_name}' baseline_save_path = Path(baseline_output_dir) prefix = args.exp_name.split('/')[-1] set_seed(args.seed) if torch.cuda.is_available(): device = "cuda" cudnn.benchmark = True else: device = "cpu" netG, netD, optG, optD = get_gan_model( dataset_name=args.dataset, model=args.model, loss_type=args.loss_type, gold=True ) netG_ckpt_path = baseline_save_path / f'checkpoints/netG/netG_{args.p1_step}_steps.pth' netD_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth' print_num_params(netG, netD) ds_train = get_predefined_dataset( dataset_name=args.dataset, root=args.root, weights=None, major_ratio=args.major_ratio, num_data=args.num_data ) dl_train = get_dataloader( ds_train, batch_size=args.batch_size, weights=None) data_iter = iter(dl_train) imgs, _, _, _ = next(data_iter) plot_data(imgs, num_per_side=8, save_path=save_path, file_name=f'{prefix}_gold_train_data_p2', vis=None) print(args, netG_ckpt_path, netD_ckpt_path) # Start training trainer = LogTrainer( output_path=save_path, logit_save_steps=args.logit_save_steps, netD=netD, netG=netG, optD=optD, optG=optG, netG_ckpt_file=netG_ckpt_path, netD_ckpt_file=netD_ckpt_path, n_dis=args.n_dis, num_steps=args.num_steps, save_steps=1000, vis_steps=100, lr_decay=args.decay, dataloader=dl_train, log_dir=output_dir, print_steps=10, device=device, save_logits=False, gold=True, gold_step=args.p1_step ) trainer.train() plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_p2') netG.restore_checkpoint(ckpt_file=netG_ckpt_path) netG.to(device) plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_generated_p1')
def main(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", "-d", default="cifar10", type=str) parser.add_argument("--root", "-r", default="./dataset/cifar10", type=str, help="dataset dir") parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir") parser.add_argument("--exp_name", default="cifar10", type=str, help="exp name") parser.add_argument("--model", default="sngan", type=str, help="network model") parser.add_argument("--loss_type", default="hinge", type=str, help="loss type") parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--num_pack', default=1, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--download_dataset', action='store_true') parser.add_argument('--topk', action='store_true') parser.add_argument('--num_steps', default=100000, type=int) parser.add_argument('--logit_save_steps', default=100, type=int) parser.add_argument('--decay', default='linear', type=str) parser.add_argument('--n_dis', default=5, type=int) parser.add_argument('--imb_factor', default=0.1, type=float) parser.add_argument('--celeba_class_attr', default='glass', type=str) parser.add_argument('--ckpt_step', type=int) parser.add_argument('--no_save_logits', action='store_true') parser.add_argument('--save_logit_after', default=30000, type=int) parser.add_argument('--stop_save_logit_after', default=60000, type=int) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu output_dir = f'{args.work_dir}/{args.exp_name}' save_path = Path(output_dir) save_path.mkdir(parents=True, exist_ok=True) set_seed(args.seed) if torch.cuda.is_available(): device = "cuda" cudnn.benchmark = True else: device = "cpu" netG, netD, optG, optD = get_gan_model( dataset_name=args.dataset, model=args.model, loss_type=args.loss_type, topk=args.topk, ) print_num_params(netG, netD) ds_train = get_predefined_dataset( dataset_name=args.dataset, root=args.root, ) dl_train = get_dataloader(ds_train, batch_size=args.batch_size) if args.dataset == 'celeba': args.num_steps = 75000 args.logit_save_steps = 100 args.save_logit_after = 55000 args.stop_save_logit_after = 60000 if args.dataset == 'cifar10': args.num_steps = 50000 args.logit_save_steps = 100 args.save_logit_after = 35000 args.stop_save_logit_after = 40000 print(args) if args.ckpt_step: netG_ckpt_file = save_path / f'checkpoints/netG/netG_{args.ckpt_step}_steps.pth' netD_ckpt_file = save_path / f'checkpoints/netD/netD_{args.ckpt_step}_steps.pth' else: netG_ckpt_file = None netD_ckpt_file = None # Start training trainer = LogTrainer( output_path=save_path, logit_save_steps=args.logit_save_steps, netG_ckpt_file=netG_ckpt_file, netD_ckpt_file=netD_ckpt_file, netD=netD, netG=netG, optD=optD, optG=optG, n_dis=args.n_dis, num_steps=args.num_steps, save_steps=1000, lr_decay=args.decay, dataloader=dl_train, log_dir=output_dir, print_steps=10, device=device, topk=args.topk, save_logits=not args.no_save_logits, save_logit_after=args.save_logit_after, stop_save_logit_after=args.stop_save_logit_after, ) trainer.train()